数字通信信号调制方式自动识别研究及实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代信息化战争中,通信信号,特别是数字通信信号,其调制方式的自动识别具有极其重要的意义。信噪比是衡量截获信号质量的重要指标。本文以数字通信信号为主,在前人工作的基础上,结合某调制识别接收机设计的应用需求,对调制识别算法进行研究。首先提出两种信噪比估计算法;然后分别针对窄带、宽带截获信号提出两种调制方式自动识别算法;最后在调制识别接收机中实现这些算法。所做的主要工作包括:
     1、提出两种信噪比估计算法。
     第一种算法基于接收信号的高阶矩,这是一种半盲信噪比估计算法。在这种算法中,接收信号被建模成经高斯复噪声污染的确定性信号。通过研究接收信号的模平方序列、模四次方序列的平均各态历经性,推导出信号功率、噪声功率、信噪比估计方差的克拉美-劳限。对非恒包络调制信号,通过按数字调制类型符号周期分段的方法,将问题转化为估计恒包络信号的信噪比。该算法直接对接收机输出的中频信号进行处理,无需知道信号的调制类型和实现载波同步,对符号数、过采样数都具有稳健性。仿真结果表明,在符号数为500,过采样数为100,信噪比在-5~25dB范围内时,算法的平均估计标准差小于0.18dB。
     第二种算法基于特征分解和子空间概念。该算法无需知道接收信号的调制类型及符号速率等先验知识,不需要实现载波同步,能在较大信噪比范围内对截获信号的信噪比进行精确的估计。计算机仿真表明,当符号数为2500,自相关矩阵维数为50,信噪比范围为5~20dB时,算法的平均估计偏差小于0.1dB。在同等条件下,算法的执行速度快于第一种信噪比估计算法。
     2、针对窄带调制类型,提出一种基于判决理论的调制识别算法。
     首先,提出离散随机序列的ZA变换的概念。针对窄带信号,提出一种不需要进行希尔伯特变换的瞬时幅度提取算法。它直接以观测样本为基础,无需进行FFT和IFFT,执行速度快,为实时运行创造了条件。算法对码元同步没有要求,对信噪比、符号个数及载波频率失谐都具有稳健性。仿真表明,在-20~32dB的信噪比范围内,该算法的最大误差不超过0.09。
     其次,对于基带采用矩形脉冲成型的数字调制类型,提出一种不需要进行去卷绕处理的瞬时相位、瞬时频率提取算法。与传统的去卷绕方法相比,该方法的主要优点是耗时少、计算速度快。仿真表明,当符号数为10000时,使用这种方法提取瞬时相位比用传统方法快约50毫秒,可用于实时系统中。
     再次,以瞬时幅度、瞬时相位、瞬时频率为基础,借助于序列的ZA变换,提出12个分类特征参数。这些参数的特点在于计算简单,用常规信号处理技术即可提取;且所需先验知识少,噪声抑制能力强,耗时少,可用于实时系统。
     最后,利用上述12个分类特征参数,提出一种基于判决理论的窄带通信信号调制方式自动识别算法。计算机仿真结果表明,在载波频率已知,数字调制成型脉冲为矩形,信噪比为3dB,样本数等于4×104时,算法的平均识别率超过98%,平均识别时间少于50毫秒。
     3、针对宽带调制类型,提出一种基于接收信号的谱相干函数和四阶、八阶循环累积量的调制方式识别算法。首先利用半盲信噪比估计算法估计接收信号的信噪比,然后采用最近邻准则对信号分类。在这种识别算法中,利用了谱相干函数对加性噪声不敏感、对信道影响不敏感的优点。算法无需知道载波频率、载波相位和符号速率等先验知识。分别在高斯信道和多径衰落信道的情况下,通过仿真评估了算法的性能。仿真结果表明,对于高斯信道,在信噪比为10dB、样本数为4096时,识别算法的平均识别率高于97%;对于多径衰落信道,在路径数不超过4、信噪比为10dB、样本数为4096时,识别算法的平均识别率均高于90%。
     4、实现了调制识别接收机。接收机的前端部分采用基于带通采样的宽带中频结构,实现各种调制信号的采集。接收机具有实时、事后处理及离线分析等三种工作模式。利用10种数字、模拟调制类型分别对两种识别算法进行现场实验,证明了它们的有效性。
     本文提出的通信信号调制方式自动识别算法,己在某新型号通信对抗设备中得到应用,效果良好,为该设备的定型起到了重要作用。理论分析、仿真结果和现场试验均表明:本文提出的诸多新算法,不仅在理论上具有一定的创新性,而且具有重要的实用价值。
In modern information-based warfare, automatic modulation recognition ofcommunication signals is extremely important, especially for digital communicationsignals. The signal-to-noise ratio (SNR) is an important index of the quality of theintercepted signals. In order to design a modulation recognition receiver based on theprevious work, the modulation recognition algorithms of communication signals areinvestigated in this thesis, which are mainly on the digital communication signals. TwoSNR estimation algorithms are proposed, and two automatic modulation recognitionalgorithms of narrowband and broad band intercepted signals are given. Furthermore,the proposed algorithms are implemented in the modulation recognition receiver. Themain work of this thesis could be summarized as follows:
     1. Two SNR estimation algorithms have been proposed.
     The first algorithm is based on the higher order moments (HOM) of the receivedsignal, which is a semi-blind SNR estimation algorithm. In this algorithm, the receivedsignal is modeled as a deterministic signal corrupted by complex Gaussian noise. Withthe mean-ergodicity properties of the squared and quartic modulus of the sequence, theCramer–Rao bounds (CRBs) of the signal power, noise power as well as the SNRestimation variances are derived. For the non-constant envelope modulated signal, thesignal is required to be divided into a series of successive segments according to thedigital modulation symbol period, resulting in estimating the SNR of a constantenvelope signal. The intermediate frequency (IF) signal at the output of the receiver, isdirectly processed without the knowledge of the modulation type or realizing carriersynchronization. The proposed algorithm is robust to the symbol number and theoversample factor. Simulation result shows that the average estimation standarddeviation is lower than0.18dB (500symbols, oversample factor is100, SNR scopefrom-5dB to25dB).
