La_(1.8)Sr_(0.2)Cu_(1-z)M_zO_4(M=Zn,Mg)单晶输运行为与基态性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超导材料是指在一定温度之下电阻消失变为零,并且具有完全抗磁性的材料。由于超导材料具有很多得天独厚的性质,使它在很多领域得到广泛的应用。许多实验表明费米液体理论并不能很好地说明高温超导体正常态的一些性质,所以能否用费米液体理论来描述高温超导体的基态性质很重要。本文主要针对这一问题展开了探讨和研究。
     第一章首先简单回顾了高温超导体的发展历史和获得的成果,详细介绍了高温超导材料La2–xSrxCuO4 (LSCO)的结构和LSCO的相图,并对LSCO体系的物性,如电子结构、费米面、能带色散、普适能隙节点费米速度、磁场形状记忆效应、各向异性磁化率、一维静态自旋条纹相及其引起的各向异性电阻率等进行了详细的介绍。其次叙述了费米液体理论及判断一种材料是否是费米液体的Wiedemann-Franz (WF)定律,并且介绍了极低温下热传导测量的方法和优势,可以用来探测高温超导体基态的金属-绝缘体转变和验证WF定律。最后叙述了元素替代效应的基本图像及对高温超导材料输运行为的影响,我们可以看到,除了加强磁场可以得到高温超导材料的基态性质外,也可以通过替代CuO2面上的Cu离子来破坏超导电性,从而获得其基态的性质。
     第二章研究了La1.8Sr0.2Cu1–zMzO4 (M = Zn或Mg) (LSCMO)单晶的输运行为和基态性质,通过测量电阻率得知Zn和Mg替代的确破坏了超导电性,Zn掺杂为0.049、0.082的样品还具有很明显的金属态行为,而对于Zn掺杂为0.13和Mg掺杂为0.15的样品,低温下电阻虽然有上翘,但也依然是金属态的。同时也测量了其在极低温下的电阻率和热导率,并对实验数据进行拟合得到了在零温极限下的剩余电阻率和剩余热导率,然后利用得到的数据来验证是否满足WF定律,结果表明Zn掺杂为0.049、0.082样品很好地满足WF定律,而Zn掺杂为0.13和Mg掺杂为0.15样品却不满足WF定律,并且是负的偏离,这与对无序关联电子体系的理论预期是正好相反的。
     第三章简单介绍了关于Nd2CuO4单晶材料方面的实验研究,通过多次的探索成功生长出质量比较好的Nd2CuO4单晶,对样品进行了X射线衍射、不同方向上的磁化率以及低温热传导的测量,并对获得的数据进行了简单的分析。
Superconducting material is characterized as a zero resistance and Meissner effect below a certain temperature. As the superconducting materials have many unique properties, they are widely used in many fields. A lot of experiments show that Fermi liquid theory can not explain the ground-state properties of high-temperature superconductors well. So we need to know whether Fermi liquid theory can be used to describe the ground-state properties of high-temperature superconductors or not. In this thesis, we focus on this issue.
     Chapter 1: The history and progresses of research on high-temperature superconductors are reviewed. Details of the structure and phase diagram of La2–xSrxCuO4 (LSCO) are introduced. The main properties of LSCO system, such as the electronic structure, Fermi surface, the band dispersion, the energy gap nodes, the universal nodal Fermi velocity, the magnetic shape-memory effects, the magnetic susceptibility anisotropy, one-dimensional static spin stripe and the resistivity anisotropy are introduced. Then, Fermi liquid theory and Wiedemann-Franz (WF) law which is used to determine whether a material is the Fermi liquid is described. Methods and advantages of very low-temperature thermal conductivity measurement is introduced, which can be used to detect metal-insulator transition of the ground state of high-temperature superconductors and verify Wiedemann-Franz Law. Finally, the elements substitution effect and the impact of transport of high-temperature superconducting materials is described. In addition to using the very high magnetic field to obtain the properties of the ground state of high-temperature superconductors, we can also replace Cu ions in the CuO2 plane to destroy the superconductivity, and then obtain the properties of the ground state.
