未知环境中基于相对观测量的多机器人合作定位研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着机器人技术在各个领域的广泛应用和发展,在研究和应用双重需求的推动下,多机器人系统的研究已受到国内外研究机构和产业界的重视,并逐步成为一个充满活力、充满挑战性的领域。在一些面向任务的应用中,如军事领域、航空航天领域、服务行业、机器人足球赛等,多机器人的协同协作发挥了重要作用。多机器人的协同协作离不开机器人的位置信息,如何利用多机器人的协同合作来提高整个机器人群的定位能力、定位精度,无疑是多机器人研究中一个重要且关键的课题。
     本文围绕多机器人研究中基本且关键的定位问题,深入研究了多机器人群在未知环境中基于相对观测量和自身运动进行协同、合作定位的技术。针对系统结构、观测量选择、运动轨迹优化及粒子滤波器的应用及改进等方面进行了深入的研究。
     论文首先深入研究了多机器人合作定位的系统模型,在此基础上,推导了利用扩展卡尔曼滤波方法融合运动信息及相对观测信息同时定位机器人群中每个机器人的滤波方程,详细分析了基于相对方位观测量的定位特点,针对利用相对方位观测量时某些相对分布条件下易出现滤波发散的情况,提出了一种改进的EKF滤波方法,提高了算法的鲁棒性和可靠性,并通过计算机仿真和Nubot机器人平台上获得的实验结果和数据,验证了合作定位的有效性及改进算法的实用性。
     其后在合作定位系统模型的基础上,针对随着机器人群规模的增大,导致定位计算量迅速增长这一问题,主要研究了如何在众多的观测量中选择那些更有利于合作定位的观测信息,提出了一种基于熵的观测量选择算法以选择具有较大信息增益的观测量,从而提高了定位的效率和实时性,并对此算法进行了计算机仿真,比较分析了观测量的信息增益及个数对定位精度、计算时间的影响,证明了该算法的正确性和有效性;论文分析讨论了如何将集中式的滤波计算分布到各个机器人平台上,实现分布式的定位计算,以降低计算的复杂度,增强系统的灵活性。
     论文还讨论了衡量相对位置分布及运动轨迹的优化准则,在此基础上,深入分析了在多种不同情形下机器人基于相对距离观测量的定位误差分布;研究了多机器人在给定起点和终点的情况下,如何运动才能使合作定位的精度更高,在一定约束条件下给出了一种寻求最优轨迹的方法,并通过计算机仿真证明,对机器人群的运动轨迹进行规划设计,可以明显提高合作定位精度。
     针对未知环境中具有不同观测能力的机器人群的全局定位问题,研究了粒子滤波及其与扩展卡尔曼滤波相结合的应用,在此基础上,提出了将粒子滤波与扩展卡尔曼滤波相结合的定位模型和方法,充分利用粒子滤波器的鲁棒性、适应性与扩展卡尔曼滤波的高效率、实时性,从而使定位的稳健性和实时性得到进一步提高,并通过计算机仿真和Nubot机器人平台上获得的实验数据,验证了该方法的有效性。
     针对初始误差大及观测误差较大的情况,对Unscented Kalman Filter进行了改进(IUKF),与EKF、UKF算法相比,新算法不仅适应能力强、稳定性高,而且收敛速度快、跟踪误差小,是一种稳健的定位跟踪算法;以IUKF来产生重要性概率密度函数,提出了改进的Unscented Particle Filter(IUPF),得到了更稳健的滤波特性和更好的滤波精度,并通过计算机仿真和实测数据,验证了改进的IUPF的性能;为提高计算的实时性,针对高斯粒子滤波器提出了并行的算法和结构,并利用有五台计算机组成的多处理机系统验证了并行算法的可行性。
     在论文的最后,总结了整个论文的工作,指出了进一步研究探索的方向。
Robotics has already been widely developed and used in many fields. Urged by investigation and application, research of multi-robot system has received more and more attention, and it is gradually becoming an active field full of challenge. In some tasks, such as military operation, aviation, services and RoboCup, cooperation of multi-robot is extremely important. In order to cooperate, robots must know their location. So it is an important and key problem to improve the capabilities and accuracy of cooperative localization.