     The second algorithm is based on the concept of eigenvector decomposition andsubspace. The proposed approach could accurately estimate a wide range of SNR valuesof the intercepted signal without any a priori knowledge, e.g., the modulation type, thesymbol rate of the received signal, more the carrier synchronization is not required.Computer simulations confirm that the average estimation bias is less than0.1dB (2500symbols, true SNR from5dB to20dB) when the dimension of the autocorrelationmatrix is50. Under the same simulation conditions, the proposed approach performsfaster than the algorithm given above.
     2. A modulation recognition algorithm based on the decision theory is proposed forthe narrowband modulation types.
     Firstly, the concept of zero-amplitude (ZA) transformation of a discrete random sequence is given. For narrowband signals, an instantaneous amplitude extractionalgorithm is presented without Hilbert transformation. Directly based on the observedsamples, the proposed algorithm does not need to perform FFT (Fast FourierTransformation, FFT) or IFFT (Inverse Fast Fourier Transformation, IFFT), whichresults in being real time implemented. The symbol synchronization is not necessaryand the algorithm is robust to SNR offset, symbol number and carrier frequencymismatch. Simulation results show that the maximum error is less than0.09when theSNR varies from-20dB to32dB.
     Secondly, for the digitally modulated types with rectangular baseband pulseshaping, an instantaneous phase and frequency extraction method is proposed whichdoes not need to perform phase unwrapping. Compared to the traditional method whichuses phase unwrapping, this novel approach performs much faster. Simulation indicatesthat under the constraint of10000symbols, the novel method is50milliseconds fasterthan the traditional method, thus it can be implemented in the real time environment.
     Thirdly, with the knowledge of the instantaneous amplitude, the instantaneousphase, the instantaneous frequency, as well as the ZA transformation of a sequence,12classification feature parameters can be extracted. All of these parameters can becalculated relatively easily by utilizing the conventional signal processing tools. Thisless time-cost procedure requires less a priori knowledge and is powerful in noisesuppression. As a result, this proposed method could also be implemented in real timesystem.
     Fourthly, by utilizing the12classification feature parameters mentioned above, anautomatic modulation recognition algorithm based on the decision theory is given forthe narrowband communication signals. Computer simulation shows that the averagerecognition rate of the algorithm is over98%(with known carrier frequency andrectangular digital pulse shaping, SNR is3dB,4×104samples). More, the averageclassification time is less than50milliseconds.
     3. For broad band modulation types, a modulation recognition algorithm ispresented which is based on the spectral coherence function (SCF), the fourth-andeighth-order cyclic cumulants (CCs) of the received signal. First, the semi-blind SNRestimation algorithm is applied so as to evaluate the SNR of the received signal, then aminimum distance criterion is employed to classify the signal. This recognitionalgorithm has the advantage of SCF’s insensitive nature to additive noise and to channeleffects. It does not require a priori knowledge such as carrier frequency, carrier phaseand symbol rate etc. To evaluate its performance, simulations have been performed inGaussian and multipath fading channels, respectively. It demonstrates that the averagerecognition rate of the recognition algorithm in Gaussian channels is above97%(withSNR is10dB and4096samples), and the rate is above90%in multipath fadingchannels with not more than4paths (SNR is10dB and4096samples).
     4. A modulation recognition receiver is implemented, the front end of whichemploys broad band IF structure based on band pass sampling to collect data of allkinds of modulated signals. The receiver is operated in three modes, i.e. the real mode,the post processing mode and the off-line analysis mode. In order to evaluate theperformances of the two proposed recognition algorithms, field tests have been carriedout on10digital and analog modulation types. The experiment results have confirmedtheir validity.
     The proposed automatic modulation recognition algorithms of communicationsignals have been implemented in a novel communication countermeasure equipment.Its excellent performance promotes the finalization of the equipment. Theoreticalanalysis, simulation results and the field tests confirm that the proposed algorithmspresented are not only creative in theory but have great potential.
引文
[1] Nandi A K, Azzouz E E. Automatic Analogue Modulation Recognition[J].Signal Processing,1995,46:211-222.
    [2]赵仁才.短波数字信号调制识别算法研究[D].北京:北京邮电大学,2005.
    [3]陈卫东.数字通信信号调制识别算法研究[D].西安:西安电子科技大学,2001.
    [4] Boudreau D, Dubuc C, Patenaude F, et al. A Fast Automatic ModulationRecognition Algorithm and Its Implementation in a Spectrum MonitoringApplication[J]. IEEE,2000:732-736.
    [5]鲍丹.非理想条件下的调制分类问题[D].西安:西安电子科技大学,2007.
    [6] Mitola J. The Software Radio Architecture[J]. IEEE Communication Magazine,1995,33(5):26-38.
    [7] TSUI J B. Fundamentals of Global Positioning System Receivers: A SoftwareApproach[M]. New York: Wiley-Interscience,2000.
    [8]杨小牛.从软件无线电到认知无线电,走向终极无线电——无线通信发展展望[J].中国电子科学研究院学报,2008,3(1):1-7.
    [9] Ge F, Chen Q, Wang Y, et al. Cognitive Radio: From Spectrum Sharing toAdaptive Learning and Reconfiguration[J]. IEEE,2008.
    [10] Mitola J. Cognitive Radio--An Integrated Agent Architecture for SoftwareDefined Radio[D]. Sweden: KTH Royal Institute of Technology Stockholm,2000.
    [11]冯霞,莫景猷.认知无线电研究综述[J].中国无线电,2008(10):38-42.
    [12]吴丹.通信信号调制方式分类识别算法研究[D].哈尔滨:哈尔滨工业大学,2007.
    [13]张炜.数字通信信号调制方式自动识别研究[D].长沙:国防科技大学,2006.
