基于双向中继系统的协作通信技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无线通信系统中,信道的衰落是影响传输可靠性和有效性的主要因素。协作中继技术能抵抗无线信道中多径衰落的影响,在提高无线通信系统的覆盖范围,可靠性和有效性等方面具有巨大的潜力,成为无线通信领域的重要方向之一。然而,由于实际中继通信系统的半双工限制,传统的单向中继系统造成了频谱效率的损失。近年来,一种被称为双向中继系统的新技术应运而生,受到了广泛的研究。该技术可以提高系统吞吐量,弥补传统单向中继系统频谱效率低下的缺点。目前,双向中继技术已成为无线通信领域的研究热点之一。本论文主要以双向放大转发(AF,amplify-and-forward)中继系统为研究对象,设计低实现复杂度的新协作方案并进行性能分析。本论文的主要贡献总结如下:
     1.传输对称业务的双向AF中继系统的中继选择方案
     针对传输对称业务的双向AF多中继通信系统,提出了基于分布式时钟技术的中继选择方案,该方案具有较低的复杂度。此外,研究了Rayleigh衰落中该中继选择方案的中断性能,得到了中断概率下界的积分表达式和闭合表达式。通过Rayleigh衰落中的性能仿真比较发现,所推导的下界理论结果和仿真值之间的信噪比差距小于0.5分贝,而且该方案与现有的中断概率最优的中继选择方案相比,中断性能差距很小。因而该方案兼具良好的中断概率性能和低的实现复杂度,可以广泛的应用于实际系统中。
     2.传输非对称业务的双向AF中继系统中的中继选择方案
     针对传输非对称业务的双向AF多中继系统,提出了基于分布式时钟技术的中继选择方案,该方案具有较低的复杂度。此外,推导了Nakagami-m衰落中该方案的中断概率下界的积分表达式和闭合表达式。通过Nakagami-m衰落中的性能仿真比较发现,所推导的下界理论结果和准确值基本吻合,而且该方案与现有的中断概率最优的中继选择方案性能差距很小,具有良好的中断概率性能。
     3.传输非对称业务的双向AF中继通信系统性能分析
     针对传输非对称业务的双向AF多中继通信系统,提出了基于不等式等价变形的中断概率分析方法。该方法可以根据信道增益的累积分布函数直接计算出系统中断概率,具有很低的数学复杂度。而且该方法适用于各种无线信道,具有广泛的应用。根据该方法推导了Rayleigh衰落、Nakagami-m衰落中,传输非对称业务的单中继、多中继和多用户双向AF协作通信系统的闭合形式中断概率。通过性能仿真比较发现,使用该方法得到的理论结果在中高信噪比区域与仿真值非常吻合。
     4.认知频谱共享双向AF中继系统的性能分析
     针对认知频谱共享双向AF中继通信系统,推导了Rayleigh衰落中,认知频谱共享双向AF中继通信系统的中断概率和误码率的近似闭合表达式。计算机仿真结果表明在所有信噪比区域的理论分析所得的闭合形式与中断概率准确值之间完全吻合。此外,文中采用的推导方法还适用于其它无线衰落信道,可以广泛的应用于实际系统的性能估计。
The channel fading is one of the main factors which affect reliability and validityin wireless communication systems. Cooperative relay technology can resist the impactof multi-path fading to improve the coverage, reliability and validity, and has become animportant research field of wireless communications. However, the half-duplexlimitation of relay causes the loss of spectral efficiency in traditional one-way relayingsystems. In recent years, two-way relaying technique has emerged and been extensivelystudied. The two-way relaying can improve the throughput and make up the spectruminefficiency of the traditional one-way relaying system. Currently, the two-way relayingtechnology has become one of the hot research areas in wireless communications. Inthis thesis, focusing on two-way amplify-and-forward (AF) relaying system, we designnovel low-implementation complexity relay selection schemes and investigate thesystem performance. The main contributions of this paper are summarized as follows:
     1. The relay selection scheme in symmetric two-way AF relaying systems
     In symmetric two-way multiple AF relaying systems, a relay selection schemebased on distributed time technology is proposed. The scheme has lowerimplementation complexity. In addition, the outage performance of the scheme isinvestigated in Rayleigh fading, and the integral and closed-form expressions of thelower bound are obtained. Simulations demonstrate that the signal-to-noise ratio (SNR)gap between the lower bound and the exact value is less than0.5dB. Moreover, theperformance gap between the proposed scheme and the existing outage-optimal relayselection scheme is very small. Thus the proposed scheme has both good outageperformance and lower complexity, and can be widely applied in practical systems.