     Chapter 2: In this chapter we study the transport behaviors and the ground-state properties of La1.8Sr0.2Cu1–zMzO4 (M = Zn or Mg) (LSCMO) single crystals, in which the superconductivity is destroyed by Zn- or Mg-doping. Moderately Zn-doped (z = 0.049, 0.082) samples have a very metallic behavior, for heavily Zn-doped (z = 0.13) or Mg-doped (z = 0.15) samples, low temperature resistivities show a weak upturn, but are still metallic. Thermal conductivity is also measured at very low temperature. The residual resistivity and residual thermal conductivity are obtained by extrapolating the experimental data to T = 0. These data show that moderately Zn-doped (z = 0.049, 0.082) samples satisfy the WF law, but a negative departure from WF law is found in heavily Zn-doped (z = 0.13) and Mg-doped (z = 0.15) samples, which is opposite to the theoretical expectation on disordered correlated electron systems.
     Chapter 3: In this chapter, we study the growth of Nd2CuO4 single crystal using flux-method. The obtained crystals are characterized by X-ray diffraction, magnetic susceptibility and low-temperature thermal conductivity. These data are briefly discussed.
引文
[1] J. G. Bednorz, and K. A. Müller, Z. Phys. B 64, 189 (1986).
    [2] Y. Kamihara, T. Watanabe, M. Hirano, and H. Hosono, J. Am. Chem. Soc. 130, 3296 (2008).
    [3] C. E. Gough, M. S. Colclough, E. M. Forgan, R. G. Jordan, M. Keene, C. M. Muirhead, A. I. M. Rae, N. Thomas, J. S. Abell, and S. Sutton, Nature 326, 855 (1987).
    [4] D. Dimos, P. Chaudhari, J. Mannhart, and F. K. Legoues, Phys. Rev. Lett. 61, 219 (1988).
    [5] C. C. Tsuei, J. R. Kirtley, C. C. Chi, L. S. Yu-Jahnes, A. Gupta, T. Shaw, J. Z. Sun, and M. B. Ketchen, Phys. Rev. Lett. 73, 593 (1994).
    [6] W. N. Hardy, D. A. Bonn, D. C. Morgan, R. X. Liang, and K. Zhang, Phys. Rev. Lett. 70, 3999 (1993).
    [7] H. Alloul, T. Dhno, and P. Mendels, Phys. Rev. Lett. 63,1700 (1989).
    [8] J. W. Loram, K. A. Mirza, J. R. Cooper, and W. Y. Liang, Phys. Rev. Lett. 71, 1740 (1993).
    [9] A. G. Loeser, Z.-X. Shen, D. S. Dessau, D. S. Marshall, C. H. Park, P. Fournier, and A. Kapitulnik, Science 273, 325 (1996).
    [10] W. Y. Liang, J Phys Condens Matter 10, 11365 (1998).
    [11] J. D. Jorgensen, Physics Today 44, 34 (1991).
    [12] M. A. Kaster, R. J. Birgeneau, G. Shirane, and Y. Endoh, Rev. Mod. Phys. 70, 897 (1998).
    [13] H. F. C. Hoevers, P. J. M. Bentum, and L. E. C. Leemput, Physica C 152, 105 (1988).
    [14] J. C. Campuzano, H. Ding, and M. R Norman, Phys. Rev. B 53, 14737 (1996).
    [15] M. Takigawa, P. C. Hammel, R. H. Heffner, and Z. Fisk, Phys. Rev. B 39, 7371 (1989).
    [16] S. E. Barrett, D. J. Durand, C. H. Pennington, C. P. Slichter, T. A. Friedmann, J. P. Rice, and D. M. Ginsberg, Phys. Rev. B 41, 6283 (1990).
    [17] R. J. Birgeneau, C. Y. Chen, D. R. Gabbe, H. P. Jenssen, M. A. Kastner, C. J. Peters, P. J. Picone, Tineke Thio, T. R. Thurston, H. L. Tuller, J. D. Axe, P. B?ni, and G. Shirane, Phys. Rev. Lett. 59, 1329 (1987).
    [18] P. B?ni, J. D. Axe, G. Shirane, R. J. Birgeneau, D. R. Gabbe, H. P. Jenssen, M. A. Kastner, C. J. Peters, P. J. Picone, and T. R. Thurston, Phys. Rev. B 38, 185 (1988).
    [19] P. Ganguly, and C. N. R. Rio, J. Solid State Chem. 53, 193 (1984).
    [20] J. F. Bringley, S. S. Trail, and B. A. Scott, J. Solid State Chem. 86, 310 (1990).
