铁基超导体母体角分辨光电子能谱及电荷输运性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
铁基超导体是2008年发现的超导体家族中的新成员。目前已经发现的铁基超导体的超导转变温度已经超过了BCS理论预言的极限,被证明是一类新的非常规超导体。FeAs (Te、Se)层是铁基超导体所共有的基本结构,并在此基础上发展出“1111”“122”“111”“11”几个体系大类。在相图上,铁基超导体的超导相在欠掺杂区域近邻反铁磁相,这一现象和铜氧化物超导体的相图非常类似。而在反铁磁相变之上,其特有的结构相变变导致其二维晶体由四方变为正交。为了研究铁基超导体中复杂的相变行为,弄清其超导机制,有大量的实验和理论研究工作在短时间内被相继报道,在国内外形成了一股研究铁基超导体的热潮。我们课题组利用角分辨光电子能谱(ARPES)设备,对不同体系的铁基超导体的能带结构,反铁磁态下的电子结构重构,以及超导体能隙测量等方面做了大量开拓性的重要工作。本文主要介绍了我们组对“111”体系NaFeAs单晶样品的电子结构的细致测量,以及对不同体系铁基超导体母体电荷输运各向异性所进行的研究。
     首先,我们对“111”体系铁基超导体母体NaFeAs单晶样品进行了系统的电子结构的测量。我们发现NaFeAs的能带结构和之前报道的“122”体系的类似。但是,因其结构相变和反铁磁相变的相变温度是分离的,这样就便于我们弄清楚在相变时电子结构的演化过程。我们在相变温度附近做了细致的变温实验,发现部分能带在结构相变附近开始向高能移动,并且在温度降低至反铁磁相变时能带移动平滑。这个现象表明,NaFeAs中结构相变和反铁磁相变可能具有相同的驱动机制。同时,我们利用偏振光依赖的ARPES实验,对NaFeAs能带的轨道对称性也进行了分析。在变光子能量的测量过程中,我们发现NaFeAs费米面附近的能带kz方向的色散较弱。以上实验结果,结合最近对detwin样品的变温实验表明,NaFeAs中磁有序的涨落和轨道自由度的耦合显著影响了其相变温度附近的行为。
     此外,我们利用Montgomery方法测量了NaFeAs,FeTe等铁基超导体母体的电阻率各向异性行为。我们发现,对于NaFeAs样品,铁磁方向的电阻率大于反铁磁方向的电阻率,这一结果填补了不同类铁基超导体的各向异性电阻率测量的空白,并且表明包含FeAs层的铁基超导体母体中其各向异性电阻率行为是一致的。对于FeTe样品,我们发现它的铁磁方向电阻率小于反铁磁方向,这与NaFeAs和“122”体系中看到的结果完全相反,而这一现象则可能与FeTe所具有的较强的局域磁矩和电子结构的强关联性有关。这有助于我们分析FeTe和具有FeAs层样品的不同相互作用机制。
The iron-based superconductors, as a new member of the superconducting materials, were discovered in the early of the year2008. Later the superconducting transition temperature in the iron-based superconductors broke through the limit that BCS theory predicted, which indicates that they are a new type of unconventional high Tc superconductors. So far, four types of the iron-based superconductors, the "1111","122","111", and "11", were discovered, and the FeAs (FeTe/Se) layers were found to be the structure unit in all these materials. In phase diagram of the iron-based superconductors, the superconducting phase is always close to an anti-ferromagnetic (AFM) order phase in the under-doped region, which is similar with that in the cuprates. Moreover, a distinct structural transition lay upon the anti-ferromagnetic transition. To understand the complex behavior of the transitions, the mechanism of the superconductivity, an abundant of researches on theory and experiment were reported in a short time, which becomes a hot issue in these years. Our research group has been contributing a lot of groundbreaking ARPES experiment results in studying the superconducting gap behavior, the electronic structures and their reconstructions in the iron based superconductors. In this thesis, I introduce the comprehensive study on the electronic structure of NaFeAs single crystal, and the resistivity anisotropy in the various types of iron based superconductors.
     We carried out detailed researches on the electronic structures of NaFeAs. In the paramagnetic state, the electronic structure is similar with the "122" iron pnictides. With the advantage of the phase-transition-temperature sepration, a careful temperature dependent experiment was carried out to see the evolution of the electronic structure:some of the bands in NaFeAs start to shift to the high energy around the structural transition temperature (Ts), and envolve smoothly when the temperature decrease though the anti-ferromagnetic transition temperature (Ts). It imples that the structural and anti-ferromagnetic transition may share the same driving force. According to the polarization dependent ARPES experiment, we analyzed the orbital characters of each band in NaFeAs, and the kz dispersions of the bands near the Fermi surface were found to be weak by changing the photon energy. Combined with the recent experiments on the detwined NaFeAs sample, we find that the spin fluctuations at high temperatures and their coupling with the orbital degree of freedom could be the dominant force to drive the nematicity.
     We use the Montgomery method to measure the resistivity anisotropies in detwined NaFeAs and FeTe single crystals. In NaFeAs, the resistivity in the ferromagnetic direction is larger than that in the anti-ferromagnetic direction, which is the same as in "122" iron pnictides, indicating that it is a universal character in iron pnictides. However in FeTe, ferromagnetic direction is smaller than that in the anti-ferromagnetic direction, which shows an opposite behavior in the anti-ferromagnetic state comparing with the FeAs-structure iron pnictides. Our result demonstrates that the double exchange interaction in the ferromagnetic direction of FeTe may enhance the conductivity, which is different from the FeAs-structure iron pnictides.
引文
[1]J. G. Bednorz and K. A. Miiller. Possible high Tc superconductivity in the Ba-La-Cu-O system [J]. Zeitschrift fur Physik B Condensed Matter,1986,64 (2):189-193.
    [2]由维基百科相关条目重新生成:http://en.wikipedia.org/wiki/File:Sc_history.gif
    [3]KAMIHARA Y, WATANABE T, HIRANO M, et al. Iron-Based Layered Superconductor La[O1-xFx]FeAs (x=0.05-0.12) with Tc=26 K [J]. Journal of the American Chemical Society,2008,130(11):3296-7.
    [4]X. H. Chen et al. Superconductivity at 43 K in SmFeAsO1-xFx [J]. Nature,2008, 453 (7196):761-762.
    [5]Z.-A. Ren and et al. Superconductivity at 55 K in Iron-Based F-Doped Layered Quaternary Compound Sm[O1-xFx] FeAs [J]. Chinese Physics Letters,2008,25 (6):2215.
    [6]ROTTER M, TEGEL M, JOHRENDT D. Superconductivity at 38 K in the Iron Arsenide (Ba1-xKx)Fe2As2 [J]. Physical Review Letters,2008,101(10):107006.
    [7]WANG X C, LIU Q Q, LV Y X, et al. The superconductivity at 18 K in LiFeAs system [J]. Solid State Communications,2008,148(11-12):538-40.
    [8]HSU F-C, LUO J-Y, YEH K-W, et al. Superconductivity in the PbO-type structure a-FeSe [J]. Proceedings of the National Academy of Sciences,2008, 105(38):14262-4.
    [9]GUO J, JIN S, WANG G, et al. Superconductivity in the iron selenide KxFe2Se2 (0    [10]ISHIDA K, NAKAI Y, HOSONO H. To What Extent Iron-Pnictide New Superconductors Have Been Clarified:A Progress Report [J]. Journal of the Physical Society of Japan,2008,78(Copyright (C) 2009 The Physical Society of Japan):062001.
    [11]MIZUGUHCI Y, HARA Y, DEGUCHI K, et al. Anion height dependence of Tc for the Fe-based superconductor [J]. arXiv,2010,1001.801.
    [12]DE LA CRUZ C, HUANG Q, LYNN J W, et al. Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems [J]. Nature, 2008,453(7197):899-902.
    [13]XU M, CHEN F, HE C, et al. Synthesis of a New Member in Iron-Based Layered Superconductor:Nd0.8Th0.2OFeAs with Tc=38 K [J]. Chemistry of Materials, 2008,20(23):7201-3.
    [14]HUANG Q, QIU Y, BAO W, et al. Neutron-Diffraction Measurements of Magnetic Order and a Structural Transition in the Parent BaFe2As2 Compound of FeAs-Based High-Temperature Superconductors [J]. Physical Review Letters, 2008,101(25):257003.
    [15]ROTTER M, TEGEL M, JOHRENDT D, et al. Spin-density-wave anomaly at 140 K in the ternary iron arsenide BaFe2As2 [J]. Physical Review B,2008,78(2): 020503.
    [16]LI S, DE LA CRUZ C, HUANG Q, et al. Structural and magnetic phase transitions in Na1-δ FeAs [J]. Physical Review B,2009,80(2):020504.
    [17]PARKER D R, SMITH M J P, LANCASTER T, et al. Control of the Competition between a Magnetic Phase and a Superconducting Phase in Cobalt-Doped and Nickel-Doped NaFeAs Using Electron Count [J]. Physical Review Letters,2010, 104(Copyright (C) 2010 The American Physical Society):057007.
    [18]BAO W, QIU Y, HUANG Q, et al. Tunable (δπ,δπ)-Type Antiferromagnetic Order in a-Fe(Te,Se) Superconductors [J]. Physical Review Letters,2009, 102(24):247001.
    [19]ZHAO J, HUANG Q, DE LA CRUZ C, et al. Structural and magnetic phase diagram of CeFeAsO1-xFx and its relation to high-temperature superconductivity [J]. Nat Mater,2008,7(12):953-9.
    [20]NANDI S, KIM M G, KREYSSIG A, et al. Anomalous Suppression of the Orthorhombic Lattice Distortion in Superconducting Ba(Fe1-xCox)2As2 Single Crystals [J]. Physical Review Letters,2010,104(Copyright (C) 2010 The American Physical Society):057006.
    [21]KATAYAMA N, JI S, LOUCA D, et al. Investigation of the spin-glass regime between the antiferromagnetic and superconducting phases in Fe1+ySexTe1-x [J]. arXiv:10034525,2010.
    [22]ZHAO J, RATCLIFF W, LYNN J W, et al. Spin and lattice structures of single-crystalline SrFe2 As2 [J]. Physical Review B,2008,78(14):140504.
    [23]YIN W-G, LEE C-C, KU W. Unified Picture for Magnetic Correlations in Iron-Based Superconductors [J]. Physical Review Letters,2010,105(10): 107004.
    [24]HU J, XU B, LIU W, et al. An unified minimum effective model of magnetism in iron-based superconductors [J]. arXiv:11065169,2011.
    [25]YAN Y J, ZHANG M, WANG A F, et al. Electronic and magnetic phase diagram in KxFe2-ySe2 superconductors [J]. arXiv,2011,1104.4941.
    [26]BAO W, HUANG Q, CHEN G F, et al. A Novel Large Moment Antiferromagnetic Order in K0.8Fe1.6Se2 Superconductor [J]. arXiv,2011, 1102.0830.
    [27]CHEN F, XU M, GE Q Q, et al. Electronic Identification of the Parental Phases and Mesoscopic Phase Separation of KxFe2-ySe2 Superconductors [J]. Physical Review X,2011,1(2):021020.
    [28]VILDOSOLA V, POUROVSKII L, ARITA R, et al. Bandwidth and Fermi surface of iron oxypnictides:Covalency and sensitivity to structural changes [J]. Physical Review B,2008,78(Copyright (C) 2010 The American Physical Society): 064518.
    [29]SINGH D J. Electronic structure and doping in BaFe2 As2 and LiFeAs:Density functional calculations [J]. Physical Review B,2008,78(Copyright (C) 2010 The American Physical Society):094511.
    [30]ZHANG Y, CHEN F, HE C, et al. Orbital characters of bands in the iron-based superconductor BaFe1.85Co0.15As2 [J]. Physical Review B,2011,83(5):054510.
    [31]YE Z R, ZHANG Y, XU M, et al. Phosphor induced significant hole-doping in ferropnictide superconductor BaFe2(As(1-x)Px)2 [J]. arXiv:11055242,2011.
    [32]YI M, LU D H, ANALYTIS J G, et al. Unconventional electronic reconstruction in undoped (Ba,Sr) Fe2 As2 across the spin density wave transition [J]. Physical Review B,2009,80(17):174510.
    [33]DING H, RICHARD P, NAKAYAMA K, et al. Observation of Fermi-surface-dependent nodeless superconducting gaps in Ba0.6 K0.4 Fe2 As2 [J]. EPL (Europhysics Letters),2008,83(4):47001.
    [34]ZHANG Y, YANG L X, CHEN F, et al. Out-of-Plane Momentum and Symmetry-Dependent Energy Gap of the Pnictide Bao.6Ko 4Fe2As2 Superconductor Revealed by Angle-Resolved Photoemission Spectroscopy [J]. Physical Review Letters,2010,105(11):117003.
    [35]ZHANG Y, YE Z R, GE Q Q, et al. Nodal superconducting-gap structure in ferropnictide superconductor BaFe2(Aso.7Po.3)2 [J]. Nat Phys,2012, advance online publication
    [36]YANG L X, XIE B P, ZHANG Y, et al. Surface and bulk electronic structures of LaFeAsO studied by angle-resolved photoemission spectroscopy [J]. Physical Review B,2010,82(10):104519.
    [37]ZHANG Y, CHEN F, HE C, et al. Strong correlations and spin-density-wave phase induced by a massive spectral weight redistribution in α-Fe1.06Te [J]. Physical Review B,2010,82(16):165113.
    [38]CHEN F, ZHOU B, ZHANG Y, et al. Electronic structure of Fe1.04Te0.66Se0.34 [J]. Physical Review B,2010,81 (Copyright (C) 2010 The American Physical Society):014526.
    [39]ZHANG Y, YANG L X, XU M, et al. Nodeless superconducting gap in AxFe2Se2 (A=K,Cs) revealed by angle-resolved photoemission spectroscopy [J]. Nat Mater, 2011,10(4):273-7.
    [40]LIU R H, WU T, WU G, et al. A large iron isotope effect in SmFeAsO1-xFx and Ba,1-xKxFe2As2 [J]. Nature,2009,459(7243):64-7.
    [1]S. Hiifner. Photoelectron Spectroscopy [M]. Berlin:Springer,1995.
    [2]A. Damascelli, Z. Hussain and Z.-X. Shen. Angle-resolved photoemission studies of the cuprate superconductors [J]. Reviews of Modern Physics,2003,75 (2): 473.
    [3]L. J. van der Pauw. A method of measuring specific resistivity and Hall effect of arbitrary shape, Philips Res. Repts.13,1-9,1958 (NO.1)
    [4]H. C. Montgomery. Method for measuring electrical resistivity of anisotropic materials, Journal of Applied Physics 42,2971,1971 (NO.7)
    [5]B. F. Logan, S. O. Rice and R. F. Wick. Series for computing current flow in a rectangular block, Journal of Applied Physics 42,2975,1971 (NO.7)
    [6]CHU J-H, ANALYTIS J G, DE GREVE K, et al. In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor [J]. Science,2010,329(5993): 824-6.
    [7]中国计量科学研究院磁性研究室。http://www.mmmtl.cn/file/zdypcqidyl.pdf
    [8]感谢与李世燕教授和吴涛博士的讨论。
    [1]HUANG Q, QIU Y, BAO W, et al. Neutron-Diffraction Measurements of Magnetic Order and a Structural Transition in the Parent BaFe2As2 Compound of FeAs-Based High-Temperature Superconductors [J]. Physical Review Letters, 2008,101(25):257003.
    [2]ZHAO J, RATCLIFF W, LYNN J W, et al. Spin and lattice structures of single-crystalline SrFe2 As2 [J]. Physical Review B,2008,78(14):140504.
    [3]BAO W, QIU Y, HUANG Q, et al. Tunable (δπ,δπ)-Type Antiferromagnetic Order in α-Fe(Te,Se) Superconductors [J]. Physical Review Letters,2009, 102(24):247001.
    [4]DE LA CRUZ C, HUANG Q, LYNN J W, et al. Magnetic order close to superconductivity in the iron-based layered LaO1-xFxFeAs systems[J]. Nature, 2008,453(7197):899-902.
    [5]YANG L X, XIE B P, ZHANG Y, et al. Surface and bulk electronic structures of LaFeAsO studied by angle-resolved photoemission spectroscopy [J]. Physical Review B,2010,82(10):104519.
    [6]LI S, DE LA CRUZ C, HUANG Q, et al. Structural and magnetic phase transitions in Nal-delta FeAs [J]. Physical Review B,2009,80(2):020504.
    [7]CHEN G F, HU W Z, LUO J L, et al. Multiple Phase Transitions in Single-Crystalline Na1-δFeAs [J]. Physical Review Letters,2009,102(22): 227004.
    [8]YANG L X, ZHANG Y, OU H W, et al. Electronic Structure and Unusual Exchange Splitting in the Spin-Density-Wave State of the BaFe2As2 Parent Compound of Iron-Based Superconductors [J]. Physical Review Letters,2009, 102(10):107002.
    [9]KUSAKABE K, NAKANISHI A. First-Principles Study of NaFeAs, NaCoAs, and NaNiAs [J]. Journal of the Physical Society of Japan,78(Copyright (C) 2009 The Physical Society of Japan):124712.
    [10]BORISENKO S V, ZABOLOTNYY V B, EVTUSHINSKY D V, et al. Superconductivity without Nesting in LiFeAs [J]. Physical Review Letters,2010, 105(6):067002.
    [11]W. A. Harrison, Electronic Structure and the Properties of Solids:The Physics of the Chemical Bond (Dover, New York,1989).
    [12]SEFAT A S, JIN R, MCGUIRE M A, et al. Superconductivity at 22 K in Co-Doped BaFe2As2 Crystals [J]. Physical Review Letters,2008,101(11): 117004.
    [13JMARGADONNA S, TAKABAYASHI Y, MCDONALD M T, et al. Crystal structure and phase transitions across the metal-superconductor boundary in the SmFeAsO_{1-x}F_{x} (0 & It;=x & It;= 0.20) family [J]. Physical Review B, 2009,79(1):014503.
    [14]PITCHER M J, PARKER D R, ADAMSON P, et al. Structure and superconductivity of LiFeAs [J]. Chem. Commun.5918 (2008).
    [15]YANG L X, XIE B P, ZHOU B, et al. Electronic structure of SmOFeAs [J]. Journal of Physics and Chemistry of Solids,2011,72(5):460-4.
    [16]ZHANG Y, HE C, YE Z R, et al. Symmetry breaking via orbital-dependent reconstruction of electronic structure in detwinned NaFeAs [J]. Physical Review B,2012,85(8):085121.
    [1]TANATAR M A, KREYSSIG A, NANDI S, et al. Direct imaging of the structural domains in the iron pnictides AFe_{2}As_{2} (A=Ca,Sr,Ba) [J]. Physical Review B,2009,79(18):180508.
    [2]WANG Q, SUN Z, ROTENBERG E, et al. Uniaxial "nematic-like" electronic structure and Fermi surface of untwinned CaFe2As2 [J]. arXiv,2010,1009.0271.
    [3]CHU J-H, ANALYTIS J G, DE GREVE K, et al. In-Plane Resistivity Anisotropy in an Underdoped Iron Arsenide Superconductor [J]. Science,2010,329(5993): 824-6.
    [4]BLOMBERG E C, KREYSSIG A, TANATAR M A, et al. Effect of tensile stress on the in-plane resistivity anisotropy in BaFe2As2 [J]. arXiv:11110997vl,2011,
    [5]DHITAL C, YAMANIZ, TIAN W, et al. Effect of uniaxial strain on the structural and magnetic phase transitions in BaFe2As2 [J]. arXiv:11112326,2011.
    [6]YI M, LU D H, CHU J-H, et al. Symmetry breaking orbital anisotropy on detwinned Ba(Fel-xCox)2As2 above the spin density wave transition [J]. arXiv, 2010,1011.0050.
    [7]YI M, LU D H, MOORE R G, et al. Electronic reconstruction through the structural and magnetic transitions in detwinned NaFeAs [J]. arXiv:11116134, 2011.
    [8]ZHANG Y, HE C, YE Z R, et al. Symmetry breaking via orbital-dependent reconstruction of electronic structure in detwinned NaFeAs [J]. Physical Review B,2012,85(8):085121.
    [9]BAO W, QIU Y, HUANG Q, et al. Tunable (δπ,δπ)-Type Antiferromagnetic Order in α-Fe(Te,Se) Superconductors [J]. Physical Review Letters,2009, 102(24):247001.
    [10]FANG M H, PHAM H M, QIAN B, et al. Superconductivity close to magnetic instability in Fe (Se1-x Tex) 0.82 [J]. Physical Review B,2008,78(22):224503.
    [11]TANATAR M A, SPYRISON N, CHO K, et al. Evolution of normal and superconducting properties of single crystals of Na1-δFeAs upon interaction with environment [J]. Physical Review B,2012,85(1):014510.
    [12]TANATAR M A, NI N, SAMOLYUK G D, et al. Resistivity anisotropy of AFe2As2 (A=Ca, Sr, Ba):Direct versus Montgomery technique measurements [J]. Physical Review B,2009,79(13):134528.
    [13]URUSHIBARA A, MORITOMO Y, ARIMA T, et al. Insulator-metal transition and giant magnetoresistance in La1-xSrxMnO3 [J]. Physical Review B,1995, 51(20):14103-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700