    [14] Petrovié P M, Krsmanovié Z B, Remenski N K. Automatic HF signalclassification[J]. Fourth International Conference on HF Radio Systems and Techniques,1988:210-214.
    [15] Petrovic P M, Krsmanovic Z B, Remenski N K. An Automatic VHF SignalClassifier[J]. Proceedings of Integrating Research, Industry and Education in Energyand Communication Engineering,1989:385-387.
    [16] Azzouz E E, Nandi A K. Automatic Modulation Recognition--I[J]. Journal ofthe Franklin Institute,1997,334B(2):241-273.
    [17] Kim K, Polydoros A. Digital Modulation Classification: The BPSK versusQPSK Case[J]. IEEE Military Communications Conference,1988,2:431-436.
    [18] Polydoros A, Kim K. On the Detection and Classification of QuadratureDigital Modulations in Broad-band Noise[J]. IEEE Transactions on Communications,1990,38(8):1199-1211.
    [19] Hwang C Y, Polydoros A. Advanced Methods for Digital Quadrature andOffset Modulation Classification[J]. Military Communications Conference, IEEE,1991,2:841-845.
    [20] Long C S, Chugg K M, Polydoros A. Further Results in LikelihoodClassification of QAM Signals[J]. IEEE Military Communications Conference,1994,1:57-61.
    [21] Huang C, Polydoros A. Likelihood Methods for MPSK ModulationClassification[J]. IEEE Transactions on Communications,1995,43(2/3/4):1493-1504.
    [22] Lay N E, Polydoros A. Per-Survivor Processing for Channel Acquisition, DataDetection and Modulation Classification[J]. IEEE Conference Record of theTwenty-Eighth Asilomar Conference on Signals, Systems and Computers,1994,2:1169-1173.
    [23] Lay N E, Polydoros A. Modulation Classification of Signals in Unknown ISIEnvironments[J]. IEEE Military Communications Conference,1995,1:170-174.
    [24] Sapiano P C, Martin J D. Maximum Likelihood PSK Classifier[J]. IEEEMilitary Communications Conference,1996,3:1010-1014.
    [25] Beidas B F, Weber C L. Modulation Classification of MFSK Signals Using theHigher-Order Correlation Domain[J]. IEEE Military Communications Conference,1995,1:186-191.
    [26] Beidas B F, Weber C L. Higher-Order Correlation-Based Approach toModulation Classification of Digitally Frequency-Modulated Signals[J]. IEEE Journalon Selected Areas in Communications,1995,13(1):89-101.
    [27] Chugg K M, Long C, Polydoros A. Combined Likelihood Power Estimationand Multiple Hypothesis Modulation Classification[J]. Conference Record of theTwenty-Ninth Asilomar Conference on Signals, Systems and Computers,1996,2:1137-1141.
    [28] Lin Y, Kuo C C J. Sequential Modulation Classification of DependentSamples[J]. IEEE International Conference on Acoustics, Speech and Signal Processing,1996,5:2690-2693.
    [29] Schrey gg C, Reichert J. Modulation Classification of QAM Schemes Usingthe DFT of Phase Histogram Combined with Modulus Information[J]. IEEE MILCOM97Proceedings,1997,3:1372-1376.
    [30] Yang Y, Soliman S S. A Suboptimal Algorithm for ModulationClassification[J]. IEEE Transactions on Aerospace and Electronic Systems.,1997,33(1):38-45.
    [31] Yang Y, Liu C. An Asymptotic Optimal Algorithm for ModulationClassification[J]. IEEE Communications Letters,1998,2(5):117-119.
    [32] Boiteau D, Martret C L. A General Maximum Likelihood Framework forModulation Classification[J]. IEEE International Conference on Acoustics, Speech andSignal Processing,1998,4:2165-2168.
    [33] Sills J A. Maximum-Likelihood Modulation Classification for PSK/QAM[J].IEEE Military Communications Conference Proceedings,1999,1:217-220.
    [34] Hong L, Ho K C. BPSK and QPSK Modulation Classification with UnknownSignal Level[J].21st Century Military Communications Conference Proceedings,2000,2:976-980.
    [35] Hong L, Ho K C. Classification of BPSK and QPSK Signals with UnknownSignal Level Using the Bayes Technique[J]. Proceedings of the2003InternationalSymposium on Circuits and Systems, IEEE,2003,4: IV1-IV4.
    [36] Hong L. Classification of BPSK and QPSK Signals in Fading EnvironmentUsing the ICA Technique[J]. Proceedings of the Thirty-Seventh SoutheasternSymposium on System Theory, IEEE,2005:491-494.
    [37] Panagiotou P, Anastasopoulos A, Polydoros A. Likelihood Ratio Tests forModulation Classification[J]. IEEE Military Communications Conference Proceedings,2000,2:670-674.
    [38] Wei W, Mendel J M. A New Maximum-Likelihood Method for ModulationClassification[J]. Conference Record of the Twenty-Ninth Asilomar Conference onSignals, Systems and Computers,1996,2:1132-1136.
    [39] Wei W, Mendel J M. Maximum-Likelihood Classification for DigitalAmplitude-Phase Modulations[J]. IEEE Transactions on Communications,2000,48(2):189-193.
    [40] Ho K C, Hong L. Likelihood Method for BPSK and Unbalanced QPSKModulation Classification[J]. Proc. SPIE,2001,4395:155-162.
    [41] Hong L, Ho K C. Modulation Classification of BPSK and QPSK SignalsUsing a Two Element Antenna Array Receiver[J]. IEEE Military CommunicationsConference,2001,1:118-122.
    [42] Hong L, Ho K C. Antenna Array Likelihood Modulation Classifier for BPSKand QPSK Signals[J]. Proceedings MILCOM2002.,2002,1:647-651.
    [43] El-Mahdy A E, Namazi N M. Classification of Multiple M-aryFrequency-Shift Keying Signals over a Rayleigh Fading Channel[J]. IEEE Transactionson Communications,2002,50(6):967-974.
    [44] Kang S G. Performance of ML Modulation Classifier for Multilevel QAMSignals[J]. IEEE TENCON,2004,2:692-695.
    [45] Su W, Kosinski J A. Analysis of Decision Theoretic Modulation ClassificationMethods for Digital Communication Signals[J].2005.
    [46] Tadaion A A, Derakhtian M, Gazor S, et al. Likelihood Ratio Tests for PSKModulation Classification in Unknown Noise Environment[J]. IEEE CanadianConference on Electrical and Computer Engineering,2005:151-154.
    [47] Li H, Dobre O A, Bar-Ness Y, et al. Quasi-Hybrid Likelihood ModulationClassification with Nonlinear Carrier Frequency Offsets Estimation Using AntennaArrays[J]. IEEE Military Communications Conference,2005:1-6.
    [48] Dobre O A, Abdi A, Bar-Ness Y, et al. Blind Modulation Classification: AConcept Whose Time Has Come[J]. IEEE/Sarnoff Symposium on Advances in Wiredand Wireless Communication,2005:223-228.
    [49] Dobre O A, Hameed F. Likelihood-Based Algorithms for Linear DigitalModulation Classification in Fading Channels[J]. IEEE Canadian Conference onElectrical and Computer Engineering,2006:1347-1350.
    [50] Wong M L D, Nandi A K. Blind Phase-Amplitude Modulation Classificationwith Unknown Phase Offset[J]. The18th International Conference on PatternRecognition,2006,4:177-180.
    [51] Abdi A, Dobre O A, Choudhry R, et al. Modulation Classification in FadingChannels Using Antenna Arrays[J]. IEEE Military Communications Conference,2004,1:211-217.
    [52] Wong M L D, Nandi A K. Semi-Blind Algorithms for AutomaticClassification of Digital Modulation Schemes[J]. Digital Signal Processing,2008(18):209-227.
    [53] Liedtke F F. Computer Simulation of an Automatic Classification Procedurefor Digitally Modulated Communication Signals with Unknown Parameters[J]. SignalProcessing,1984,6(4):311-323.
    [54] Hsue S Z, Soliman S S. Automatic Modulation Classification Using ZeroCrossing[J]. IEE Proc. Part F Radar Signal Process.,1990,137(6):459-464.
    [55] Hsue S Z, Soliman S S. Automatic Modulation Recognition of DigitallyModulated Signals[J]. Military Communications Conference, IEEE,1989,3:645-649.
    [56] Desimio M P, Prescott G E. Adaptive Generation of Decision Functions forClassification of Digitally Modulated Signals[J]. Proceedings of the IEEE1988National Aerospace and Electronics Conference,1988.,1988,3:1010-1014.
    [57] Whelchel J E, McNeill D L, Hughes R D, et al. Signal Understanding: AnArtificial Intelligence Approach to Modulation Classification[J]. IEEE InternationalWorkshop on Tools for Artificial Intelligence,1989:231-236.
    [58] Soliman S S, Hsue S Z. Signal Classification Using Statistical Moments[J].IEEE Transactions on Communications,1992,40(5):908-916.
    [59] Reichert J. Automatic Classification of Communication Signals Using HigherOrder Statistics[J]. Proceedings of ICASSP,1992,5:221-224.
    [60] Assaleh K, Farrell K, Mammone R J. A New Method of ModulationClassification for Digitally Modulated Signals[J]. IEEE Military CommunicationsConference,1992,2:712-716.
    [61] Azzouz E E, Nandi A K. Automatic Identification of Digital ModulationTypes[J]. Signal Processing,1995,47(1):55-69.
    [62] Azzouz E E, Nandi A K. Procedure for Automatic Recognition of Analogueand Digital Modulations[J]. IEE Proceedings-Communications,1996,143(5):259-266.
    [63] Nandi A K, Azzouz E E. Algorithms for Automatic Modulation Recognitionof Communication Signals[J]. IEEE Transactions on Communications,1998,46(4):431-436.
    [64] Azzouz E E, Nandi A K. Automatic Modulation Recognition--II[J]. Journal ofthe Franklin Institute,1997,334B(2):275-305.
    [65] Druckmann I, Plotkin E I, Swamy M N S. Automatic Modulation TypeRecognition[J]. IEEE Canadian Conference on Electrical and Computer Engineering,1998,1:65-68.
    [66] Hero-III A O, Hadinejad-Mahram H. Digital Modulation Classification UsingPower Moment Matrices[J]. IEEE International Conference on Acoustics, Speech andSignal Processing,1998,6:3285-3288.
    [67] Dubuc C, Boudreau D, Patenaude F, et al. An Automatic ModulationRecognition Algorithm for Spectrum Monitoring Applications[J]. IEEE,1999,1:570-574.
    [68] Ramakonar V, Habibi D, Bouzerdoum A. Automatic Recognition of DigitallyModulated Communications Signals[J]. Proceedings of the Fifth InternationalSymposium on Signal Processing and Its Applications,1999,2:753-756.
    [69] Kreuzberger J, Reichert J, Quint F. Detection of Speech Modulated SSB andAM Signals in the HF-Band[J]. IEEE Military Communications ConferenceProceedings,1999,1:208-211.
    [70] Swami A, Sadler B M. Hierarchical Digital Modulation Classification UsingCumulants[J]. IEEE Transactions on Communications,2000,48(3):416-429.
    [71] Wong M L D, Nandi A K. Automatic Digital Modulation Recognition UsingSpectral and Statistical Features with Multi-layer Perceptrons[J]. IEEE the SixthInternational Symposium on Signal Processing and its Applications,2001,2:390-393.
    [72] Grimaldi D, Rapuano S, Truglia G. An Automatic Digital ModulationClassifier for Measurement on Telecommunication Networks[J]. IEEE Instrumentationand Measurement Technology Conference,2002:957-962.
    [73] YOSHIOKA H, SHIRATO Y, TOYODA I, et al. A Fast ModulationRecognition Technique Using Nearest Neighbor Rules with Optimized Threshold forModulation Classification in Rayleigh Fading Channels[J]. IEEE,2002:1049-1052.
    [74] Matic V, Lestar B, Tadic V. The Use of Digital Signal Processing for aModulation Classification[J]. IEEE11th Mediterranean Electrotechnical Conference,2002:126-130.
    [75] Kim N, Kehtarnavaz N, Brown S, et al. Hierarchical Classification ofModulation Signals[J]. Proceedings of the5th Biannual World Automation Congress,2002:243-248.
    [76] Dobre O A, Bar-Ness Y, Su W. Higher-Order Cyclic Cumulants for HighOrder Modulation Classification[J]. IEEE Military Communications Conference,2003,1:112-117.
    [77] Dobre O A, Abdi A, Bar-Ness Y, et al. Selection Combining for ModulationRecognition in Fading Channels[J].2005.
    [78] Davidson K L, Goldschneider J R, Cazzanti L, et al. Feature-based ModulationClassification Using Circular Statistics[J]. IEEE Military Communications Conference,2004,2:765-771.
    [79] Dobre O A, Abdi A, Bar-Ness Y, et al. The Classification of Joint Analog andDigital Modulations[J]. IEEE Military Communications Conference,2005:3010-3015.
    [80] Giesbrecht J E, Clarke R, Abbott D. Modulation Recognition for HF signals[J].Proceedings of SPIE,2005,5649:501-512.
    [81] Giesbrecht J E, Clarke R, Abbott D. Modulation Recognition for Real HFSignals[J]. Proc. of SPIE,2006,6035.
    [82] Park C S, Kim D Y. A Novel Robust Feature of Modulation Classification forReconfigurable Software Radio[J]. IEEE Transactions on Consumer Electronics,2006,52:1193-1200.
    [83] Donoho D L, Huo X. Large-Sample Modulation Classification UsingHellinger Representation[J]. IEEE Signal Processing Workshop on Signal ProcessingAdvances in Wireless Communications,1997,4:133-136.
    [84] Huo X, Donoho D. A Simple and Robust Modulation Classification Methodvia Counting[J]. IEEE,1998:3289-3292.
    [85] Schrey gg C, Kittel K, Kressel U, et al. Robust Classification of ModulationTypes Using Spectral Features Applied to HMM[J]. IEEE MILCOM97Proceedings,1997,3:1377-1381.
    [86] Ketterer H, Jondral F, Costa A H. Classification of Modulation Modes UsingTime-Frequency Methods[J]. IEEE International Conference on Acoustics, Speech andSignal Processing,1999,5:2471-2474.
    [87] Spooner C M. Classification of Co-Channel Communication Signals UsingCyclic Cumulants[J]. Conference Record of the Twenty-Ninth Asilomar Conference onSignals, Systems and Computers,1996,1:531-536.
    [88] Dobre O A, Abdi A, Bar-Ness Y, et al. A Survey of Automatic ModulationClassification Techniques: Classical Approaches and New Trends[J].2006.
    [89] Ebrahimzadeh A, Mousavi S E. Classification of Communications SignalsUsing an Advanced Technique[J]. Applied Soft Computing,2011(11):428-435.
    [90] Xi S, Wu H C. Robust Automatic Modulation Classification Using CumulantFeatures in the Presence of Fading Channels[J]. IEEE Wireless Communications andNetworking Conference,2006,4:2094-2099.
    [91] Hossen A, Al-Wadahi F, Jervase J A. Classification of Modulation SignalsUsing Statistical Signal Characterization and Artificial Neural Networks[J]. ArtificialIntelligence,2007(20):463-472.
    [92] Guldemir H, Sengur A. Online Modulation Recognition of AnalogCommunication Signals Using Neural Network[J]. Expert Systems With Applications,2007(33):206-214.
    [93] Ebrahimzadeh A, Ghazalian R. Blind Digital Modulation Classification inSoftware Radio Using the Optimized Classifier and Feature Subset Selection[J].Engineering Applications Of Artificial Intelligence,2011(24):50-59.
    [94] Venalainen J, Terho L, Koivunen V. Modulation Classification in FadingMultipath Channel[J]. IEEE Conference Record of the Thirty-Sixth AsilomarConference on Signals, Systems and Computers,2002,2:1890-1894.
    [95] Lu M Q, Xiao X C, Li L M. AR Modeling-based Features Extraction ofMultiple Signals for Modulation Recognition[J]. Fourth International Conference onSignal Processing Proceedings,1998,2:1385-1388.
    [96]胡延平,李广森,李纲等.利用参数统计方法自动识别数字调制信号[J].通信学报,2002,23(2):58-65.
    [97] Zhao Z J, S J N. A New Method for Modulation Types Recognition Based onthe Time Frequency Representations[J]. IEEE,2002:208-211.
    [98] Yao Y F, Huang Z L. Using Linear Smoothing to Improve the ModulationRecognition Performance[J]. IEEE International Conference on Natural LanguageProcessing and Knowledge Engineering,2003:84-88.
    [99] Guan H B, Ye C Z, Li X Y. Modulation Classification Based onSpectrogram[J]. IEEE Proceedings of the Third International Conference on MachineLearning and Cybernetics,2004,6:3551-3556.
    [100]游伟,周先敏.模拟调制信号的自动调制识别[J].信号处理,2009,25(1):77-80.
    [101]高玉龙.基于循环谱的调制方式识别与高动态同步技术研究[D].哈尔滨:哈尔滨工业大学,2007.
    [102] Andrews J G, Ghosh A, Muhamed R. Fundamentals ofWiMAX--Understanding Broadband Wireless Networking[M].2007.
    [103]杨小牛,楼才义,徐建良.软件无线电原理与应用[M].2nd.北京:电子工业出版社,2002:70.
    [104] Mohammad M, Buehrer R M. On the Impact of SNR Estimation Error onAdaptive Modulation[J]. IEEE Communications Letters,2005,9(6):490-492.
    [105] Matzner R, Letsch K. SNR Estimation and Blind Equalization(Deconvolution) Using the Kurtosis[J]. IMS Workshop on Information Theory andStatistics, IEEE,1994:68.