     This work focuses on the basic and important problem in multiple robots research: cooperative localization. It addresses the problem of cooperative localization of a mobile robot team based on the relative observations and motions in unknown environments. A few issues are investigated, including the complete model structure of cooperative localization, selection of measurements, optimal motion strategies, and application and improvement of Particle Filter.
     First, the complete model of cooperative localization of multi-robot is discussed. Based on the model, the Extended Kalman Filter is used to fuse the data of motion and the relative measurements to localize every member of the mobile robot team. The filter equations are deduced and the characteristics of the observations are analyzed thoroughly. Contraposing the unconverged cases of localization in some conditions based on only relative bearings, we mend the filter process so as to improve the practicability and reliability. Simulations and real experiments on the Nubot platform have been done to prove the validity of the method.
     Second, we consider the problem of the increasing computational burden as the size of the team is becoming large. We discuss how to select the better measurements among all of those ones obtained by the group. We present a method to select those measurements which yield the most information gain in estimating robots location. The seleted measurements are used to update the whole group pose estimation and the covariance matrix. It ensures the necessary localization accuracy and meantime reduces the computational burden, so as to improve the reliability and real-time of localization. We compare the localization accuracy and the computation time by using different number of measurements. Simulation results show that the proposed method can effectively improve the efficiency in dealing with multi-robot localization, especially when the group is large. The distributed filter computation is discussed. A few communicating filters cooperate to process the localization computation by exchange of information. This decentralized structure is helpful to reduce the complexity of computation and increase the flexibility of the system.
     Then, we also discuss the problem of optimal trajectories of multiple robots. The localization covariance is taken as the cost function. Error distribution of localization based on relative distance in different situations is analyzed thoroughly. Under some constraints we study the optimal motion strategies of the multiple robots so that the localization uncertainty can be minimized. Simulation experiments prove that the optimal trajectories can improve the accuracy of cooperative localization than the general motion strategies.
     The cooperative localization of heterogeneous robots without their initial positions is investigated. The implementations of Particle Filter (PF) and combination of EKF and PF in cooperative localization are studied. We present a method to combine EKF with PF in dealing with multi-robot absolute localization. It makes use of the efficiency and real-time of EKF, and the robust and adaptability of PF to improve the localization performance. Simulations and real data experiment acquired with Nubot platform have been done to verify the method. We propose an improved Unscented Kalman Filter (IUKF). Its performance is more robust than UKF in dealing with noisy measurements. We propose the use of the IUKF for proposal generation to combine new observation with prior probability distribution. Based on it, the improved Unscented Particle Filter (IUPF) is presented. Through simulation and real data experiment, The IUPF is proved to have better performance than UPF. The parallel structure of Gaussian Particle Filter is presented to process the computation in order to get real time implementation. This parallel structure is verified by a group of five computers system.
     Finally, we summarize the general work of this thesis and give a short outlook on possible future research.
引文
[1] 李磊,叶涛,谭民, 陈细军. 移动机器人技术研究现状与未来. 机器人, 2002 , 24 (5) :475 - 480.
    [2] W. Burgard, A.Cremers, D. Fox, D. Hahnel, G. Lakemeyer, D. Schulz, W. Steiner, S. Thrun. The interactive museum tour-guide robot. Proc. National Conference on Artificial Intelligence, Madison WI, 1998, pp11-18.
    [3] 蔡自兴. 机器人学. 北京:清华大学出版社,2000.
    [4] 国家 863 计划智能机器人专家组编著. 机器人博览. 北京:中国科学技术出版社,2001.
    [5] 徐国华, 谭民. 移动机器人的发展现状及其趋势. 机器人技术与应用, 2001 , (3): 7 - 14.
    [6] Fukuda T,Kawauchi Y,Asama H.Analysis and evaluation of cellular robotics (CEBOT) as a distributed intelligent system by communication information amount. Proceedings of IEEE/RSJ IROS,1990,pp 827~ 834.
    [7] Fukuda T,Kawauchi Y,Hara F.Dynamic distributed knowledge system in self-organizing robotic system:CEBOT. Proceedings of IEEE international Conf. on Robotics and Automation,Sacramento,California,1991,pp 1908~1913.