    [21] B. Keimer, N. Belk, R. J. Birgeneau, A. Cassanho, C. Y. Chen, M. Greven, M. A. Kastner, A. Aharony, Y. Endoh, R. W. Erwin, and G. Shirane, Phys. Rev. B 46, 14034 (1992).
    [22] A. Aharony, R. J. Birgeneau, A. Coniglio, M. A. Kastner, and H. E. Stanley, Phys. Rev.Lett. 60, 1330 (1988).
    [23] F. C. Chou, N. R. Belk, M. A. Kastner, and R. J. Birgeneau, Phys. Rev. Lett. 75, 2204 (1995).
    [24] S. Uchida, T. Ido, H. Takagi, T. Arima, Y. Tokura, and S. Tajima, Phys. Rev. B 43, 7942 (1991).
    [25] A. Fujimori, E. Takayama-Muromachi, Y. Uchida, and B. Okai, Phys. Rev. B 35, 8814 (1987).
    [26] Akihiro Ino, Changyoung Kim, Takashi Mizokawa, Zhi-Xun Shen, Atsushi Fujimori, Masamitsu Takaba, Kenji Tamasaku, Hiroshi Eisaki, and Shinichi Uchida, J. Phys. Soc. Jpn. 68, 1496 (1999).
    [27] C. G. Olson, R. Liu, D. W. Lynch, R. S. List, A. J. Arko, B. W. Veal, Y. C. Chang, P. Z. Jiang, and A. P. Paulikas, Phys. Rev. B 42, 381 (1990).
    [28] D. S. Dessau, Z. X. Shen, D. M. King, D. S. Marshall, L. W. Lombardo, P. H. Dickinson, A. G. Loeser, J. DiCarlo, C.-H Park, A. Kapitulnik, and W. E. Spicer, Phys. Rev. Lett. 71, 2781 (1993).
    [29] H. Ding, A. F. Bellman, J. C. Campuzano, M. Randeria, M. R. Norman, T. Yokoya, T. Takahashi, H. Katayama-Yoshida, T. Mochiku, K. Kadowaki, G. Jennings, and G. P. Brivio, Phys. Rev. Lett. 76, 1533 (1996).
    [30] D. M. King, Z. -X. Shen, D. S. Dessau, D. S. Marshall, C. H. Park, W. E. Spicer, J. L. Peng, Z. Y. Li, and R. L. Greene, Phys. Rev. Lett. 73, 3298 (1994).
    [31] Rong Liu, B. W. Veal, A. P. Paulikas, J. W. Downey, P. J. Kosti?, S. Fleshler, and U. Welp, Phys. Rev. B 46, 11056 (1992).
    [32] R. O. Anderson, R. Claessen, J. W. Allen, C. G. Olson, C. Janowitz, L. Z. Liu, J.-H. Park, M. B. Maple, Y. Dalichaouch, M. C. de Andrade, R. F. Jardim, E. A. Early, S.-J. Oh, and W. P. Ellis, Phys. Rev. Lett. 70, 3163 (1993).
    [33] D. M. King, Z.-X. Shen, D. S. Dessau, B. O. Wells, W. E. Spicer, A. J. Arko, D. S. Marshall, J. DiCarlo, A. G. Loeser, C. H. Park, E. R. Ratner, J. L. Peng, Z. Y. Li, and R. L. Greene, Phys. Rev. Lett. 70, 3159 (1993).
    [34] Z.-X. Shen, D. S. Dessau, B. O. Wells, D. M. King, W. E. Spicer, A. J. Arko, D. Marshall, L. W. Lombardo, A. Kapitulnik, P. Dickinson, S. Doniach, J. DiCarlo, T. Loeser, and C. H. Park, Phys. Rev. Lett. 70, 1553 (1993).
    [35] D. S. Marshall, D. S. Dessau, A. G. Loeser, C-H. Park, A. Y. Matsuura, J. N. Eckstein, I. Bozovic, P. Fournier, A. Kapitulnik, W. E. Spicer, and Z.-X. Shen, Phys. Rev. Lett. 76, 4841 (1996).
    [36] A. G. Loeser, Z.-X. Shen, D. S. Dessau, D. S. Marshall, C. H. Park, P. Fournier, and A. Kapitulnik, Science 273, 325 (1996).
    [37] H. Ding, T. Yokoya, J. C. Campuzano, T. Takahashi, M. Randeria, M. R. Norman, T. Mochiku, K. Kadowaki, and J. Giapintzakis, Nature 382, 51 (1996).
    [38] J. M. Harris, Z. -X. Shen, P. J. White, D. S. Marshall, M. C. Schabel, J. N. Eckstein, and I. Bozovic, Phys. Rev. B 54, 15665 (1996).
    [39] J. M. Harris, P. J. White, Z.-X. Shen, H. Ikeda, R. Yoshizaki, H. Eisaki, S. Uchida, W. D. Si, J. W. Xiong, Z.-X. Zhao, and D. S. Dessau, Phys. Rev. Lett. 79, 143 (1997).
    [40] M. C. Schabel, C.-H. Park, A. Matsuura, Z. X. Shen, D. A. Bonn, Ruixing Liang, and W. N. Hardy, Phys. Rev. B 55, 2796 (1997).
    [41] A. Ino, T. Mizokawa, K. Kobayashi, A. Fujimori, T. Sasagawa, T. Kimura, K. Kishio, K. Tamasaku, H. Eisaki, and S. Uchida, Phys. Rev. Lett. 81, 2124 (1998).
    [42] J. Schmalian, D. Pines, and B. Stojkovic, Phys. Rev. Lett. 80, 3839 (1998).
    [43] X. J. Zhou, T. Yoshida, A. Lanzara, P. V. Bogdanov, S. A. Kellar, K. M. Shen, W. L. Yang, F. Ronning, T. Sasagawa, T. Kakeshita, T. Noda, H. Eisaki, S. Uchida, C. T. Lin, F. Zhou, J. W. Xiong, W. X. Ti, Z. X. Zhao, A. Fujimori, Z. Hussain, and Z.-X. Shen, Nature 423, 398 (2003).
    [44] M. A. Kastner, R. J. Birgeneau, G. Shirane, and Y. Endoh, Rev. Mod. Phys. 70, 897 (1998).
    [45] A. N. Lavrov, Y. Ando, S. Komiya, and I.Tsukada, Phys. Rev. Lett. 87, 017007 (2001).
    [46] A. N. Lavrov, Seiki Komiya, and Yoichi Ando, Nature 418, 385 (2002).
    [47] Y. Ando, K. Segawa, S. Komiya, and A. N. Lavrov, Phys. Rev. Lett. 88, 137005 (2002).
    [48] S. Wakimoto, R. J. Birgeneau, M. A. Kastner, and Y. S. Lee, Phys. Rev. B 61, 3699 (2000).
    [49] M. Matsuda, M. Fujita, K. Yamada, R. J. Birgeneau, M. A. Kastner, H. Hiraka, Y. Endoh, S. Wakimoto, and G. Shirane, Phys. Rev. B 62, 9148 (2000).
    [50] V. J. Emery, S. A. Kivelson, and O. Zachar, Phys. Rev B 56, 6120 (1997).
    [51] S. A. Kivelson, E. Fradkin, and V. J. Emery, Nature 393, 550 (1998).
    [52] E. W. Carlson, D. Orgad, S. A. kivelson, and V. J. Emery, Phys. Rev. B 62, 3422 (2000).
    [53] M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 82, 394 (1999).
    [54] M. P. Lilly, K. B. Cooper, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett. 83, 824 (1999).
    [55] Yoichi Ando, Kouji Segawa, Seiki Komiya, and A. N. Lavrov, Phys. Rev. Lett. 88, 137005 (2002).
    [56] C. B. Satterthwaite, Phys. Rev, 125, 873 (1962).
    [57] X. F. Sun, S. Komiya, J. Takeya, and Y. Ando, Phys. Rev. Lett. 90, 117004 (2003).
    [58] Y. Ando, S. Ono, X. F. Sun, J. Takeya, F. Balakirev, J. B. Betts, and G. S. Boebinger, Phys. Rev. Lett. 92, 247004 (2004).
    [59] R. W. Hill, Cyril Proust, Louis Taillefer, P. Fournie, and R. L. Greene, Nature 414, 711 (2001).
    [60] C. Proust, E. Boaknin, R. W. Hill, L. Taillefer, and A. P. Mackenzie, Phys. Rev. Lett. 89, 147003 (2002).
    [61] A. Makariy, Tanatar, J. Paglione, C. Petrovic, and L. Taillefer, Science 316, 1320 (2007).
    [62] J. M. Tarascon, L. H. Greene, P. Barboux, W. R. McKinnon, G. W. Hull, T. P. Orlando, K. A. Delin, S. Foner, and E. J. McNiff, Phys. Rev. B 36, 8393 (1987).