     2. The relay selection scheme in asymmetric two-way AF relaying systems
     In asymmetric two-way multiple AF relaying systems, a relay selection schemebased on distributed time technology is proposed. The scheme has lowerimplementation complexity. In addition, the integral and closed-form expressions of thelower bound for the outage probability in Nakagami-m fading are derived. Simulationsdemonstrate that the obtained theoretical results are very consistent with the exactvalues in all SNR regions. Moreover, the performance gap between the proposedscheme and the existing outage-optimal relay selection scheme is very small. Thus theproposed scheme has good outage performance.
     3. The performance analysis of asymmetric two-way AF relaying systems
     In asymmetric two-way AF relaying systems, we propose an outage analysis method based on inequality equivalence deformation. Using the method, one can readilyevaluate the outage probability based on the cumulative distribution function of thechannel gain, requiring very low mathematical complexity. Moreover, the proposedmethod is applicable to a variety of wireless channels and has wide applications.According to the method, the closed-form expressions of the outage probability ofasymmetric single relaying, multiple relaying and multi-user two-way AF cooperationcommunication systems are derived in Rayleigh and Nakagami-m fadings, respectively.Simulations indicate that the obtained theoretical results are very consistent with theexact values in middle and high SNR regions.
     4. The performance analysis of cognitive two-way AF relaying with underlayspectrum sharing
     Focusing on cognitive two-way AF relaying with underlay spectrum sharing, theoutage and bit error probabilities are derived in Rayleigh fading, respectively.Simulations indicate that the obtained theoretical results coincide well with the exactvalues. Moreover, the deducing method can easily be extended to evaluate the systemperformance over other fading channels.
引文
[1] T. S. Rappaport, Wireless Communications: Principles and Practice. Upper SaddleRiver, NJ, USA: PTR Prentice-Hall,1996.
    [2]罗涛,乐光新.多天线无线通信原理与应用,北京:北京邮电大学出版社,2005.
    [3] T.Ojanpera, R. Prasad,“An overview of air interfaces multiple access forIMT-2000/UMTS,” IEEE Commun.Mag., vol.36, no.9, pp.82-95,1998.
    [4] J. Chuang, N. Sollenberger,“Beyond3G: Wideband wireless data access based onOFDM and dynamic packet assignment,” IEEE Commun. Mag., vol.7, pp.78-87,2000.
    [5] R. Berezdivin, R. Bremig, R. Topp,“Next-generation wireless communicationsconcepts and technologies,” IEEE Conunun. Mag., vol.3, pp.108-116,2002.
    [6] T. M. Cover and A. A. EL Gamal,“Capacity theorems for the relay channel,” IEEETrans. Info. Theory, vol.25, no.5, pp.572–584, Sep.1979.
    [7] J. N. Laneman and G. W. Wornell,“Energy efficient antenna sharing and relayingfor wireless networks,” in Proc. IEEE WCNC, Oct.2000, pp.7–12.
    [8] J. N. Laneman, G. W. Wornell, and D. N. C. Tse,“An efficient protocol for realizingcooperative diversity in wireless networks,” in Proc. IEEE ISIT, June2001, p.294.
    [9] J. N. Laneman and G. W. Wornell,“Distributed space-time coded protocols forexploiting cooperative diversity in wireless networks,” IEEE Trans. Info. Theory,vol.49, no.10, pp.2415–2425, Oct.2003.
    [10] J. N. Laneman, D. N. C. Tse, and G. W. Wornell,“Cooperative diversity in wirelessnetworks: efficient protocols and outage behavior,” IEEE Trans. Info. Theory, vol.50, no.12, pp.3062–3080, Dec.2004.
    [11] M. O. Hasna and M.-S. Alouini,“Performance analysis of two-Hop relayedtransmissions over Rayleigh fading channels,” in Proc. IEEE VTC-Fall,2002, pp.1992-1996.
    [12] M. O. Hasna and M.-S. Alouini,“End-to-end performance of transmission systemswith relays over Rayleigh-fading channels,” IEEE Trans. Wireless Commun., vol.2,no.6, pp.1126-1131, Nov.2003.
    [13] M. O. Hasna and M.-S. Alouini,“Harmonic mean and end-to-end performance oftransmission systems with relays,” IEEE Trans. Commun., vol.52, no.1, pp.130-135, Jan.2004.
    [14] M. O. Hasna and M.-S. Alouini,“A Performance Study of Dual-Hop TransmissionsWith Fixed Gain Relays,” IEEE Trans. Wireless Commun., vol.3, no.6, pp.1963-1968, Nov.2004.
    [15] A. Ribeiro, X. Cai, and G. B. Giannakis,“Symbol error probabilities for generalcooperative links,” IEEE Trans. Wireless Commun., vol.4, no.3, pp.1264–1273,May2005.
    [16] A. Bletsas, A. Khisti, D. P. Reed, and A. Lippman,“A simple cooperative diversitymethod based on network path selection," IEEE J. Select. Areas Commun., vol.24,no.3, pp.659-672, Mar.2006.
    [17] A. Bletsas, H. Shin, and M. Z. Win,“Outage optimality of opportunisticamplify-and-forward relaying," IEEE Commun. Lett., vol.11, no.3, pp.261-263,Mar.2007.
    [18] A. Bletsas, H. Shin, and M. Z. Win,“Outage analysis for cooperativecommunication with multiple amplify-and-forward relays,” Electron. Lett., vol.43,no.6, pp.51-52, Mar.2007.
    [19] A. Bletsas, H. Shin, and M. Z. Win,“Cooperative communications withoutage-optimal opportunistic relaying,” IEEE Trans. Wireless Commun., vol.6, no.9, pp.3450-3460, Sep.2007.
    [20] H. A. Suraweera, D. S. Michalopoulos and G. K. Karagiannidis,“Semi-blindamplify-and-forward with partial relay selection,” Electron. Lett., vol.45, no.6, pp.317-319, Mar.2009.
    [21] L. Fan, X. Lei, and W. Li,“Exact Closed-Form Expression for Ergodic Capacity ofAmplify-and-Forward Relaying in Channel-Noise-Assisted Cooperative Networkswith Relay Selection,” IEEE Commun. Lett., vol.15, no.3, pp.332-333, Mar.2011.
    [22] D. B. da Costa and S. A ssa,“Performance analysis of relay selection techniqueswith clustered fixed-gain relays,” IEEE Signal Process. Lett., vol.17, no.2, pp.201-204, Feb.2010.
    [23] H. Ding, J. Ge, D. B. da Costa, and Z. Jiang,“Diversity and coding gains offixed-gain amplify-and-forward with partial relay selection in Nakagami-m fading,”IEEE Commun. Lett., vol14, no.8, pp.734-736, Aug.2010.
    [24] Y. Zhao, R. Adve, and T. J. Lim,“Symbol error rate of selectionamplify-and-forward relay systems,” IEEE Commun. Lett., vol.10, no.11, pp.757-759, Nov.2006.
    [25] F. Gong, J. Ge, and N. Zhang,“SER Analysis of the Mobile-Relay-Based M2MCommunication over Double Nakagami-m Fading Channels,” IEEE Commun. Lett.,vol.15, no.1, pp.34–36, Jan.2011.
    [26] J.-H. Lee and O.-S. Shin,“Full-duplex relay based on zero-forcing beamforming,”IEICE Trans. Commun., vol. E94-B, pp.978–985, Apr.2011.
    [27] Y. Y. Kang and J. Ho Cho,“Capacity of MIMO wireless channel with full-duplexAmplify-and-Forward relay,” in Proc.2009IEEE Intl. Symp. Pers. Ind. Mob. RadioCommun., pp.117–121.
    [28] D. S. Michalopoulos, J. Schlenker, J. Cheng, and R. Schober,“Error rate analysisof full-duplex relaying,” in Proc.2010Intl. Waveform Diversity and Design Conf.,pp.165–168.