    [8] Lynne E Parker. ALLIANCE:an architecture for fault tolerant multirobot cooperation. IEEE Trans. On Robotics and Automation,1998,14(2):220~240.
    [9] Alami R,Fleury S,Herrb M,et al. Multi-robot cooperation in the MARTHA project. IEEE Robotics & Automation Magazine,1998,5(1):36~47.
    [10] Jin K,Liang P,Beni G. Stability of synchronized distributed Control of Discrete Swarm Structure. In IEEE ICRA,1994,pp 1033~1038.
    [11] 谭民,王硕,曹志强. 多机器人系统. 北京:清华大学出版社,2005.
    [12] Y. Uny Cao, Alex S. Fukunaga, Andrew B. Kahng. Cooperative mobile robotics: antecedents and directions. Autonomous Robots, 1997, 4(1): 7-27.
    [13] Asama H, Habib M K, Endo I, et al. Functional distribution among multiple mobile robots in an autonomous and decentralized robot system. In Proceedings of the IEEE International Conference on Robotics and Automation. 1991. pp 1921-1926.
    [14] Lynne E. Parker. Designing control laws for cooperative agent teams. In Proceedings of the IEEE International Conference on Robotics and Automation. 1993. pp 582-587.
    [15] Lynne E. Parker. L-ALLIANCE: task-oriented multi-robot learning inbehavior-based systems. Advanced Robotics, Special Issue on Selected Papers from IROS'96, 1997, 11 (4): 305-322.
    [16] R. Alami, S. Fleury, M. Herrb, et al. Multi-robot cooperation in the MARTHA project. IEEE Robotics & Automation Magazine, March 1998, 5(1): 36-47.
    [17] 吴镇炜,谈大龙. 多机器人系统研究. 机器人. Vol.22, No.7 August 2000, pp713-718.
    [18] 谭民.机器人群体协作与控制的研究. 自动控制领域发展战略研讨会论文集.北京:1999, pp 185-190.
    [19] 战强,王树国,陈在礼.世界多机器人技术的研究现状.机器人技术与应用,1999, (4):10-12.
    [20] Claus B Madsen, Claus S Andersen. Optimal landmark selection for triangulation of robot position. Robotics and Autonomous Systems, 1998, 23: 277 ~ 292.
    [21] Wang, C M. Location estimation and uncertainty analysis for mobile robots. Proceedings of IEEE International Conference on Robotics and Automation, 24-29 April 1988, pp 1230-1235.
    [22] 李开生, 张慧慧, 费仁元, 宗光华. 定位传感器及其融合技术综述. 计算机自动测量与控制, 2001. 9, pp 1 – 3.
    [23] Parkinson B W, et al. Global Positioning System: Theory and Applications. Vol. I and II, American Insititute of Aeronautics and Astronautics, Inc., Washington, D. C., Vol. 136,1996
    [24] 欧阳正柱, 何克忠. GPS 在智能移动机器人中的应用. 微计算机信息, 2001 11.
    [25] Shimshoni, I. On mobile robot localization from landmark bearings. IEEE Trans. on Robotics and Automation, 2002, 18(6): 971~ 976.
    [26] M Betke , L Gurvits. Mobile robot localization using landmarks. IEEE Transactions on Robotics and Automation, 1997, 13(2): 251-263.
    [27] 李群明,熊蓉,褚健. 室内自主移动机器人定位方法研究综述. 机器人,2003,25(6): 560~ 573
    [28] Kleeman L. Optimal estimation of position and heading for mobile robots using ultrasonic beacons and dead-reckoning. IEEE International Conference on Robotics and Automation, 1992, pp 2582-2587, Nice, France, 1992.
    [29] J. J. Leonard , H. F. Durrant-Whyte. Mobile robot localization by tracking geometric beacons. IEEE Transactions on Robotics and Automation, 7(3): 376-382, 1991.
    [30] 张祥德, 牛纪祥, 董再励. 基于测角的自主移动机器人定位算法. 东北大学学报,2002.12, pp 1143-1146.
    [31] Choset H, Civita M, Chulpark J. Path planning between two points for a robot experiencing location error in known and unknown environments. The Robotics Institute of CMU, Proceedings of FSR’99. Pittsburght: CMU, 1999. pp98- 103.
    [32] Wijk O, Christensen H I. Localization and navigation of a mobile robot using natural point landmarks extracted from sonar data. Robotics and Autonomous Systems, 2000, 31:31-42.
    [33] 赵翊捷, 陈卫东. 基于地图的移动机器人定位技术新进展.上海交通大学学报, 2002. 10, pp1435 – 1438.
    [34] Wang-Heun Lee , Kyoung-Sig Roh , In-So Kweon. Self-localization of a mobile robot without camera calibration using projective invariants , Pattern Recognition Letters 21 , 2000.
    [35] Al Essardrn R. A robot self-localization system based on omnidirectional color images. Robotics and Autonomous Systems , 2001 (34) :23 – 38.
    [36] Kazunori Umeda , Takatoshi Takahashi. Subpixl Stereo Method : a New Methodology of Stereo Vision. Proceeding of the 2000 IEEE International Conference on Robotics &Automation , April 2001.
    [37] 董再励, 郝颖明, 朱 枫. 一种基于视觉的移动机器人定位系统. 中国图像图形学报, 2000 , 5 (A) (8)
    [38] 项志宇. 基于激光雷达的移动机器人障碍检测和自定位. 浙江大学博士学位论文, 2002. 4
    [39] 董再励, 王光辉, 田彦涛, 等. 自主移动机器人激光全局定位系统研究. 机器人, 2000 , 22(3) : 207~210
    [40] S. I. Roumeliotis. Robust Mobile Robot Localization: From Single-Robot Uncertainties to Multi-Robot Interdependencies. PhD thesis, University of Southern California, Los Angeles, CA 90007, May 2000.
    [41] S. I. Roumeliotis , G. A. Bekey. Distributed multirobot localization. IEEE Transactions on Robotics and Automation, 18(5):781-795, Oct. 2002.
    [42] H. Sugiyama. A method for an autonomous mobile robot to recognize its position in the global coordinate system when building a map. In Proceedings of the 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 3, pages 2186-2191, Yokohama, Japan, 1993.
    [43] L. Navarro-Serment, C. J. J. Paredis, P. K. Khosla. A beacon system for the localization of distributed robotic teams. In Proceedings of the International Conference on Field and Service Robotics, Pittsburgh, PA, Aug. 1999.
    [44] R. Kurazume, S. Nagata, S. Hirose. Cooperative positioning with multiple robots. In Proceedings of the IEEE International Conference on Robotics andAutomation, volume 2, pages 1250-1257, May 1994.
    [45] I. Rekleitis, R. Sim, G. Dudek, E. Milios. Collaborative exploration for map construction. In 2001 IEEE International Symposium on Computational Intelligence in Robotics and Automation, July 2001.
    [46] P. Moutarlier , R. Chatila. Stochastic multisensory data fusion for mobile robot location and environment modelling. In Proceedings of the 5th International Symposium on Robotics Research, pages 85-89, Aug. 1989.
    [47] Agostino Martinelli, Frederic Pont, Roland Siegwart. Multi-robot localization using relative observations. In Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 2005.
    [48] D. Fox, W. Burgard, H. Kruppa, S. Thrun. Collaborative multi-robot localization. In Proceedings of the German Conference on Artificial Intelligence (KI), 1999.
    [49] D. Fox, W. Burgard, H. Kruppa, S. Thrun. A probabilistic approach to collaborative multi-robot localization. Autonomous Robots, 8(3):325-344, 2000.
    [50] I. Rekleitis, G. Dudek, E. E. Milios. Multi-robot cooperative localization: a study of trade-offs between efficiency and accuracy. In Proceedings of the 2002 IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 3, pages 2690-2695, Lausanne, Switzerland, Oct. 2002.
    [51] A. Howard, M. J. Mataric, G. S. Sukhatme. Localization for mobile robot teams using maximum likelihood estimation. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 434-459, 2002.
    [52] A. Howard, M. J. Mataric, G. S. Sukhatme. Putting the ‘I’ in ‘Team’: an ego-centric approach to cooperative localization. In Proceedings of the IEEE International Conference on Robots and Automation(ICRA03), Taipei Taiwan, May 2003.