    [63] G. Xiao, M. Z. Cieplak, and C. L. Chien, Phys. Rev. B 42, 240 (1990).
    [64] N. Bulut, D. Hone, D. J. Scalapino, and E. Y. Loh, Phys. Rev. Lett. 62, 2192 (1989).
    [65] A. A. Abrikosov, and L. P. Gor’kov, Sov Phys JETP 12, 1243 (1961).
    [66] Y. Hanaki, Y. Ando, and S. Ono, J. Takeya, Phys. Rev. B 64, 172514 (2001).
    [67] C. Proust, K. Behnia, R. Bel, D. Maude, and S. I. Vedeneev, Phys. Rev. B 72, 214511 (2005).
    [68] N. W. Preyer, R. J. Birgeneau, C. Y. Chen, D. R. Gabbe, H. P. Jenssen, M. A. Kastner, P. J. Picone, and T. Thio, Phys. Rev. B 39, 11563 (1989).
    [69] T. Yoshida, S. Komiya, X. J. Zhou, K. Tanaka, A. Fujimori, Z. Hussain, Z.-X. Shen, Y. Ando, H. Eisaki, and S. Uchida, Phys. Rev. B 80, 245113 (2009).
    [1] R. W. Hill, Cyril Proust, Louis Taillefer, P. Fournier, and R. L. Greene, Nature 414, 711 (2001).
    [2] R. Raimondi, G. Savona, P. Schwab, and T. Luck, Phys. Rev. B 70, 155109 (2004).
    [3] D. R. Niven, and R. A. Smith, Phys. Rev. B 71, 035106 (2005).
    [4] G. Catelani, and I. L. Aleiner, Sov. Phys. JETP 100, 331 (2005).
    [5] C. Proust, K. Behnia, R. Bel, D. Maude, and S. I. Vedeneev, Phys. Rev. B 72, 214511 (2005).
    [6] J. F. Hoffman, E. W. Hudson, K. M. Lang, V. Madhavan, H. Eisaki, S. Uchida, and J. C. Davis, Science 295, 466 (2002).
    [7] B. Lake, G. Aeppli, K. N. Clausen, D. F. McMorrow, K. Lefmann, N. E. Hussey, N. Mangkorntong, M. Nohara, H. Takagi, T. E. Mason, and A. Schroder, Science 291, 1759 (2001); B. Lake, H. M. Ronnow, N. B. Christensen, G. Appli, K. Lefmann, D. F.McMorrow, P. Vorderwisch, P. Smeibidl, N. Mangkorntong, T. Sasagawa, H. Nohara, H. Takagi, and T. E. Mason, Nature (London) 415, 299 (2002).
    [8] B. Khaykovich, Y. S. Lee, R. W. Erwin, S.-H. Lee, S. Wakimoto, K. J. Thomas, M. A. Kastner, and R. J. Birgeneau, Phys. Rev. B 66, 014528 (2002).
    [9] S. A. Kivelson, D.-H. Lee, E. Fradkin, and V. Oganesyan, Phys. Rev. B 66, 144516 (2002).
    [10] J. E. Sonier, F. D. Callaghan, Y. Ando, R. F. Kiefl, J. H. Brewer, C. V. Kaiser, V. Pacradouni, S. A. Sabok-Sayr, X. F. Sun, S. Komiya, W. N. Hardy, D. A. Bonn, and R. Liang, Phys. Rev. B 76, 064522 (2007).
    [11] Y. Fukuzumi, K. Mizuhashi, K. Takenaka, and S. Uchida, Phys. Rev. Lett. 76, 684 (1996).
    [12] S. Komiya, and Y. Ando, Phys. Rev. B 70, 060503(R) (2004).
    [13] Y. Hanaki, Y. Ando, S. Ono, and J. Takeya, Phys. Rev. B 64, 172514 (2001).
    [14] L. Raffo, R. Caciuffo, D. Rinaldi, and F. Licci, Supercond. Sci. Technol. 8, 409 (1995).
    [15] F. Rullier-Albenque, H. Alloul, and R. Tourbot, Phys. Rev. Lett. 87, 157001 (2001).
    [16] S. Komiya, Y. Ando, X. F. Sun, and A. N. Lavrov, Phys. Rev. B 65, 214535 (2002).
    [17] X. F. Sun, S. Ono, X. Zhao, Z. Q. Pang, Y. Abe, and Y. Ando, Phys. Rev. B 77, 094515 (2008), and references therein.
    [18] H. Alloul, J. Bobroff, M. Gabay, and P. J. Hirschfeld, Rev. Mod. Phys. 81, 45 (2009).
    [19] X. F. Sun, K. Segawa, and Y. Ando, Phys. Rev. B 72, 100502(R) (2005).
    [20] N. F. Mott, Metal-Insulator Transitions, 2nd ed. (Taylor & Francis, London, 1990).
    [21] P. A. Lee, and T. V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985), and references therein.
    [22] Y. Nakamura, and S. Uchida, Phys. Rev. B 47, 8369 (1993).
    [23] F. Rullier-Albenque, H. Alloul, F. F. Balakirev, and C. Proust, EPL 81, 37008 (2008).
    [24] D. G. Hawthorn, R. W. Hill, C. Proust, F. Ronning, M. Sutherland, E. Boaknin, C. Lupien, M. A. Tanatar, J. Paglione, S. Wakimoto, H. Zhang, L. Taillefer, T. Kimura, M. Nohara, H. Takagi, and N. E. Hussey, Phys. Rev. Lett. 90, 197004 (2003).
    [25] M. F. Smith, J. Paglione, M. B. Walker, and L. Taillefer, Phys. Rev. B 71, 014506 (2005).
    [26] L. Taillefer, B. Lussier, R. Gagnon, K. Behnia, and H. Aubin, Phys. Rev. Lett. 79, 483 (1997).
    [27] J. Takeya, Y. Ando, S. Komiya, and X. F. Sun, Phys. Rev. Lett. 88, 077001 (2002).
    [28] X. F. Sun, K. Segawa, and Y. Ando, Phys. Rev. Lett. 93, 107001 (2004).
    [29] X. F. Sun, S. Ono, Y. Abe, S. Komiya, K. Segawa, and Y. Ando, Phys. Rev. Lett. 96, 017008 (2006).
    [30] D. G. Hawthorn, S. Y. Li, M. Sutherland, E. Boaknin, R. W. Hill, C. Proust, F. Ronning,M. A. Tanatar, J. Paglione, L. Taillefer, D. Peets, R. Liang, D. A. Bonn, W. N. Hardy, and N. N. Kolesnikov, Phys. Rev. B 75, 104518 (2007).
    [31] R. Berman, Thermal Conduction in Solids (Oxford University Press, Oxford, 1976).
    [32] M. F. Smith, Phys. Rev. B 72, 052511 (2005).
    [33] A. Damascelli, Z. Hussain, and Z.-X. Shen, Rev. Mod. Phys. 75, 473 (2003).
    [34] N. E. Hussey, Adv. Phys. 51, 1685 (2002).
    [35] R. A. Cooper, Y. Wang, B. Vignolle, O. J. Lipscombe, S. M. Hayden, Y. Tanabe, T. Adachi, Y. Koike, M. Nohara, H. Takagi, C. Proust, and N. E. Hussey, Science 323, 603 (2009).
    [1] Y. Tokura, H. Takagi, and S. Uchida, Nature 337, 245 (1989).
    [2] J. L. Peng, Z. Y. Li, and R. L. Greene, Physica C 177, 79 (1991).
    [3] M. F. Hundley, J. D. Thompson, S. W. Cheong, and Z. Fisk, Physica C 158, 102 (1989).
    [4] M. Hofmann, T. Lorenz, G. S. Uhrig, H. Kierspel, O. Zabara, A. Freimuth, H. Kageyama, and Y. Ueda, Phys. Rev. Lett. 87, 47202 (2001).
    [5] C. Hess, B. Büchner, U. Ammerahl, L. Colonescu, F. Heidrich-Meisner, W. Brenig, and A. Revcolevschi, Phys. Rev. Lett. 90, 197002 (2003).
    [6] C. Hess, C. Baumann, U. Ammerahl, B. Büchner, F. Heidrich-Meisner, W. Brenig, and A. Revcolevschi, Phys. Rev. B 64, 184305 (2001).
    [7] X. F. Sun, J. Takeya, S. Komiya, and Y. Ando, Phys. Rev. B 67, 104503 (2003).
    [8] R. Jin, Y. Onose, Y. Tokura, D. Mandrus, P. Dai, and B. C. Sales, Phys. Rev. Lett. 91, 146601 (2003).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700