机器人同时定位与建图方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动机器人的同时定位与建图(Simultaneous Localization and Mapping, SLAM)作为机器人系统中的一个重要分支,是保证机器人在未知环境探索中是否能完全自主的关键所在。
     本论文围绕机器人SLAM中的一些关键问题,深入研究了机器人的地图创建、地图融合以及多机器人之间的相互定位等问题,提出了一些自己的看法和解决方案,主要体现在以下几个方面:
     (1)在详细分析声纳传感器的镜面反射和散射特性在测距过程中造成的一些不确定信息的基础上,提出了基于不确定性信息的概率栅格地图和特征几何地图的创建方法。在概率栅格地图中,引入了距离影响因子,调整了声纳概率测距模型,提高了地图的精度。在特征几何地图中,结合随机Hough变换(Radomized Hough Transform, RHT)和多分辨率Hough变换(Multi-resolution Hough Transform, MHT)算法的优点,提出了一种快速的Hough变换提取特征的方法。该方法将所有声纳弧上的离散点作为种子点,然后随机选取一部分离散点与种子点匹配,匹配的话累积存储单元就加一,当累积存储单元具有最大累积数时,则提取出直线特征。在一定程度上去除了一些不确定信息,从而对一些镜面反射或干扰噪声所造成的错误信息具有一定的鲁棒性。
     (2)采用分散探索、集中建图的混合式控制结构,提出了基于差异进化算法的地图融合方法。首先让机器人从各自不同位置出发,融合各类传感器数据创建栅格局部地图;然后通过改进的差异进化(Differential Evolution, DE)算法搜索最优转换函数,根据转换函数旋转和平移某个地图,使得该地图和其它地图之间的重叠区域最大,相异度最小;最后通过接受函数的值来判断是否成功融合为一个全局地图。其中搜索最优转换函数采用改进的差异进化算法,变异策略DE/best/1和DE/rand/1通过线性模拟退火加权策略组合成新的变异操作,用线性退火因子作为加权因子,提高算法的收敛精度和收敛速率,快速成功的完成局部地图的融合。同时,在基于Hough变换的地图融合方法的基础上,分析了重叠度、旋转角度对地图融合算法的性能影响,通过随机采样和固定步长对Hough变换的离散点进行采样,提高地图创建的实时性。
     (3)深入分析了基于粒子滤波的SLAM方法,提出了基于粒子群优化的机器人SLAM方法。首先针对粒子存在的退化问题,将粒子群优化和FasSLAM方法相结合,在预测采样过程中结合机器人的观测值进行优化,从而增强了位置预测的准确性,有效的解决了粒子退化问题;然后针对粒子存在的耗尽问题,引入遗传算法中的变异操作,保持了粒子的多样性;最后将其粒子群优化的思想扩展到异质多机器人的FastSLAM算法中。在异质多机器人系统中,充分利用某个机器人的精确定位能力,测出与其它机器人之间的相对位姿(距离和角度),并将其相对的观测量融合到粒子的预测采样过程中,提高了机器人之间的相互定位精度。
     (4)在基于稀疏扩展信息滤波的基础上,研究了稀疏规则和数据关联问题,提出了一种新的稀疏化规则。该稀疏规则将活跃集合和使之不活跃集合继续分解成显性和隐性两部分,结合下一时刻所观测的特征,调整机器人和特征之间的关联强度,从而使两集合之间的元素产生相应的变化,确保弱连接的删除,强连接的保留;在解决数据关联方面采用基于马氏距离的增量式数据关联方法,提高特征之间的匹配精度,进一步降低了地图融合过程的误差,实现了大规模环境中机器人的SLAM。
Simultaneous Localization and Mapping (SLAM), an important branch on the mobile robot system, is to ensure whether robot exploration can be completed independently in unknown environments.