    [53] R. Grabowski, L. E. Navarro-Serment, C. J. J. Paredis, P. K. Khosla. Heterogeneous teams of modular robots for mapping and exploration. Autonomous Robots, 8(3):293-308, 2000.
    [54] R. Madhavan, K. Fregene, L. E. Parker. Distributed heterogeneous outdoor multi-robot localization. In Proceedings of the IEEE International Conference on Robotics and Automation, volume 1, pages 374-381, 2002.
    [55] J. W. Fenwick, P. M. Newman, and J. J. Leonard. Cooperative concurrent mapping and localization. In Proceedings of the IEEE International Conference on Robotics and Automation, volume 2, pages 1810-1817, 2002.
    [56] 王越超. 多机器人协作系统研究. 哈尔滨工业大学 博士学位论文,1999
    [57] 陈仁际. 基于Agent的分布协作式多机器人系统协作控制研究及实现. 哈尔滨工业大学 博士学位论文,1999.
    [58] 董胜龙,陈卫东,席裕庚. 多移动机器人编队的分布式控制系统. 机器人,2000, 22(6): 433-438
    [59] Chen Weidong, Xi Yugeng. A cooperative multiple mobile robots system and its experimental study. In: The First Korea-China Joint Workshop on Robotics. Korea: 2001. pp146-151.
    [60] Luis Montesano, Jose Gaspar, Jose Santos-Victor, Luis Montano. Cooperative localization by fusing vision-based bearing measurements and motion. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'05), pp 19-24, August 2005.
    [61] 李实,徐旭明,叶棒,孙增析. 国际机器人足球比赛及其相关技术. 机器人,2000. 9,22(5):420-426.
    [62] 赵姝颖,高大志,柏立军,徐心和. 提高足球机器人系统实时性能的硬件优化方法的研究.机器人,2000. 3,22(2): 96-101.
    [63] R. Grabowski , P. Khosla. Localization techniques for a team of small robots. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'01), volume 2, pp 1067-1072, October 2001.
    [64] R. Kurazume and S. Hirose. Study on cooperative positioning system: optimum moving strategies for cps-iii. In Proceedings of the IEEE International Conference on Robotics and Automation, volume 4, pp 2896-2903, May 1998.
    [65] Nikolas Trawny, Timothy Barfoot. Optimized motion strategies for cooperative localization of mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation, volume 1, pp 1027-1032, April, 2004.
    [66] Nikolas Trawny. Optimized motion strategies for cooperative localization of mobile robots. Master thesis, University of Toronto, 2003.
    [67] N. Bulusu, J. Heidemann, D. Estrin. GPS-less low cost outdoor localization for very small devices. IEEE Personal Comm. Magazine, Oct. 2000, vol. 7 no. 5, pp 28-34.
    [68] J. W. Fenwick, P. M. Newman, J. J. Leonard. Cooperative concurrent mapping and localization. In Proceedings of the IEEE International Conference on Robotics and Automation, volume 2, pp 1810-1817, 2002.
    [69] J. J. Leonard, H. F. Durrant-Whyte. Mobile robot localization by tracking geometric beacons. IEEE Transactions on Robotics and Automation, 7(3):376-382, 1991.
    [70] J. J. Leonard , H. F. Durrant-Whyte. Directed sonar sensing for mobile robot navigation. Kluver Academic Publishers, Boston, 1992.
    [71] 马明山, 朱绍文, 何克忠, 李相伟. 室外移动机器人定位技术研究. 电工技术学报. 1998. 4, 13(2): 43-46.
    [72] J. Borenstein, H. R. Everett, L. Feng. Where am I? Sensors and methods formobile robot positioning. Michigan: Prepared by the University of Michigan. 1996.
    [73] Chong K. S., Kleeman L. Accurate odometry and error modeling for a mobile robot. In Proceedings of the IEEE International Conference on Robotics and Automation, NM, USA. 2003. pp 699-704.
    [74] 刘玉鹏. 多传感器系统设计及其在机器人定位中的应用. 国防科技大学, 硕士学位论文. 2005.10
    [75] Hao Yingming , Dong Zaili , Meng Kai . An omnidirectional location system for autonomous mobile robot . 30th ISR , Japan , 1999
    [76] E. Ertin, J. