电子型高温超导体Nd_(2-x)Ce_xCuO_4单晶及热电材料Bi_(2-x)Pb_xSr_2Co_2O_y和Bi_xTiS_2多晶的热电性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属化合物是凝聚态物理中的研究热点之一,它包含了丰富而奇异的物理性质,如铜氧化物的高温超导电性,钴氧化物的高效热电效率等等。这些奇异的性质激发了人们极大的兴趣和研究热情。到现在为止,还没有成熟的理论能够解释这些奇异的性质,因而对过渡金属化合物的研究一直受到广泛的关注。
     在本论文中,我们对电子型超导体Nd_(2-x)Ce_xCuO_4单晶和高效热电材料Bi_(2-x)Pb_xSr_2Co_2O_y及Bi_xTiS_2多晶的热电性质(电阻率,热电势,热导率)进行了一系列的研究和探索。部分研究结果已在Phys. Lett. A,低温物理学报上发表,还有部分成果正在整理发表中。
     本论文分为以下六章:
     第一章热电效应及高温超导体综述
     在本章中,我们首先在第一部分中简述了电阻率,热电势和热导率的理论研究进展,讨论了产生这些输运现象的物理机制,为后续的研究打下基础。同时还简要介绍了热电效率在实际中的应用。在第二部分中,我们简述了高温超导体的结构和相图,并综述了铜氧化物高温超导体的反常行为和这方面的实验和理论研究进展。
     第二章快速测量热电势的新方法
     本章中首先简要介绍了传统的测量热电势和热导率的稳态法。为了提高热电势的测量速度,我们设计了一种新型的测量方法—锯齿波法,可以在不降低精度的情况下大幅度提高测量速度,测量时间减小到传统方法的1/5。
     第三章电子型超导体Nd_(1.85)Ce_(0.15)CuO_4的低温物性研究
     本章中对Nd_(1.85)Ce_(0.15)CuO_4的输运性质及不同退火条件的影响进行了系统的研究。Nd_(1.85)Ce_(0.15)CuO_4单晶的输运性质,如各向异性电阻率,面内热电势和热导率等,都可以很好地在两能带模型(空穴的窄能带和电子的宽能带)下解释。超导起始温度和载流子密度关系不大,而只由Ce掺杂量决定。900℃氮气退火的主要效果是去除了过量的氧,这时费米能增大,电子型宽能带的结构基本不变,而空穴型窄能带变得更窄,而且中心值的能量变大。而1080℃氮气退火引起的分解,使费米能降低,空穴型窄能带中心值的能量也变小。过量氧的去除增强了体系的各向异性;而分解减弱了体系的各向异性。
     第四章Nd_2CuO_4单晶及其掺Zn样品的输运性质研究
     本章中研究了Nd_2Cu_(1-x)Zn_xO_4(x=0,0.01)单晶样品退火前后ab面内的电阻和热电势。所有样品的热电势和电阻都在高温区(>75K)满足半导体行为,而在中间温区(35 K~75 K),都满足变程跳跃行为,这表明Nd_2Cu_(1-x)Zn_xO_4是存在无序的Mott绝缘体。在高温区,热电势得到的能隙要比电阻中的小得多,这表明体系中存在极化子。体系磁结构的变化会显著影响热电势的行为,对电阻行为也有影响。在235K附近,反铁磁转变使热电势行为表现出热回滞现象。而在75K附近的磁结构转变,使电阻和热电势从半导体行为转变成变程跳跃行为。35K的磁转变发生后,热电势也发生了变化。退火前样品的热电势逐渐饱和,而退火后样品的热电势快速地增大。氮气退火对35K以下的热电势行为有显著的影响,其内涵的物理性质还需要深入的研究。
     第五章Bi_(2-x)Pb_xSr_2Co_2O_y多晶样品的热电性质研究
     本章中研究了不同Pb掺杂的Bi_(2-x)Pb_xSr_2Co_2O_y多晶样品的电阻率和热电势行为。高温区热电势的常数行为以及金属型的电阻率表明体系中导电的能带很窄。体系中,无序导致了Anderson局域化。在中间温区电阻率表现出热激活行为,而在热电势上没有观察到明显的变化。在更低的温区,所有热激活出的电子和空穴都处于定域态,电阻率和热电势都表现为变程跳跃行为。重金属元素Pb的掺杂有助于提高体系的热电效率。
     第六章Bi_xTiS_2多晶的热电性质研究
     本章中研究了不同Bi掺杂组分的Bi_xTiS_2多晶样品的热电性质。Bi掺杂的主要效果是转移其价电子到母体层中Ti的导带3d带中,每个Bi原子提供5个电子,增加了载流子浓度,而没有引入新的散射机制影响电子的输运,因此热电势的行为可以很好地归一化。TiS_2体系中特殊的椭球形的费米口袋对输运性质有非常重要的影响,其特征波矢的电声子曵引引起了热电势的低温峰。随着掺杂的增多,费米口袋逐渐变大。Bi的掺入减小了声子热导,从而提高了体系的热电效应。但是综合考虑电阻率,热电势和热导率的贡献,体系热电效率的优值系数ZT随着掺杂量先增大后减小,在x=0.15附近存在一个最佳的热电效率。
Transition metal compounds is a main topic in condensed matter physics for their interesting and abnormal properties, such as high-T_c superconductivity, high thermoelectric efficiency, et al, which have attracted much attention of researching. In this dissertation, we have studied the electron-type superconductor Nd_(2-x)Ce_xCuO_4 single crystal and thermoelectric materials Bi_(2-x)Pb_xSr_2Co_2O_y and Bi_xTiS_2 polycrystalline in detail. The dissertation was arranged as six parts:
     Chapter 1 Summaries for thermoelectric effects and the properties of High-T_c superconductors
     In part I, the theories of resistivity, thermopower and thermal conductivity, are firstly summarized, and the physical insight of these transport properties is also discussed. And then, the applications of thermoelectric effects are recommended. In part II, the author reviews the structure and phase diagram of the high-T_C superconductors. Their anomalous properties are briefly discussed and the recent development in theoretical and experimental physics about this topic is also mentioned.
     Chapter 2 A new method of fast thermopower measurement
     In this chapter, the traditional steady-method of the measurement on thermopower and thermal conductivity is introduced at first. To quicken the measurement of thermopower, the new method of fast thermopower measurement was developed. In the same request of resolution, this method reduces the measurement time considerably, with a factor of five.
     Chapter 3 Studies on the transport properties of Nd_(1.85)Ce_(0.15)CuO_4 single crystal
     In this chapter, the transport properties of Nd_(1.85)Ce_(0.15)CuO_4 under different annealed conditions are investigated systematically. The transport properties, such as resistivity, thermopower and thermal conductivity, can be well explained in a two-band model, with a hole-type narrow band and an electron-type broad band. The transition temperature of superconducting is not affected by carrier concentration, but by the Ce doping level. The main effect of annealing processes at 900℃is to remove excess oxygen. As a result, Fermi level increases. The electron-type broad band is not changed, while the hole-type narrow band becomes narrower, and its central energy is enhanced. Furthermore, the decomposition, produced when annealed at 1080℃, decreases Fermi level and the central energy of narrow band. The removal of oxygen enhances the anisotropy while the decomposition does opposite.
     Chapter 4 Resistivity and Thermopower of Nd_xCu_(1-x)Zn_xO_4 single crystals
     In this chapter, resistivity and thermopower of Nd_2Cu_(1-x)Zn_xO_4(x=0, 0.01) single crystal are studied in detail, before and after annealed in N_2 at 900℃. At high temperatures (>75 K), both resistivity and thermopower represent a semi-conducting behavior, while at intermediate temperatures (35 K~75 K), both of them behave as variable range hopping (VRH), indicating that Nd_2Cu_(1-x)Zn_xO_4 is a Mott insulator with disorder. The gaps, calculated from thermopower are much smaller than that from resistivity, indicating the presence of polarons. The transition of magnetic structure would influence the behavior of thermopower remarkably, and affect the behavior of resistivity slightly. The antiferromagnetic transition around 235 K brings in the special thermal hysteresis in thermopower, and around 75 K, resistivity and thermopower transfer from semi-conducting behavior to VRH behavior, caused by magnetic transition. Furthermore, the magnetic transition around 35 K also influences the behavior of thermopower. Below 35 K, the thermopower tends to saturate before annealed, while decreases rapidly after annealed, whose origin still calls for more investigations.
     Chapter 5 Study on the thermoelectric properties of Bi_(2-x)Pb_xSr_2Co_2O_y
     In this chapter, the thermopower and resistivity of Bi_(2-x)Pb_xSr_2Co_2O_y polycrystalline samples with different Pb doping level are investigated in detail. The large constant behavior of thermopower at high temperatures, together with metallic resistivity, indicates a narrower band contribution. As a result of Anderson localization, brought in by disorder, the resistivity represents thermal-activated behavior at intermediate temperatures, while no change can be seen in the thermopower. At low temperatures, all the thermal-activated electrons and holes are in the localized states, thus both the resistivity and thermopower represent variable range hopping behavior. The doping of heavy metal element Pb enhances the thermoelectric efficiency.
     Chapter 6 Study on the thermoelectric properties of Bi_xTiS_2
     In this chapter, the thermoelectric properties of Bi_xTiS_2 polycrystalline samples, with different Bi intercalating level, are investigated in detail. The main effect of Bi intercalation is to transfer five electrons to 3d band of Ti atoms in the host layers, and increases the carrier concentration. While Bi intercalation does not bring in any new scattering mechanism to influence electron transport, thus the thermopower can be well normalized. The thermopower are related to the special lens-shaped Fermi pockets of TiS_2 system. With more carriers are doped, the Fermi pockets expand, and the characteristic energy hω_c and corresponding temperature of the phonon peak increase. Bi intercalation reduces the thermal conductivity of phonons, and thus enhances the thermoelectric efficiency. However, if resistivity, thermopower and thermal conductivity are taken into account together, the thermoelectric figure of merit ZT increases with increasing intercalation and then decreases. There is a best ZT when the Bi intercalation is about 0.15.
引文
[1] H.A. Lorenz, Proc. Amst. Acad, 7, 438, 585 (1905)
    [2] C. Kittel, Introduction to Solid State Physics, New York: John Wiley&Francis, 1990
    [3] A. C. Hewson, The Kondo Problem to Heavy Fermion, New York, Cambridge Univeristy Press, 1997
    [4] P. K. Chaikin, An Introduction to Thermopower Organic Superconductors 1990
    [5] L. Gurevich, J. Phys. 9, 477 (1945)
    [6] L. Gurevich, Ibid., 10, 67 (1946)
    [7] D. K. C. MacDonald, Thermoelectricity: an introduction to the principles, 1962
    [8] N. F. Mort, and H. Hones, The theory of the properties of metals and alloys, Clarendon Press, Oxford, 1936
    [9] A. H. Wilson, The theory of metal, Cambridge Univ. Press. 2nd Ed. 1953
    [10] 阎守胜,固体物理基础 第二版,北京大学出版社,2005
    [11] M. Cutler and N. F. Mott, Phys. Rev. 181, 1336 (1969)
    [12] H. Overhof, Phys. Stat. Sol. (b), 67, 709 (1975)
    [13] H. Fritzsche, Solid State Commun. 9, 1813 (1971)
    [14] P. N. Butcher, J. Phys. C, 7, 879 (1974)
    [15] D. Emin, Phys. Rev. Lett., 35, 882 (1975)
    [16] R. R. Heikes and R. W. Ure, Thermoelectricity, (New York: Interscience), 1961
    [17] V. V. Kosarev, Fiz. Tekh. Popuprov., 7, 1378 (1974)
    [18] R. E. Whall, J. Phys. C, 14, L 887 (1981)
    [19] M. Grunewald et al, Phys. Stat. Sol., 93, K17 (1979)
    [20] T. E. Whall et al, J. Physique C 1, Suppl. 4, 229 (1977)
    [21] N. F. Mott and E. A. Davis, Electronic Processes in Non-Crystalline Materials, 1979
    [22] I. P. Zvyagin, Phys. Status Solidi B, 58, 443 (1973)
    [23] H. Overhof, Phys. Status Solidi B, 67, 709, (1976)
    [24] H. Okamoto, and Y. Hamakawa, J. Non-Cryst. Solids, 33, 225 (1979)
    [25] B. Grunewald, M. Pollak, R. Chicon, and M. Ortuno, J. Non-Cryst. Solids 97, 233 (1987)
    [26] I. P. Zvyagain, Fiz. Tekh. Poluprovodn., 12, 1018 (1978)
    [27] P. N. Butcher, Philos. Mag. B, 50, L5 (1985)
    [28] D. Emin, Phys. Rev. B, 30, 5766 (1984)
    [29] P. N. Butcher, and I. P. Zvyagain, Philos. Mag. Lett., 59, 115 (1989)
    [30] D. K. C. Macdonald, W. B. Pearson, and I. M. Templeton, Proc. Roy. Soc. A, 248, 107 (1958)
    [31] M. Bailyn, Phil. May., 5, 1059 (1960)
    [32] J. M. Ziman, Electrons andphonons, Clarendon Press, Oxford 1960
    [33] V. A. Rowe, and P. A. Schroeder, J. Phys. Chem., solids, 31, 1 (1970)
    [34] C. Herring, The role of low-frequency phonons in thermoelectricity and thermal conduction, Proc. Int. Coll. 1956
    [35] N. V. Voikenshtein, V. A. Novoselov, and V. E. Starsev, Soy. Phys.-JETP, 33, 584 (1971)
    [36] R. Fletcher, and D. Greig, Philos. Mag., 17, 21 (1968)
    [37] M. Bailyn, Phys. Rev., 126, 2040 (1962)
    [38] M. Dixon, F. E. Hoare, T. M. Holden, and D. E. Moody, Proc. R. Spc. Lond. A, 285, 561 (1965)
    [39] A. L. Trego, and A. R. Mackintosh, Phys. Rev. 166, 495 (1968)
    [40] F. J. Blatt, D. J. Flood, V. Rowe, P. A. Schroeder, and J. E. Cox, Phys. Rev. Lett, 18, 395 (1967)
    [41] G. Leinfriend, E. Schlomann, Nachr. Gott. Akad. Math. Phys., 2a, 71:53 (1975)
    [42] R. Peierls, Ann. Phys., 3, 1055:27 (1929)
    [43] 姜守忠,匡奕珍,制冷原理及设备[M],北京:中国商业出版社,1996,258
    [1] J.G. Bednorz, and K. A. Muller, Z. Phys. B, 64, 189 (1986)
    [2] M.K. Wu et al., Phys. Rev. Lett., 58, 908 (1987)
    [3] 赵忠贤等,物理通报,661(1987)
    [4] H. Takagi, S. Uchida, K. Kitazawa, and S. Tanaka, Jpn. J. Appl. Phys., 26, L123 (1987)
    [5] C.W. Chu et al., Phys. Rev. Lett., 58, 405 (1987)
    [6] R.J. Cava, R. B. Van dover, B. Batlogg, and E. A. Rietman, Phys. Rev. Lett., 58, 408 (1987)
    [7] H. Maeda, Y. Tanaka, M. Fukutomi, and T. Asano, Jpn. J. Appl. Phys., 27, L209 (1988)
    [8] Z.Z. Sheng, and A. M. Hermann, Nature(London) 332, 139 (1988)
    [9] S.N. Putilin, E. V. Antipov, O. Chmaisse et al., Nature, 362, 226 (1993)
    [10] J. H. Eggert, J. Z. Hu, C. W. Chu et al., Phys. Rev. Lett., 49, 15299 (1994)
    [11] 周午枞,梁维耀主编,高温超导基础研究,上海科学技术出版社,上海,1999
    [12] N. Nguyen, J. Choisnet et al., J. Solid State Chem., 39, 120 (1981)
    [13] J. B. Torrance, Y. Tokura, A, I. Nazzal et al., Phys. Rev. Lett., 61, 1127 (1988)
    [14] H. K. Muller-Buschbaum, W. Wollschlager, Z. Anorg. Allg. Chem. 414, 76 (1975)
    [15] P. Fournier et al, Phys. Rev. Lett. 81, 4702 (1998)
    [16] S. Ono et al., Phys. Rev. Lett. 85, 638 (2000)
    [17] C. H. Wang, X. H. Chen, et al., J. Phys.: Condens. Matter, 17, 1127 (2005)
    [18] C.-T. Chen et al., Phy. Rev. Lett. 88, (2002)
    [19] G. V. M. Williams et al., Phys. Rev. B 65, 224520 (2002)
    [20] N. -C. Yeh et al., Physica C, 367, 174 (2002)
    [21] C. R. Hu, Phys. Rev. Lett. 72, 1526 (1994)
    [22] R. Liu, B. W. Veal, et al., Phys. Rev. B, 46, 11056 (1992)
    [23] N. P. Armitage, F. Ronning, et al., Phys. Rev. Lett. 88, 257001 (2002)
    [24] 王翠焕,博士论文,中国科学技术大学,2006
    [25] Nai-Chang Yeh, Recent Advances in High-Temperature Superconducticity, 2002
    [26] X. H. Chen, C. H. Wang et al., Phys. Rev. B 72, 064517 (2005)
    [27] N. L. Wang, B. Buschinger et al., Phys. Rev. B 67, 104512 (2003)
    [28] M. Gurvitch, A. T. Fiory, Phys. Rev. Lett. 59, 1337 (1987); BertiSundgvist, E. M. Charlotta Nilsson, Phys. Rev. B 51, 6111 (1995)
    [29] S. Martin, A. S. Fiory, R. M. Fleming, Phys. Rev. Lett. 60, 2194 (1988)
    [30] W. E. Pickett, Rev. Mod. Phys., 61,433 (1989)
    [31] G. L. Goodman, et al., J. Chem. Phys., 91, 2983 (1989)
    [32] P. W. Anderson, Science, 235, 1196 (1987)
    [33] H. Takagi, R. J. Cava et al., Phys. Rev. Lett. 68, 3777 (1992)
    [34] M. Imada et al., Reviews of Modern Physics, 70, 1039 (1998)
    [35] H. Takagi, B. Batlogg, et al., Jr. Phys. Rev. Lett. 69, 2975 (1992)
    [36] F. Gollnik, M. Naito, Phys. Rev. B, 58, 11734 (1998)
    [37] C. C. Tsuei, A. Gupta and G. Koren, Physica C 161,415 (1989)
    [38] A. Crusellasm, J. Fontcuberta and S. Pinol, Physica C 180, 313(1991)
    [39] C. Hodges, H. Smith and J. W. Wilkins, Phys. Rev. B 4, 302 (1971)
    [40] J. B. Goodenough and J. S. Zhou, Phys. Rev. B 49, 4251 (1994)
    [41] J. S. Zhou and J. B. Goodenough, Phys. Rev. B 51, 3104 (1995)
    [42] J. B. Mandal et al. J. Phys.: Condens Matter 8, 3047 (1996)
    [43] S. D. Obertelli, J. R. Cooper and J. L. Tallon, Phys. Rev. B 46, 14928 (1992)
    [44] D. M. Newns, C. C. Tsuei, et al., Phys. Rev. Lett. 73, 1695 (1994)
    [45] H. J. Trodahl, Phys. Rev. B 51, 6175 (1995)
    [46] C. H. Wang, G. Y. Wang et al., Phys. Rev. B 72, 132506 (2005)
    [47] P. Fournier, X. Jiang et al., Phys. Rev. B 56, 14149 (1997)
    [48] W. Jiang, S. N. Mao, et al., Phys. Rev. Lett. 73, 1291 (1994)
    [49] N. P. Armitage, F. Ronning et al., Phys. Rev. Lett. 88, 257001 (2002)
    [50] A. Damascelli, Z. Hussain And Z. X. Shen, Rev. Mod. Phys. 75, 473 (2003)
    [51] P. W. Anderson, The Theory of Superconductivity in the High Tc Cuprates, Princeton University Press, Princeton 1997
    [52] P. A. Lee, N. Nagaosa, Rev. Mod. Phys. 78, 17 (2006)
    [53] S. A. Kivelsonet al., Rev. Mod. Phys. 75, 1201 (2003)
    [54] S. Sachdev, Rev. Mod. Phys. 75, 913 (2003)
    [55] Y. Dagan et al., Phys. Rev. Lett. 92, 167001 (2004)
    [56] Y. Ando et al., Phys. Rev. Lett. 92, 247004 (2004)
    [57] S. Uchida et al., Strong Correlation and Superconductivity, Springer, 1989
    [1] MacDonald D K C Thermoelectricity: an introduction to the principles, (New York John Wiley & Sons 1962)
    [2] A.H. Wilson, The theory of metal, Cambridge Univ. Press, 2nd Ed, 1953
    [3] J. B. Goodenough, J. S. Zhou and J. Chan, Phys. Rev. B, 47(1993) 5275
    [4] Chai Yi-Sheng, Yang Hong-Shun, Liu Jian, Ji Ming, Bai Yan-Bo, Cao Lie-Zhao, Acta Physica Sinica (2003)
    [5] E. S. Choi, J. S. Brooks, J. S. Qualls and Y. S. Song, Low-frequency method for magnetothermopower and Nernst effect measurements on single crystal samples at low temperatures and high magnetic fields
    [1] Nai-Chang Yeh, Recent Advances in High-Temperature Superconducticity, 2002
    [2] Y. Tokura, H. Takagi, and S. Uchida, Nature (London), 337, 345 (1989)
    [3] P. K. Mang, S. Larochelle, et al Phy. Rev B 70, 094507 (2004)
    [4] J. S. Kim and D. R. Gaskell, Physica C 209, 381 (1993)
    [5] Y. Ando et al., Phys. Rev. Lett. 92, 247004 (2004)
    [6] P. C. Li, K. Behmia and R.L. Greene, Phys. Rev. Lett., 75, 020506, (2007)
    [7] C. C. Tsuei, A.Gupta and G. Koren, Physica C 161, 415 (1989)
    [8] A. Crusellasm, J. Fontcuberta and S. Pinol, Physica C 180, 313 (1991)
    [9] C. Hodges, H. Smith and J. W. Wilkins, Phys. Rev. B 4, 302 (1971)
    [10] H. X Gao, H. S. Yang et al., submitted to Phys. Lett. A
    [11] P. Fournier, X. Jiang, et al., Phys. Rev. B, 56, 14149 (1997)
    [12] N. P. Armitage, F. Ronning et al., Phys. Rev. Lett. 88, 257001 (2002)
    [13] S. Uchida et al., Strong Correlation and Superconductivity, Springer, Berlin, 1989
    [14] 阎守胜,固体物理基础(第二版),北京大学出版社,北京,2005
    [15] D. K. C. MacDonald, Thermoelectricity: an introduction to the principles, 1962
    [16] H. Matsui, K. Terashima, et al., Phys. Rev. Lett., 94, 047005 (2005)
    [17] L. Forro, Solid State Commun. 73, 501 (1990)
    [18] T. Xiang anf J. M. Wheatley, Phys. Rev. Lett. 77, 4632 (1996)
    [19] W. C. Wu, W. A. Atkinson and J. P. Carbotte, Journal of Superconductivity, 11, 2 (1998)
    [20] C. H. Wang, G. Y. Wang, et al., Supercond. Sci. Technol., 18, 763 (2005)
    [1] M. Imada et al., Rev. Mod. Phys., 70, 1039 (1998)
    [2] J. B. Goodenough, J. S. Zhou, and J.Chan, Phys. Rev. B, 47, 5275 (1993)
    [3] J. Liu, H.S. Yang et al,低温物理学报,28,78(2006)
    [4] Nai-Chang Yeh, Bulletin of the Association of Asia Pacific Physical Societies, 12, No.2, pp. 2-20 (2002)
    [5] N. F. Mott and E. A. Davis, Electronic Process in Non-crystalline Materials (Clarendon Oxford 1979)
    [6] D K C MacDonald, Thermoelectricity: an introduction to the principles, (New York, John Wiley & Sons 1962)
    [7] B. Grunewald, M. Pollak, R. Chiton, and M. Ortuno, J. Non-Cryst. Solids, 97, 233 (1987)
    [8] J. S. Zhou and J. B. Goodenough, Phys. Rev. B, 51, 3104 (1995)
    [9] M. J. Burns and P. M.Chaikin, J. Phys. C: Solid State Phys., 18, 743 (1985)
    [10] A. L. Efros., J. Phys. C: Solid State Phys., 9, 2021 (1976)
    [11] X. F. Sun, J. Takeya, and Y. Ando, Phys. Rev. B, 67, 104503 (2003)
    [12] R. Jin., Y. Onose et al, Phys. Rev. Lett, 91, 14 (2003)
    [13] X. H. Chen, C. H. Wang et al., Phys. Rev. B 72, 064517 (2005)
    [1] I. Terasaki, Y. SaSago and K. Uchinokura, Phys. Rev. B 56, R12685 (1997)
    [2] R. Funahashi and I. Matsubara, Appl. Phys. Lett. 79, 362 (2001)
    [3] A. C. Masset, C. Michel et al., Phys.Rev. B 62, 166 (2000)
    [4] S. Hebert, S. Lambert et al., Phys. Rev. B 64, 172101 (2001)
    [5] T. Fujii and I. Terasaki, Cond-mat/0210071 (2002)
    [6] T. Yamamoto, I. Tsukada and K. Uchinokura, JPN. J. Appl. Phys. Part 1, 38, 1949 (1999)
    [7] I. Terasaki, Proceedings of the 18th International Conference on Thermoelectrics, Baltimore, MD. 1999 (IEEE, Piscataway, 2000)
    [8] T. Tanaka, S. Nakamura and S. Lida, JPN. J. Appl. Phys. Part 2, 33, L581 (1994)
    [9] I. Tsukada, T. Yamamoto, M. Takagi, T. Tsubone, S. Konno and K. Uchinokura, J. Phys. Soc. JPN. 70, 834 (2001)
    [10] D. J. Singh, Phys. Rev. B 61, 13397 (2000)
    [11] T. Yamamoto, K. Uchinokura and I. Tsukaka, Phys. Rev. B 65, 184434 (2002)
    [12] N. F. Mott and E. A. Davis, Electronic Process in Non-Crystalline Materials, (Oxford Univ. Press, Oxford), 1971
    [13] C. Kittel, Introduction to Solid State Physics (Johm Wiley&Sons, Inc., Singapore), 2001
    [14] R. R. Heikes and R. W. Ure, Thermoelectricity, (New York: Interscience), 1961
    [15] D. K. C. MacDonald, Thermoelectricity: an introduction to the principles, 1962
    [16] A. C. Hewson, The Kondo Problem to Heavy Fermion, New York, Cambridge University Press, 1997
    [1] H. Imai,Y. Shimakawa, and Y. Kubo, 64, 241104 (2001)
    [2] P. C. Klipstein, A. G. Bagnall et al., J. Phys. C: Solid State Phys., 14, 4067 (1981)
    [3] P. C. Klipstein and R. H. Friend, J. Phys. C: Solid State Phys., 20, 4169 (1987)
    [4] J. I. Meakin, P. C. Klipstein and R. H. Friend, J. Phys. C: Solid State Phys., 20, 271 (1987)
    [5] T. KuSawake, Y. Takahashi, and K. Ohshima, Materials Research Bulletin, 33, 1009 (1998)
    [6] C. Julien and I. Samaras, Phys. Rev. B, 45, 13390 (1992)
    [7] J. A. Wilson, Phys. Status Solidi B, 86, 11 (1978)
    [8] A. R. Bcal and S. Nulson, Philos, Mag. B 43, 965 (1981)
    [9] M. G. Bell and W. Y. Liang, Adv. Phys., 25, 53 (1976)
    [10] J. V. McCanny, J. Phys. C 12, 3263 (1979)
    [11] C. Umrigar, D. E. Ellis et al., Phys.Rev. B, 26, 4935 (1982)
    [12] G. A. Slack, Mater. Res. Soc. Symp. Proc., 478, 47 (1997)
    [13] B. C. Sales, D. Mandrus, and R. K. Williams, Science, 272, 1325 (1996)
    [14] M. S. Whittingham, Prog. Solid State Chem., 12, 41 (1978)
    [15] D. Li, X. Y. Qin, et al., Phys. Lett. A, 348, 379 (2006)
    [16] D. Li, X. Y. Qin, et al., Phys. Lett. A, 328, 493 (2006)
    [17] F. J. Blatt, P. A. Schroeder and C. L. Foiles, Thermoelectric Power of Metals, Plenum Press, New York and London, 1976
    [18] C. Kittel, Introduction to Solid State Physics, John Wiley & Sons, Inc., New York, 1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700