    [106] Matzner R, Englberger F. An SNR Estimation Algorithm Using Fourth-OrderMoments[J]. International Symposium on Information Theory, IEEE,1994:119.
    [107] Matzner R, Schmidbauer A. Blind Linear and Decision Feedback EqualizersUsing Fourth-Order Moments and Their Performance on Twisted Pair Lines[J]. Proc.GLOBECOM'94,1994.
    [108] Matzner R. An SNR Estimation Algorithm for Complex Baseband SignalsUsing Higher Order Statistics[J]. Facta Universitatis, Series: Electronic and Energetics,1993.
    [109] Tekbas H. Blind SNR Estimation for Limited Time Series[J]. ChaosSolitons and Fractals,2007(33):1497-1504.
    [110] Pauluzzi D R, Beaulieu N C. A Comparison of SNR Estimation Techniquesin the AWGN Channel[J]. Pacific Rim Conference on Communications, Computers,and Signal Processing, IEEE,1995:36-39.
    [111] Pauluzzi D R, Beaulieu N C. A Comparison of SNR Estimation Techniquesfor the AWGN Channel[J]. IEEE Transactions on Communications,2000,48(10):1681-1691.
    [112] Simon M, Dolinar S. Improving SNR Estimation for Autonomous RadioReceivers[J]. IEEE Global Telecommunications Conference,2005,3:1598-1603.
    [113] Gilchriest C E. Signal-to-noise monitoring[J]. JPL Space Programs Summary,1966,4:169-184.
    [114] Beaulieu N C, Toms A S, Pauluzzi D R. Comparison of Four SNR Estimatorsfor QPSK Modulations[J]. IEEE Communications Letters,2000,4(2):43-45.
    [115] Shin D J, Sung W J, Kim I K. Simple SNR Estimation Methods for QPSKModulated Short Bursts[J]. Global Telecommunications Conference, IEEE,2001,6:3644-3647.
    [116] Li B, DiFazio R, Zeira A. A Low Bias Algorithm to Estimate Negative SNRsin an AWGN Channel[J]. IEEE Communications Letters,2002,6(11):469-471.
    [117] Gao P, Tepedelenlio lu C. SNR Estimation for non-Constant ModulusConstellations[J]. Wireless Communications and Networking Conference, IEEE,2004,1:24-29.
    [118] Gao P, Tepedelenlio lu C. SNR Estimation for Nonconstant ModulusConstellations[J]. IEEE Transactions on Signal Processing,2005,53(3):865-870.
    [119] Ko Y C, Luo T. SNR Estimation in Decibel Domain over CommunicationChannels[J]. Wireless Communications and Networking Conference, IEEE,2004,1:1-6.
    [120] Sekhar S C, Sreenivas T V. Signal-to-noise Ratio Estimation UsingHigher-Order Moments[J]. Signal Processing,2006(86):716-732.
    [121] Tchorz J, Kollmeier B. Estimation of the Signal-to-Noise Ratio withAmplitude Modulation Spectrograms[J]. Speech Communication,2002(38):1-17.
    [122] Tchorz J, Kollmeier B. SNR Estimation Based on Amplitude ModulationAnalysis with Applications to Noise Suppression[J]. IEEE Transactions on Speech andAudio Processing,2003,11(3):184-192.
    [123] Summers T A, Wilson S G. SNR Mismatch and Online Estimation in TurboDecoding[J]. IEEE Transactions on Communications,1998,46(4):421-423.
    [124] Wiesel A., Goldberg J., Messer H. Non-data-aided Signal-to-noise-ratioEstimation[J]. Proc. IEEE ICC2002,2002:197-201.
    [125] Sun J, Valenti M C. Joint Synchronization and SNR Estimation for TurboCodes in AWGN Channels[J]. IEEE Transactions on Communications,2005,53(7):1136-1144.
    [126] Shah B. The Split Symbol Moments SNR Estimator in Narrow-bandChannels[J]. IEEE Transactions on Aerospace and Electronic Systems,1990,26(5):737-747.
    [127] Chen Z, Nowrouzian B, Zarowski C J. An Investigation of SNR EstimationTechniques Based on Uniform Cramer-Rao Lower Bound[J]. Proceedings of the48thMidwest Symposium on Circuits and Systems (MWSCAS'05),2005,1:215-218.
    [128] Wiesel A, Goldberg J, Messer-Yaron H. SNR Estimation in Time-VaringFading Channels[J]. IEEE Transactions on Communications,2006,54(5):841-848.
    [129]沈恒范.概率论与数理统计教程[M].第三版.北京:高等教育出版社,1998:342.
    [130] Papoulis A. Probability, Random Variables and Stochastic Processes[M].New York: McGraw-Hill,1991.
    [131] Porat B, Friedlander B. Asymptotic Statistical Analysis of the High-orderAmbiguity Function for Parameter Estimation of Polynomial Phase Signals[J]. IEEETranss. Inform. Theory,1996,42(3):995-1001.
    [132]吴翊,李永乐,胡庆军.应用数理统计[M].第一版.长沙:国防科技大学出版社,2005:444.
    [133] Schonhoff T, Giordano A A. Detection and Estimation--Theory and ItsApplications[M].北京:电子工业出版社,2007:653.
    [134] Chan Y T, Plews J W, Ho K C. Symbol Rate Estimation by the WaveletTransform[J]. IEEE International Symposium on Circuits and Systems,1997:177-180.
    [135] Mazet L, Loubaton P. Cyclic Correlation Based Symbol Rate Estimation[J].IEEE,1999:1008-1012.
    [136] Boulinguez D, Garnier C, Delignon Y, et al. Time Frequency and KalmanFilter Based Baud Rate Estimator[J]. Proceedings of the3rd International Symposiumon Image and Signal Processing and Analysis,2003,2:866-870.
    [137] Yu Z H, Shi Y Q, Su W. Symbol-rate Estimation Based on Filter Bank[J].IEEE,2005:1437-1440.