    [29] I. Krikidis, H. A. Suraweera, P. J. Smith and Y. Chau,“Full-duplex relay selectionfor amplify-and-forward cooperative networks,” IEEE transactions on wirelesscommunications, vol.10, no.12, pp:4381-4393, Dec.2012.
    [30] O. Munoz, A. Augustin, and J. Vidal,“Cellular capacity gains of cooperativeMIMO transmission in the downlink,” in Proc. Int. Zurich Seminar on Commun.,Feb.2004, pp.22–26.
    [31] H. Hu, H. Yanikomeroglu, D. D. Falconer, and S. Periyalwar,“Range extensionwithout capacity penalty in cellular networks with digital fixed relays,” in Proc.IEEE GLOBECOM, Nov.2004, vol.5, pp.3053–3057.
    [32] T. J. Oechtering and A. Sezgin,“A new cooperative transmission scheme using thespace-time delay code,” in Proc. ITG Workshop on Smart Antennas, Mar.2004, pp.41–48.
    [33] A. Wittneben,“A new bandwidth efficient transmit antenna modulation diversityscheme for linear digital modulation,” in Proc. IEEE ICC, May1993, vol.3, pp.1630–1634.
    [34] A. Ribeiro, X. Cai, and G. B. Giannakis,“Opportunistic multipath for bandwidth-effcicent cooperative networking,” in Proc. IEEE ICASSP, May2004, vol.4, pp.549–552.
    [35] Y. Fan, C. Wang, J. Thompson, and H. V. Poor,“Recovering multiplexing lossthrough successive relaying using repetition coding,” IEEE Trans. WirelessCommun., vol.6, no.12, pp.4484-4493, June2006.
    [36] F. Gong, J. Zhang, and J. Ge,“Distributed Concatenated Alamouti Codes forTwo-Way Relaying Networks,”IEEE Wireless Commun. Lett., vol.1, no.3, pp.197-200, June2012.
    [37] B. Rankov and A. Wittneben,“Spectral efficient protocols for half-duplex fadingrelay channels,” IEEE J. Sel. Areas Commun., vol.25, no.2, pp.379-389, Feb.2007.
    [38] B. Rankov and A. Wittneben,“Achievable rate regions for the two-way relaychannel,” in Proc. IEEE ISIT, July2006, pp.1668-1672.
    [39] T. J. Oechtering, C. Schnurr, I. Bjelakovic, and H. Boche,“Achievable rate regionof a two phase bidirectional relay channel,” in Proc. CISS, Mar.2007, pp.408-413.
    [40] S. J. Kim, P. Mitran, and V. Tarokh,“Performance bounds for bidirectional codedcooperation protocols,” IEEE Trans. Inform. Theory, vol.54, no.11, pp.5235-5241,Nov.2008.
    [41] Y. Han, S. H. Ting, C. K. Ho, and W. H. Chin,“Performance bounds for two-wayamplify-and-forward relaying,” IEEE Trans. Wireless Commun., vol.8, no.1, pp.432-439, Jan.2009.
    [42] K. S. Hwang, Y. C. Ko, and M.-S. Alouini,“Performance bounds for two-wayamplify-and-forward relaying based on relay path selection,” in Proc. IEEEVTC-Spring, Apr.2009, pp.1–5.
    [43] P. Popovski, and H. Yomo,“The anti-packets can increase the achievablethroughput of a wireless multi-hop network,” in Proc. of ICC2006, vol.9, pp.3885-3890,2006.
    [44] J. H. S rensen, R. Krigslund, P. Popovski, T. K. Akino, and T. Larsen,“Scalabledenoise-and-forward in didirectional relay networks,” Computer Networks, vol.54,no.10, pp.1607-1614,2010.
    [45] T. K. Akino, P. Popovski, and V. Tarokh,“Den oising maps and constellations forwireless network coding in two-way relaying systems,” in Proc. of GLOBECOM2008, New Orleans, USA, pp.1-5,2008.
    [46] Z. Chen, H. Liu, and W. Wang,“An analysis of two-way multi-node relay systems,”in Proc. of GLOBECOM2010, Miami, USA, pp.6-10,2010.
    [47] M. Chen, and A. Yener,“Power allocation for multi-access two-way relaying,” inProc. of ICC2009, Dresden, Germany, pp.1-1,2009.
    [48] D. Gunduz, E. Tuncel, and J. Nayak,“Rate regions for the separated two-way relaychannel,” in Proc. of the46th Allerton Conference, Monticello, USA, pp.1333-1340,2008.
    [49] C. Schnurr, T. J. Oechtering, and S. Stanczak,“A chievable rates for the restrictedhalf-duplex two-way relay channel,” in Proc. of ACSSC2007, Pacific Grove, USA,pp.4-7,2007.
    [50] S. Savazzi, and U. Spagnolini,“Distributed orthogonal space-time coding: designand outage analysis for randomized cooperation,” IEEE Trans. WirelessCommun., vol.6, no.12, pp.4546-4557,2007.
    [51] H. Mheidat, and M. Uysal,“Non-coherent and mismatched-cohere nt receivers fordistributed STBCs with amplify-and-forward relaying,” IEEE Trans. WirelessCommun., vol.6, no.11, pp.4060-4070,2007.
    [52] P. A. Anghel, and M. Kaveh,“On the performance of distributed space-time codingsystems with one and two non-regenerative relays,” IEEE Trans. WirelessCommun., vol.5, no.3, pp.682-692,2006.
    [53] Y. Jing, and B. Hassibi,“Distributed space-time coding in wireless relaynet-works,” IEEE Trans. Wireless Commun., vol.5, no.12, pp.3524-3536,2006.
    [54] T. Unger, and A. Klein,“On the performance of distributed space-time block codesin cooperative relay networks,” IEEE Commun. Lett., vol.11, no.5, pp.411-413,May2007.
    [55] T. Q. Duong, N. T. Nguyen, and V. K. Nguyen,“Exact pairwise error probability ofdistributed space-time coding in wireless relays networks,” in Proc. of ISCIT07,Sydney, AU, pp.279-283,2007.
    [56] R. Zhang, Y. C. Liang, C. C. Chai, and S. Cui,“Optimal beamforming fortwo-way multi-antenna relay channel with analogue network coding,” IEEE J.Select. Areas Commun., vol.27, no.5, pp.699-712,2009.
    [57] J. Joung, and A. H.Sayed,"Multiuser two-way amplify-and-forward relayprocessing and power control methods for beamforming systems,” IEEE Trans.Signal Process., vol.58, no.3, pp.1833-1846,2010.
    [58] V. Havary-Nassab, S. Shahbazpanahi, and A. Grami,"Optimal distributedbeamforming for two-way relay networks,” IEEE Trans. Signal Process., vol.58,no.3, pp.1238-1250,2010.
    [59] C. K. Au-Yeung, and D. J. Love,"Optimization and tradeoff analysis of two-waylimited feedback beamforming systems,” IEEE Trans. Wireless Commun., vol.8,no.5, pp.2570-2579,2009.
    [60] M. Ju, and I. M. Kim,“Relay selection with analog network coding in bidirectionalnetworks,” in Proc. of BSC2010, Kingston, Canada, pp.293-296.
    [61] J. Zhang, B. Bai, and Y. Li,“Outage-optimal opportunistic relaying for two-wayamplify and forward relay channel,” Electron. Lett., vol.46, no.8, pp.595-597,Apr.2010.
    [62] H. Guo, and J. Ge,“Outage probability of two-way opportunistic amplify-and-forward relaying,” Electron. Lett., vol.46, no.13, pp.918-919,2010.
    [63] H. Guo, J. Ge, and H. Ding,“Symbol error probability of two-way amplify-and-forward relaying,” IEEE Communication Letters, vol.15, no.1, pp.22-24, Jan.2011.
    [64] H. Guo and J. Ge,“Performance analysis of two-way opportunistic relaying overNakagami-m fading channels,” Electronics Letters, vol.47, no.2, pp.150-152, Jan.2011.
    [65] I. Krikidis,“Relay selection for two-way relay channels with MABC DF: Adiversity perspective,” IEEE Trans. Veh. Technol., vol.59, no.9, pp:4620-4628,Nov.2010.
    [66] Y. Li, R. H. Y. Louie and B. Vucetic,“Relay selection with network coding intwo-way relay channels,” IEEE Trans. Veh. Technol., vol.59, no.9, pp:4489-4499,2010, Nov.2010.
    [67] L. Song,“Relay selection for two-way relaying with amplify-and-forwardprotocols,” IEEE Trans. Veh. Technol., vol.60, no.4, pp:1954-1959, May2010.
    [68] Q. F. Zhou, Y. Li, F. C. M. Lau and V. Branka,“Decode-and-forward two-wayrelaying with network coding and opportunistic relay selection,” IEEE Trans.Commun., vol.58, no.11, pp:1954-1959, Nov.2010.
    [69] S. Atapattu, Y. Jing, H. Jiang and T. Chintha,“Relay selection schemes andperformance analysis approximations for two-way networks,” IEEE Trans.Commun., vol.61, no.3, pp:987-998, Mar.2013.
    [70] P. K. Upadhyay and S. Prakriya,“Performance of two-way opportunistic relayingwith analog network coding over Nakagami-m fading,” IEEE Trans. Veh. Technol.,vol.60, no.4, pp.1965-1971, May2011.
    [71] H. Ilhan,“Performance Analysis of Two-Way AF Relaying Systems Over CascadedNakagami-m Fading Channels,” IEEE Signal Processing Letters, vol.19, no.6, pp.332-335, June.2012.
    [72] C. Zhang, J. Ge, J. Li, Y. Hu,“Performance analysis for mobile-relay-based M2Mtwo-way AF relaying in N_Nakagami-m fading,” Electronics Letters, vol.49, no.5, pp.344-346, Feb.2013.
    [73] J. Ping, S. H. Ting,“Rate performance of AF two-way relaying in low SNRregion,” IEEE Communication Letters, vol.13, no.4, pp.233-235, Apr.2009.
    [74] S. Yadav and P.K. Upadhyay,“Performance analysis of two-way AF relayingsystems over cascaded generalized-K fading channels,” Communications (NCC),2013National Conference on,pp.1-5.
    [75] J. Yang, P. Fan, T. Q. Duong, and X. Lei,“Exact performance of two-way AFrelaying in Nakagami-m fading environment,” IEEE Trans. Wireless Commun., vol.10, no.3, pp.980-987, Mar.2011.
    [76] R. Louie, Y. Li, and B. Vucetic,“Practical physical layer network coding fortwo-way relay channels: performance analysis and comparison,” IEEE Trans.Wireless Commun., vol.9, no.2, pp.764-777,2010.
    [77] R. Louie, Y. Li, and B. Vucetic,“Performance analysis of physical layer networkcoding in two-way relay channels,” in Proc. of GLOBECOM2009, Hawai, USA,pp.1-6,2009.
    [78] P. Liu, and I. M. Kim,“Performance analysis of bidirectional communicationprotocols based on decode-and-forward relaying,” IEEE Trans. Commun., vol.58,no.9, pp.2683-2696,2010.
    [79] X. Lei, L. Fan, D.S. Michalopoulos, P. Fan and R.Q. Hu,“Outage Probability ofTDBC Protocol in Multiuser Two-Way Relay Systems with Nakagami-m Fading,”IEEE Commun. Lett., vol.17, no.3, pp.487-490, Mar.2013.
    [80] Y. Jeon, Y. T. Kim, M. Park, and I. Lee,“Opportunistic Scheduling for Multi-UserTwo-Way Relay Systems with Physical Network Coding,” IEEE Trans. WirelessCommun., vol.11, no.4, pp.1290-1294, Apr.2012.
    [81] H. Ding, J. Ge, D. B. da Costa and Y. Guo,“Outage Analysis for MultiuserTwo-Way Relaying in Mixed Rayleigh and Rician Fading,” IEEE Commun. Lett.,vol.15, no.4, pp.410-412, Apr.2011.
    [82] Y. U. Jang and Y. H. Lee,“Performance Analysis of User Selection for MultiuserTwo-Way Amplify-and-Forward Relay,” IEEE Commun. Lett., vol.14, no.11, pp.1086-1088, Nov.2010.