     Mapping, map merging and cooperative localization, the key issues in robot SLAM, have been studied deeply, and some solving schemes are suggested. The research work can be summarized in the following aspects:
     (1) Based on detailed analyses of uncertainty sensor information processing in ultrasonic ranging, especially on the scattering and specular reflection, the novel methods of mapping building are presented. In probabilistic grid maps, range confidence factor is introduced in ultrasonic model, and improves the map accuracy. In feature maps, a novel method is advanced based on Randomized Hough Transform (RHT) and Multi-resolution Hough Transforms (MHT). The method regards all discrete points as seed points, and randomly picks a part of discrete points for pairing with seed points. Corresponding accumulator cells are incremented in the space. When the accumulator cells reach the maximum, the line is extracted. So uncertainty ultrasonic sensor responses can be successfully reduced and the robustness for measuring distance is proved.
     (2) The methods of decentralized exploration and concentrated mapping are adopted in the robot map building system. Firstly, each robot starts from different positions and builds the local map; secondly, the improved differential evolution (DE) algorithm is used to search the transform functions; thirdly, according to the transform functions, the map is rotated and translated so that the overlapping region is maximum and the dissimilarity is minimum; finally, accepting function determines whether map merging is completed successfully. The improved different algorithms adopt a novel mutation which combines mutation strategy DE/best/1with DE/rand/1by a linear simulated annealing strategy, and linear annealing factors are used as weighting factors, which improve the convergence precision and convergence speed in local maps merging. To examine the Hough transform based map merging algorithms, we research on the algorithm's performance in a series of elemental tests, such as overlapping and rotation. We focus on the performance when only subsets of points are picked randomly or in a deterministic way to compute the transformation.
     (3) Via a deep study on SLAM, this paper introduces a novel method of SLAM based on particle filters to solve particle impoverishment and particle depletion. The solution to the first problem is to integrate particle swarm optimization (PSO) with FastSLAM. Through the particle swarm optimization, the predictions of particles are updated, and the particle's proposal distribution is adjusted, so the accuracy of position prediction is enhanced. To solve the second problem, the mutation operation based on genetic algorithm is adopted in PSO, so as to keep the particle diversity. Then, the PSO is applied to FastSLAM algorithm for heterogeneous multi-robot. In heterogeneous multi-robot system, we make full use of the robot ability of accuracy localization. The relative locations (including distance and orientation) are calculated between the robots, so the predictions of particles are updated considering the relative observations. By so doing the precision of localization is improved.
     (4) Based on sparse extended information filter (SEIF), a new sparse rule is proposed. In the sparse rules, active sets and the sets with active features that we seek to deactivate are decomposed into two parts:the overt and covert. Then the associations between the robot and the features are adjusted according to the observations of the next moment, and the elements of two sets are changed corresponding, thus ensuring the removal of a weak connection and retain a strong connection. As to the questions of data association, incremental data association methods based on Mahalanobis distance are adopted, which have improved the matching accuracy, reduced the error data of map merging, and achieved robot SLAM in a large-scale environment.
引文
[1]蔡自兴,贺汉根,陈虹.未知环境中移动机器人导航控制研究的若干问题.控制与决策,2002,17(4):385-390
    [2]Leonard J, Durrant-Whyte H. Dynamic map building for an autonomous mobile robot. The International Journal on Robotics Research,1992,11(4): 286-298
    [3]王璐,蔡自兴.未知环境中移动机器人并发建图与定位(CML)的研究进展.机器人,2004,26(4):380-384
    [4]Smith R, Self M, Chesseman P. Estimating uncertain spatial relationships in robotics.Uncertainty in Artificial Intelligence,1988,2:435-461
    [5]Feder H J S, Leonard J J, Simth C M. Adaptive mobile robot navigation and mapping. International Journal of Robotics Research,1999,18(7):650-668
    [6]Dissanayake G, Newman P, Clark S, et al. A solution to the simultaneous localization and map building (SLAM) problem. IEEE Transactions on Robotics and Automation,2001,17(3):229-241
    [7]原魁,李园,房立新.多移动机器人系统研究发展近况.自动化学报,2007,(8):7854-794
    [8]谭民,王硕,曹志强.多机器人系统.清华人学出版社,2005
    [9]Farinelli A, Locchi L, Nardi D. Multi-robots system:a classification focused on coordination. IEEE Transaction on System, Man, and Cybernetics Part B: Cybernetics,2004,34(5):2015-2028
    [10]吴军,徐昕,连传强,贺汉根.协作多机器人系统研究进展综述.2011,6(1):13-28
    [11]Fukudat, Nakagwas. A dynamically reconfigurable robotic system:concept of a system and optimal cofigurations. In:Proceeding of IECON. Cambridge, USA,1987:588-595
    [12]C. Ronald Kube, Hong Zhang.Collective robotics:From social insects to robots. Adaptive behavior,1994,2(2):189-219
    [13]C. Ronald Kube, Hong Zhang. Task modeling in collective robotics. Autonomous Robots,1997,4(1):53-72
    [14]Mararic M J. Learning to behavior socially. In:International conference on simulation of adaptive behavior,1994:453-462
    [15]Mclurkin J. Analysis and implementation o distributed algorithms for multi-robot [Ph.D. Dissertation]. Cambridge, USA,2008
    [16]赵翊捷,陈卫东.基于地图的移动机器人定位技术新进展.上海交通大学学报,2002,36(10):1435-1438,1447
    [17]Ayache N, Faugeras O D.Maintaining a representation of the environment of a mobile robot[C].IEEE Transaction on Robotics and Automation,1989, 5:804-819
    [18]Elfes A, Moravec H. High resolution maps from wide angel sonar. In:IEEE International Conference Robotics and Automation,1985:116-121
    [19]Thrun S. Robotic mapping:a survey. Exploring artificial intelligence in the new millennium, Morgan Kaufmann Publishers Inc.,2003:1-35
    [20]Tomatis N, Nourbakhsh I, Siegwart R. Hybrid simultaneous localization and map building:Closing the loop with multi-hypotheses tracking. In:2002 IEEE International Conference on Robotics and Automation. Washington, DC, United States:2002:2749-2754
    [21]Thrun S, Gutmann J S, Fox D, et al. Integrating Topological and Metric Maps for Mobile Robot Navigation:A Statistical Approach. In:proceedings of the 1998 National Conference on Artificial Intelligence (AAAI'98). Madison, USA,1998:989-995
    [22]Smith R, Self M, Cheeseman P. Estimating Uncertain Spatial Relationships in Robotics. In:Proceeding of the second conference annual conference on uncertainty in artificial intelligence. New York,1986.267-288
    [23]Andrew J. Davison, Nobuyuki Kite.3D simultaneous localization and map-building using active vison for a robot moving on undulating terrain. In: IEEE computer society conference on computer vision and pattern recognition. 2001:384-391
    [24]Smith R, Self M, Cheeseman P. Estimating uncertain spatial relationships in robotics. In Editors:I. Cox and G. Wilfong, Autonomous Robot Vehicles. London:Springer-Verlag,1990:167-193
    [25]Jose Guivant, Eduardo Nebot. Optimization of Simultaneous Localization and Map Building Algorithm for Real Time Implementation. IEEE Transactions on Robotics and Automation,2001,17(3):242-257
    [26]M.Montemerlo, S. Thrun, D. Koller. FastSLAM:A factored solution to the simultaneous localization and mapping problem. In:the Eighteenth National Conference on Artificial Intelligence. Edmonton,2002:593-598
    [27]S. Thrun, D Koller, Z Ghahmarani, H Durrant-Whyte. SLAM updates require constant time. School of Computer Science, Carnegie Mellon University, Pittsburgh, Technical Report,2002
    [28]S Thrun, Y Liu, D Koller, A Ng, Z Ghahramani, H Durrant-Whyte. Simultaneous localization and mapping with sparse extended information filters. International Journal of Robotics Research,2004,23(7-8):693-716
    [29]R Eustice, M Walter, J Leonard. Sparse extended information ilters:Insights into sparsification. In:the IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Alberta, Canada, August 2005:3281-3288
    [30]M Walter, R Eustice. J Leonard. A provably consistent method for imposing sparsity in feature-based SLAM information filters. In:International Symp. On Robotics Research,. San Francisco California:2005:214-234
    [31]郭剑辉,赵春霞,石杏喜.稀疏扩展信息滤波SLAM算法的稀疏规则研究.系统仿真学报,2008,20(24):6673-6677
    [32]Shoudong Huang, Zhan Wang, Gamini Dissanayake. Spare local submap joining filter for building large-scale maps. IEEE transaction on robotics,2008, 24(5):1121-1130
    [33]Shoudong Huang, Zhan Wang, Gamini Dissanayake Exact state and covariance sub-matrix recovery for submap based sparse EIF SLAM Alogorithm. In:IEEE International conference on robotics and automation. Passdena, CA, USA,2008:1868-1873
    [34]ROUMELIOTIS S I, BEKEY G A. Collective localization:a distributed kalman filter approach to localization of groups of mobile robots. In:IEEE International Conference on Robotics and Automation. San Francisco, CA, 2000
    [35]ROUMELIOTIS S I, BEKEY G A. Distributed multi-robot localization. IEEE Transactions on Robotics and Automation,2002,18(5):781-795
    [36]M. Montemerlo, S. Thrun. Simultaneous localization and mapping with unknown data association using FastSLAM. In:the IEEE International Conference on Robotics and Automation[C].2003:1985-1991
    [37]M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit. FastSLAM 2.0:An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges. In:the International Joint Conference on Artificial Intelligence.2003:1151-1156
    [38]Kristopher R. Beevers. Sampling strategies for particle filtering SLAM. Technical Report 06-11, Dept. of Computer Science, Rensselaer Polytechnic Institute, Troy, NY,2006
    [39]Kristopher R. Beevers and Wesley H. Huang. Fixed-lag sampling strategies for particle filtering SLAM. In proceedings of the IEEE International Conference on Robotics and Automation.2007:2433-2438
    [40]Kristopher R. Beevers. Mapping with limited sensing [Ph.D. Dissertation] Rensselaer Polytechnic Institute, January 2007
    [41]Kristopher R. Beevers and Wesley H. Huang. SLAM with sparse sensing. In proceedings of the IEEE International Conference on Robotics and Automation. Orlando,2006:2285-2290
    [42]Kristopher R. Beevers and Wesley H. Huang. Inferring and enforcing relative constraints in SLAM.2006 Workshop on the Algorithmic Foundations of Robotics,2006
    [43]方正、佟国峰、徐心和.粒子群优化的粒子滤波方法.控制与决策.2007:273-277
    [44]潘薇,蔡自兴,陈白帆.基于改进粒子滤波器的机器人同时定位与建图方法.模式识别与人工智能,2008,6:843-845
    [45]Andrew H, Maja. J M, Gaurav.S.S. Putting the Tin'team':an ego-centric approach to cooperative localization. In:The IEEE International Conference on Robots and Automation, Taipei,2003:868-874
    [46]王玲,万建伟,刘云辉.基于PF-EKF的多机器人合作定位方法.中国科学E辑,2007,37(12):1544-1555
    [47]王玲,邵金鑫,万建伟,刘云辉.多机器人定位中基于熵的分布式观测量选择方法.电子学报,2007,2(2):333-337
    [48]Dario Lodi Rizzini, Stefano Caselli. A distributed maximum likelihood algorithm for multi-robot mapping.In:the 2010 IEEE/RSJ International Conference on Intelligent Robots and System,2010:573-579
    [49]A. Howard, M. J. Mataric, G. S. Sukhatme. Localization for mobile robot teams using maximum likehood estimation. In:the IEEE International Conference on Intelligent Robots and System.2002:434-459
    [50]R. Grabowski, L E. Navarro-Serment. Heterogeneous teams of modular robots for mapping and Exploration. Autonomous Robots,2000,8(3):293-308
    [51]吴庆祥,Bell David可移动机器人的马尔科夫自定位算法研究.自动化学报,2003,29(1):154-160
    [52]Fox D, Burgard W, Krupps H, et al. A probabilistic approach to collaborative multi-robot localization. Autonomous robots,2000,8(3):325-344
    [53]Cui X, Hardin C T, Ragade R K, et al. A Swarm Approach for Emission Source Localization. In:The 16th IEEE International.Conference.on Tools with Artificial Intelligence.Boca Raton,2004.424-430
    [54]Pugh J, Martinoli A.Relative Localization and Communication Module for Small-Scale Multi-Robot Systems. In:the IEEE International Conference on Robotics and Automation. USA,2006:188-193
    [55]Xue S D, Zeng J C. Control over Swarm Robots Search with Swarm Intelligence Principles. Journal of System Simulation,20(13),2008: 3449-3454
    [56]Rothermich J A, Ecemis M I, Gaudiano P.Distributed Localization and Mapping with a robotic swarm. In:Lecture Notes in Computer Science,3342, 2005:58-69
    [57]]Kelly I, Martinoli A. A Scalable. On-Board Localization and Communication System for Indoor Multi-Robot Experiments. Sensor Review (S0260-2288), Special Issue on Sensor Simulation and Smart Sensors.2004,24(2):167-180
    [58]Sebasian Thrun. A probabilistic online mapping algorithm for teams of mobile robots. International Journal of Robotics Research,2001,20(5):335-363
    [59]W.H.Huang, K.R.Beevers. Topological map merging. The International Journal of Robotics Research,2005,24(8):601-613
    [60]Rolf Lakaemper, Longin Jan Latecki. And Diedrich Wolter. Incremental Multi-Robot Mapping. In:IEEE International Conference on Intelligent Robtos and Systems. Edmonton, Canada,2005
    [61]Francesco Amigoni, Simone Gasparini, Maria Gini. Building Segment-Based Maps without Pose Information. Proceedings of the IEEE,2006, 94(7):1340-1359
    [62]熊蓉,褚健,吴俊.基于点线结合的机器人增量式地图创建.控制理论与应用,2007,2(24):170-177
    [63]Mauro Di Marco, Andrea Garulli, Antonio Giannitrapani, et al. Simultaneous Localization and Map Building for a Team of Cooperating Robots:A Set Membership Approach, IEEE Trans on Robotics & Automation,2003,19(2): 238-248
    [64]Andreas Birk, Stefano Carpin. Merging occupancy grid maps from multiple robots. Proceedings of the IEEE,2006,94(7):1384-1397
    [65]Jose-Luis Blanco, Javier Gonzalez, Juan-Antonio Fernandez-Madrigal. A New Method for Robust and Efficient Occupancy Grid-Map Matching.The third Iberian Conference on Pattern Recognition and Image Analysis,2007:1-8
    [66]A.Howard, L.Parker, G.Sukhatme. Experiments with large heterogeneous mobile robot team:exploration, mapping, deployment and detection. International journal of robotics research,2006,25(5-6):431-447
    [67]N.Ergin Ozkucur, H. Levent Ankin. Cooperative multi-robot map merging using Fast-SLAM.Lecture Notes in Computer Science,2010,5494:449-460.
    [68]Monica B, Arturo G, Oscar R et.al. Alignment of visual maps in multi-robot FastSLAM. In:he 8th WSEAS International Conference on Computational Intelligence, Man-machine Systems and Cybernetics, Puerto De La Cruz, Spain,2009:92-97.
    [69]Gasos J, Rosetti A. Uncertainty representation for mobile robots:Perception, modeling and navigation in unknown environments. Fuzzy Sets and Systems, 1999,107 (1):1-24
    [70]Thrun S, Fox D, Burgard W. A probabilistic approach to concurrent mapping and localization for mobile robots. Machine Learning and Autonomous Robots,1998,31 (1):29-53
    [71]Li Xinde, Huang Xinhan, Wang Min. Robot map building from sonar sensors and DSmT. An International Journal on Information and Security.2006, 20:104-12.
    [72]Ribo M, Pinz A. A comparison of three uncertainty calculi for building sonar-based occupancy grids. Robotics and autonomous systems,2001, 35:201-209
    [73]John Hwan Lim, DongWoo Cho. Specular Reflection Probability in the Certainty Grid Representation. Transactions of the ASME Journal of Dynamic Systems, Measurement, and Control,1994,116:512-520
    [74]ZouYi, HoYeongKhing, ChuaChinSeng. A New Solution for Specular Reflection in the Multi-ultrasonic Sensor Fusion for Mobile Robots. In:IEEE International Conference on Intelligent Robotics and system.2000:387-391
    [75]Forsyth D A, Pronce J. Computer Vision:a modern approach. New Jersey: Prentice Hall,2003
    [76]庄严,徐晓东,王伟.移动机器人几何& 拓扑混合地图的构建及自定位研究.控制与决策,2005,20(7):815-822
    [77]Tardos J D, Neria J, Newman P, J Leonard. Robust Mapping and Localization in Indoor Environments using Sonar Data. The International Journal of Robotics Research,2002,21(4):311-330
    [78]陈高华,卓东风,王云.HT检测技术研究与进展.仪器仪表学报,2006,27(6):344-346
    [79]Thuy Tuong Nguyen Xuan Dai Pham Jae Wook Jeon. An improvement of the Standard Hough Transform to detect line segments. In:IEEE International Conference on Industrial Technology,chengdu,china,2008:1-6
    [80]袁湘鹏,蔡自兴,刘利枚.基于声纳的移动机器人环境建图的设计与实现.计算机应用研究,2009,26(7):2627-2629
    [81]潘薇,蔡自兴,陈白帆.一种非结构环境下多机器人构建地图方法.高技术通讯,2009,19(5):506-510
    [82]蔡自兴.多移动机器人系统原理与技术.北京:国防工业出版社2011:13-14
    [83]R. Storn, K. V. Price, J. Lampinen, Differential Evolution-A Practical Approach to Global Optimization. Berlin:Springer,2005
    [84]R. Storn, K. V. Price. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. Journal Global Optimization. 1997,11(4):341-359
    [85]J. Vesterstr(?)m and R. Thomson, A comparative study of differential evolution, particle swarm optimization, and evolutionary algorithms on numerical benchmark problems. In:Proc. Sixth Congress on Evolutionary Computation (CEC-2004), IEEE Press,2004:1980-1987
    [86]姚峰,杨卫东,张明,李仲德.改进自适应变空间差异进化算法.控制理论与应用.2010,27(1):32-38
    [87]吴亮红,王耀南,袁小芳,周少武.自适应二次变异差异进化算法.控制与决策,2006,21(8):898-902
    [88]郑金华.多目标进化算法及其应用.北京:科学出版社,2007
    [89]Wang Yong, Cai Zixing.Combining multiobjective optimization with differential evolution to solve constrained optimization problems.IEEE Transactions on Evolutionary Computation,2011
    [90]Janez Brest, Saso Greiner, Borko Boskovic, et al.Self-adapting control parameters in differential evolution:a comparative study on numerical benchmark problems. IEEE Transactions on Evolutionary Compution, 10(6):646-657
    [91]A. Censi, L. Iocchi, G.Grisetti. Scan matching in the Hough domin.In:Proceedings of the IEEE International Conference on Robotics and Automation,2005.2739-2744
    [92]Stefano Carpin. Merging Maps via Hough Transform. In:IEEE/RSJ International Conference on Intelligent Robots and Systems,2008.1878-1883
    [93]Sebastian Thrun, Wolfram, Burgard, Dieter Fox. Probabilistic Robotics.Combridge:The MIT press.2005
    [94]Kennedy J, Eberhart R. Particle Swarm Optimization. In:Proceedings of the IEEE Int Conf on Neural Networks. Perth, WA, Australia:IEEE Service Center,1995,4:1941-1948
    [95]Shi Y, Eberhart R C. Fuzzy adaptive particle swarm optimization.In:The IEEE Conference on Evolutionary Computation. Piscataway,,2001:101-106
    [96]Jiao B, Lian Z G, Gu X S. A dynamic inertia weight particle swarm optimization algorithm. Chaos Solitons & Fractals,2008,37 (3):698-705
    [97]徐刚,瞿金平,杨智韬.一种改进的自适应粒子群优化算法.华南理工大学学报(自然科学版),2009,36(9):6-10
    [98]Chen Haoyao, Sun Dong, Yang Jie. Localization strategies for indoor multi-robot formations.In:2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Singapore,2009:1218-1224
    [99]Kae Y Foo, Philip R.Atkins. A relative localization algorithm using incomplete pairwise distance measurements for underwater applications. EURASIP Journal on Advances in Signal Processing.2010:1-17
    [100]Hahnel D, Thrun S, Wegbreit B, et al. Towards Lazy Data Association in SLAM.Robotics Research.2005:421-431
    [101]王永清.同时定位与地图创建中的数据关联技术研究.[硕士学位论文].中国海洋大学,2007
    [102]韩崇昭,朱洪艳,段战胜,et a1.多源信息融合.北京:清华大学出版社,2006
    [103]NeiraJose, TardosJuanDomingo. Data association in stochastic mapping using thejoint compatibility test.In:IEEE Transactions on Robotics and Automation. 2001,17(6):890-897
    [104]J.Guivant, E.Nebot. Optimization of the Simultaneous Localization and Map building Algorithm for Real-time Implementation. IEEE Transactions on Robotics and Automation,2003,17(3):242-257
    [105]季秀才,郑志强,张辉SLAM问题中机器人的定位误差分析与控制.自动化学报,2008,34(3):323-330
    [106]Bailey T. Mobile Robot Localisation and Mapping in Extensive Outdoor Environments:[Ph.D. Dissertation]. Sydney:The University of Sydney,2002
    [107]Josep Aulinas, Xavier Llado, Joaquim Salvi, Yvan R.Petillot. SLAM based selective submap joining for the Victoria Park dataset. In:7th IFAC Symposium on Intelligent Autonomous Vehicles.2010,7:456-462
    [108]Jorg Kurlbaum, Udo Frese. A benchmark data set for data association. Report series of the Transregional Collaborative Research Center. Germany,2009
    [109]U. Frese and J. Kurlbaum. A data set for data association. Website, http://www.sfbtr8.spatial-cognition.de/insidedataassociation/,6 2008
    [110]E. Nebot. Victoria park data set. Website, http://www-personal.acfr.usyd.edu.au/nebot/dataset.htm,6 2008
    [111]Tim Bailey, Simon Julier and Gabriel Agamennoni. On conservative fusion of information with unknown non-Gaussian dependence. Tech. Report.2011
    [112]John Vial, Hugh Durrant-Whyte and Tim Bailey. Conservative sparsification for efficient and consistent approximate estimation.In:IEEE/RSJ International Conference on Intelligent Robots and System,2011
    [113]Shoudong Huang, Zhan Wang and Gamini Dissanayake.Exact State and Covariance Sub-matrix Recovery for Submap Based Sparse EIF SLAM Algorithm.In:2008 IEEE International conference on Robotics and Automation. Pasadena, USA,2008:1868-1874
    [114]Castellanos, J.A., Marti'nez-Canto'n, R., Neira, J., and Tardo's, J.D.Robo-centric map joining:Improving the consistency of EKF-SLAM,.Robot. Autonomous. System 2007,55, (1):21-29
    [115]Paz, L.M., Tard'os, J.D., and Neira, J.'Divide and conquer:EKF SLAM in O (n). IEEE Transactions on Robotics,2008,24, (5):1107-1120
    [116]J. Aulinas, J. Salvi, X. Llado, Y. Petillot. Local map update for large scale SLAM. Electronics Letters.2010,46 (28):564-566

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700