    [138] Mustafa H, Doroslovacki M. Effects of Symbol Rate on the Classification ofDigital Modulation Signals[J]. IEEE International Conference on Acoustics, Speech andSignal Processing,2005,5:437-440.
    [139] Girard H. A Novel Digital Symbol Timing Recovery Implementation forHigh Speed Variable Rate QPSK RF Modems[J]. IEEE International Conference onCommunications,1988,2:1017-1021.
    [140] Verdin D, Tozer T C. Symbol-timing Recovery for M-PSK ModulationSchemes Using the Signum Function[J]. IEE Colloquium on New SynchronizationTechniques for Radio Systems,1995:2/1-2/7.
    [141] D'Andrea A N, Luise M. Optimization of Symbol Timing Recovery for QAMData Demodulators[J]. IEEE Transactions on Communications,1996,44(3):399-406.
    [142] Yang H K, Snelgrove M. Symbol Timing Recovery Using OversamplingTechniques[J]. IEEE International Conference on Communications,1996,3:1296-1300.
    [143] Le-Ngoc T, Haghighat A. A Low-jitter Symbol Timing Recovery Scheme forM-QAM Systems[J]. Electrical and Computer Engineering. IEEE,1997,1:201-204.
    [144] Gini F, Giannakis G B. Frequency Offset and Symbol Timing Recovery inFlat-fading Channels: a Cyclostationary Approach[J]. IEEE Transactions onCommunications,1998,46(3):400-411.
    [145] Grimm J H, Kumar R N, Kusuma J, et al. Real Time Implementation of aSymbol Timing Recovery Algorithm for a Narrowband Wireless Modem[J].Proceedings of the1998IEEE International Conference on Acoustics, Speech andSignal Processing,1998,6:3253-3256.
    [146] Luise M, Marselli M, Reggiannini R. Symbol Timing Recovery forWavelet-based Linear Modulations[J]. Global Telecommunications Conference,1999,5:2513-2517.
    [147] Nezami M K, Sudhakar R. New Schemes for Improving Non Data-aidedSymbol Timing Recovery for QAM Receivers in Flat Fading Channels[J].IEEE/AFCEA Information Systems for Enhanced Public Safety and Security,2000:75-79.
    [148] Wu Y C, Ng T S. Symbol Timing Recovery for Generalized Minimum ShiftKeying Modulations in Software Radio Receiver[J]. IEEE Global TelecommunicationsConference,2001,6:3302-3305.
    [149] Wu Y C, Ng T S. Symbol Timing Recovery for GMSK Modulation Based onSquaring Algorithm[J]. IEEE Communications Letters,2001,5(5):221-223.
    [150] Liu C H. Difference Function Based Symbol Timing Recovery for OFDMSystems[J]. IEEE The8th International Conference on Communication Systems,2002,1:544-547.
    [151] Wang J, Yang Z X, Pan C Y, et al. A Combined Code Acquisition andSymbol Timing Recovery Method for TDS-OFDM[J]. IEEE Transactions onBroadcasting,2003,49(3):304-308.
    [152] Azam M, Akram E, Ahmad J, et al. An Improved, Non-data Aided SymbolTiming Recovery for GMSK Modulated Signals[J]. IEEE7th International Multi TopicConference,2003:107-111.
    [153] Vo N D, Le-Ngoc T. Fast Symbol Timing Recovery Techniques for FlexiblePAM and QAM Modems[J]. IEEE Canadian Conference on Electrical and ComputerEngineering,2003,3:1959-1962.
    [154] Nandula S, Giridhar K. Robust Timing Synchronization for OFDM BasedWireless LAN System[J]. IEEE,2003:1-4.
    [155] Song X H, Wang G. Fully Digital Asynchronous Symbol Timing Recoveryin Digital Receiver[J]. IEEE the3rd International Conference on ComputationalElectromagnetics and Its Applications Proceedings,2004:320-323.
    [156] Berner M. Recovery, Timing and Carrier[Z].2004.
    [157] Wang Y, Serpedin E, Ciblat P. Blind Feedforward Cyclostationarity-BasedTiming Estimation for Linear Modulations[J]. IEEE Transactions on WirelessCommunications,2004,3(3):709-715.
    [158] Fusco T, Izzo L, Petrella A, et al. Blind Symbol Timing Estimation forOFDM/OQAM Systems[J]. IEEE Transactions on Signal Processing,2009,57(12):4952-4958.
    [159] SUI D, GE L D. On the Blind SNR Estimation for IF Signals[J]. Proceedingsof the First International Conference on Innovative Computing, Information and Control,IEEE,2006,2:374-378.
    [160] Erdem E. Digital Modulation Recognition[D]. Middle East TechnicalUniversity,2009.
    [161] Andersin M, Mandayam N B, Yates R D. Subspace Based Estimation of theSignal to Interference Ratio for TDMA Cellular Systems[J]. IEEE Vehicular technologyconference,1996:1155-1159.
    [162] Ramakrishna D, Mandayam N B, Yates R D. Subspace-Based SIREstimation for CDMA Cellular Systems[J]. IEEE Transactions on Vehicular technology,2000,49(5):1732-1742.
    [163] Wax M, Kailath T. Detection of Signals by Information Theoretic Criteria[J].IEEE Transactions on ASSP,1985, ASSP-33(2):387-392.
    [164] Plotkin E I. Nonlinear Parameter-invariant Filters in Signal Processing[J]. Int.Symp. on Non-linear Theory and Applications, NOLTA'93,1993(12):631-636.
    [165]曹志刚,钱亚生.现代通信原理[M].北京:清华大学出版社,2003:428.
    [166] MathWorks. MATLAB R2011b (7.13.0.564)[DB/CD].2011.
    [167]李素芝,万建伟.时域离散信号处理[M].长沙:国防科技大学出版社,2000:441.
    [168]俞仁涛,李武皋.通信信号调制的自动识别[M].中国人民解放军57394部队,1998:204.
    [169]王宏禹,邱天爽,陈喆.非平稳随机信号分析与处理(第2版)[M].北京:国防工业出版社,2008:344.
    [170]吴京,果明明,徐忠富等.信号与系统分析[M].长沙:国防科技大学出版社,1999:373.
    [171]张贤达,保铮.非平稳信号分析与处理[M].第1版.北京:国防工业出版社,1998:446.
    [172]黄知涛,周一宇,姜文利.循环平稳信号处理与应用[M].北京:科学出版社,2006:301.
    [173] Bennett W R. Statistics of Regenerative Digital Transmission[J]. Bell Syst.Tech. J.,1958,37(12):1501-1542.
    [174] Gardner W A. Introduction to Random Processes with Application to Signalsand Systems[M]. New Yourk: McGraw-Hill,1989.
    [175] Gardner W A. The Spectral Correlation Theory of CyclostationaryTime-series[J]. Signal Processing [EURASIP],1986,11(1):13-36.
    [176] Antoni J. Cyclic Spectral Analysis in Practice[J]. Mechanical Systems AndSignal Processing,2007(21):597-630.
    [177] Raad A, Antoni J, Sidahmed M. Indicators of Cyclostationarity:Theory andApplication to Gear Fault Monitoring[J]. Mechanical Systems and Signal Processing,2008(22):574-587.
    [178] Antoni J. Cyclostationarity by Examples[J]. Mechanical Systems and SignalProcessing,2009(23):987-1036.
    [179] Like E, Chakravarthy V D, Ratazzi P, et al. Signal Classification in FadingChannels Using Cyclic Spectral Analysis[J]. EURASIP Journal on WirelessCommunications and Networking,2009:14.
    [180] Ma J, Li G Y, Juang B H. Signal Processing in Cognitive Radio[J].Proceedings of the IEEE,2009,97(5):805-823.
    [181] Gardner W A, Spooner C M. Cyclic Spectral Analysis for Signal Detectionand Modulation Recognition[J]. IEEE Military Communications Conference,1988,2:419-424.
    [182] Marchand P, Martret C L, Lacoume J L. Classification of Linear Modulationsby a Combination of Different Orders Cyclic Cumulants[J]. Proceedings of the IEEESignal Processing Workshop on Higher-Order Statistics,1997:47-51.
    [183] Marchand P, Lacoume J L, Martret C L. Multiple Hypothesis ModulationClassification Based on Cyclic Cumulants of Different Orders[J]. IEEE InternationalConference on Acoustics, Speech and Signal Processing,1998,4:2157-2160.
    [184] Fehske A, Gaeddert J, Reed J H. A New Approach to Signal ClassificationUsing Spectral Correlation and Neural Networks[J]. IEEE,2005:144-150.
    [185] Dobre O A, Abdi A, Bar-Ness Y, et al. Cyclostationarity-Based BlindClassification of Analog and Digital Modulations[J]. IEEE MILCOM,2006:1-7.
    [186] Kim K, Akbar I A, Bae K K, et al. Cyclostationary Approaches to SignalDetection and Classification in Cognitive Radio[J]. IEEE,2007:212-215.
    [187] Gardner W A, Napolitano A, Paura L. Cyclostationarity:Half a Century ofResearch[J]. Signal Processing,2006(86):639-697.
    [188]韩国栋,蔡斌,邬江兴.调制分析与识别的谱相关方法[J].系统工程与电子技术,2001,23(3):34-36,46.
    [189]武晓锋,梅文博. QAM信号的谱相关性质研究[J].无线电工程,2005,35(9):12-13,64.
    [190] Gardner W A. Spectral Correlation of Modulated Signals:Part I-AnalogModulation[J]. IEEE Transactions on Communications,1987, COM-35(6):584-594.
    [191] Gardner W A, Brown-III W A, Chen C H K. Spectral Correlation ofModulated Signals: Part II-Digital Modulation[J]. IEEE Transactions onCommunications,1987, COM-35(6):595-601.
    [192] Roberts R S. Architectures for Digital Cyclic Spectral Analysis[D].University of California, Davis, CA,1989.
    [193] Roberts R S, Brown W A, Loomis-Jr H. Computationally EfficientAlgorithms for Cyclic Spectral Analysis[J]. IEEE Signal Processing Magazine,1991,8(2):38-49.
    [194] Brown W A, Loomis-Jr H H. Digital Implementation of Spectral CorrelationAnalyzers[J]. IEEE Transactions on Signal Process,1993,41(2):703-720.
    [195] Roberts R S, Brown W A, Loomis-Jr. H H. A Review of Digital SpectralCorrelation Analysis: Theory and Implementation, in: W.A. Gardner (Ed.),Cyclostationarity in Communications and Signal Processing[J]. IEEE Press, New York,1994:455-479.
    [196] Roberts R S, Loomis J H H. Parallel Computation Structures for a Class ofCyclic Spectral Analysis Algorithms[J]. J. VLSI Signal Process,1995,10:25-40.
    [197]马建仓,牛奕龙,陈海洋.盲信号处理[M].北京:国防工业出版社,2006:281.
    [198]张学工.模式识别[M].第3版.北京:清华大学出版社,2010:237.
    [199]王展,李双勋,刘海涛等.雷达多目标模拟器DRFM单元设计[J].计算机测量与控制,2009,17(8):1616-1619.
    [200]赵云峰,王秋颖.基于1M60数字CCD相机的数字图像存储系统[J].电光与控制,2007,14(5):179-183.
    [201]王红卫,徐海霞.高速数据流实时存储的实现方案[J].测控技术,2005,24(5):52-54,57.
    [202]薛利军,李自田,刘学斌等.干涉成像光谱仪高速数据采集存储的研究[J].红外技术,2005,27(2):115-118.
    [203]杨理践,夏克,高松巍.管道漏磁检测实时数据压缩[J].沈阳工业大学学报,2010,32(6):660-664,698.
    [204]张荣锋,俞建成,孙胜利.基于PCI7300A的红外扫描仪高速图像采集系统[J].激光与红外,2007,37(12):1325-1327.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700