    [83] P. K. Upadhyay and S. Prakriya,“Performance of analog network coding withasymmetric traffic requirements,” IEEE Commun. Lett., vol.15, no.6, pp.647-649,June2011.
    [84] C. Zhang, J. Ge, J. Li, Y. Hu,“Performance Evaluation for Asymmetric Two-WayAF Relaying in Rician Fading,” IEEE Wireless Commu. Letters, vol.2, no.3, pp.307-310, June2013.
    [85] X. Ji, B. Zheng and L. Zou,“Exact outage probability for decode-and-forwardtwo-way relaying with asymmetric traffics,” Information Science and Engineering(ICISE),20102nd International Conference on, pp.2072-2075.
    [86] X. Ji, B. Zheng,Y. Cai and L. Zou,“On the Study of Half-Duplex AsymmetricTwo-Way Relay Transmission Using An Amplify-and-Forward Relay,” IEEE Trans.Veh. Technol., vol.61, no.4, pp.1649-1664, May2012.
    [87] J. Li, J. Ge, C. Zhang, J. Shi, Y. Rui and M. Guizani,“Impact of ChannelEstimation Error on Bidirectional MABC-AF Relaying with Asymmetric TrafficRequirements,” IEEE Trans. Veh. Technol., vol.47, no.18, pp.1050-1052, Sep.2011.
    [88] A. Ghasemi and E. S. Sousa,“Fundamental limits of spectrum-sharing in fadingenvironments,” IEEE Trans. Wireless Commun., vol.6, no.2, pp.649-658, Feb.2007.
    [89] J. M. Peha,“Approaches to spectrum sharing,” IEEE Commun. Mag., vol.43, no.2,pp.10–12, Feb.2005.
    [90] J. Mitola III and J. G. Q. Maguire,“Cognitive radio: making software radios morepersonal,” IEEE Personal Commun., vol.6, no.4, pp.13–18, Aug.1999.
    [91] S. Haykin,“Cognitive radio: brain-empowered wireless communications,” IEEE J.Select. Areas Commun., vol.23, no.2, pp.201-220,2005.
    [92] R. Zhang,“On peak versus average interference power constraints for protectingprimary users in cognitive radio networks,” IEEE Trans. Wireless Commun., vol.8,no.4, pp.2112-2120, Apr.2009.
    [93] P. Ubaidulla and S. Aissa,“Distributed cognitive two-way relay beamformerdesigns under perfect and imperfect CSI,” Personal Indoor and Mobile RadioCommunications (PIMRC),2011IEEE22nd International Symposium on,pp.487-492.
    [94] P. Ubaidulla and S. Aissa,“Optimal relay selection and power allocation forcognitive two-way relaying networks,”IEEE Wireless Commun. Lett., vol.1, no.3,pp.225-228, June2012.
    [95] S. Safavi, M. Ardebilipour, and S. Salari,“Relay Beamforming in cognitivetwo-way networks with imperfect channel state information,” IEEE WirelessCommun. Lett., vol.1, no.4, pp.344-347,Aug.2012.
    [96] R. Wang, M. Tao and Y. Liu,“Optimal Linear Transceiver Designs for CognitiveTwo-Way Relay Networks,” IEEE Trans. Signal Processing, vol.61, no.4, pp.992-1005, Feb.2013.
    [97] L. Luo, P. Zhang, G. Zhang, and J. Qin,“Outage performance for cog-nitive relaynetworks with underlay spectrum sharing,” IEEE Commun. Lett., vol.15, no.7, pp.710-712, July2011.
    [98] T.Q. Duong, V.N.Q. Bao and H.-J. Zepernick,“Exact outage probability of cognitiveAF relaying with underlay spectrum sharing,” Electron. Lett., vol.47, no.17, pp.1001-1002, Aug.2011
    [99] J. Lee, H. Wang, J.G. Andrews and D. Hong,“Outage probability of cognitive relaynetworks with interference constraints,” IEEE Trans. Wireless Commun., vol.10, no.2, pp.390-395, Feb.2011.
    [100] S. Talwar, Y. Jing, and S. Shahbazpanahi,“Joint Relay Selection and PowerAllocation for Two-Way Relay Networks,” IEEE Signal Processing Letters, vol.18,no.2, pp.91-94, June.2011.
    [101] Y. Zhang, Y. Ma, and R. Tafazolli,“Power allocation for bidirectional AF relayingover Rayleigh fading channels,” IEEE Commun. Lett., vol.14, no.2, pp.145-147,Feb.2010.
    [102] M. Pischella and D. L. Ruyet,“Optimal Power Allocation for the Two-Way RelayChannel with Data Rate Fairness,” IEEE Commun. Lett., vol.15, no.9, pp.959-961,Sep.2011.
    [103] Z.Yi, M. Ju, and I. Kim,“Outage Probability and Optimum Power Allocation forAnalog Network Coding,” IEEE Trans. Wireless Commun., vol.10, no.2, pp.407-412, Feb.2011.
    [104] L. Fan, X. Lei, P. Fan, and R. Q. Hu,“Outage Probability Analysis and PowerAllocation for Two-Way Relay Networks with User Selection and OutdatedChannel State Information,” IEEE Commun. Lett., vol.16, no.5, pp.638-641, May2012.
    [105] J. C. Park, I. Song, and Y. Kim,“Outage-Optimal Allocation of Relay Power forAnalog Network Coding with Three Transmission Phases,” IEEE Commun. Lett.,vol.16, no.6, pp.838-841, June2012.
    [106] Y. Yang, J. Ge, and Y. Gao,“Power Allocation for Two-Way OpportunisticAmplify-and-Forward Relaying over Nakagami-m Channels,” IEEE Trans. WirelessCommun., vol.10, no.7, pp.2063-2068, July2011.
    [107] M.Zhou, Q. Cui, R. Jantti and X. Tao,“Energy-Efficient Relay Selection and PowerAllocation for Two-Way Relay Channel with Analog Network Coding,” IEEECommun. Lett., vol.16, no.6, pp.816-819, June2012.
    [108] T. P. Do, J. S. Wang, I. Song and Y. H. Kim,“Joint Relay Selection and PowerAllocation for Two-Way Relaying with Physical Layer Network Coding,” IEEECommun. Lett., vol.17, no.2, pp.301-304, Feb.2013.
    [109] W. C. Jakes, Microwave Mobile Communications. New York, NY, USA: John Wiley&Sons, Inc,1974.
    [110] J. G. Proakis, Digital Communications,3rd edition. New York, NY, USA: McGraw-Hill,1995.
    [111] G. L. Stüber, Principles of Mobile Communications. Norwell, MA, USA: KluwerAcademic Publishers,1996.
    [112] M. P tzold, Mobile fading channels: Modeling, analysis, and simulation, BaffinsLane, Chichester, West Sussex, UK: John Wiley&Sons, Ltd,2002.
    [113]郭梯云,邬国扬,李建东.移动通信(第四版),西安电子科技大学出版社,2006.
    [114]吴伟陵,牛凯,移动通信原理,电子工业出版社,2005.
    [115] D. Tse and P. Viswanath, Fundamentals of Wireless Communication. Cambridge,UK: Cambridge University Press,2005.
    [116] M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels,2nd edition. Hoboken, NJ, USA: John Wiley&Sons, Inc.,2005.
    [117] R. S. Kennedy. Fading Dispersive Communication Channels. New York, NY, USA:John Wiley&Sons, Inc,1969.
    [118] S. O. Rice,“Mathematical analysis of random noise,” Bell System Tech. J., vol.23,No.7, pp.282–333, July1944, and vol.24, No.1, pp.46–156, Jan.1945.
    [119] Z. Wang, and G. B. Giannakis,“A simple and general parameterization quantifyingperformance in fading channels,” IEEE Trans. Commun., vol.51, no.8, pp.1389–1398, Aug.2003.
    [120] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products,7thedition. San Diego, CA, USA: Academic Press,2007.
    [121] A. Goldsmith, Wireless Communications. Cambridge, UK: Cambridge UniversityPress,2005.
    [122] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions withFormulas, Graphs, and Mathematical Tables. New York, NY, USA: Dover,1964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700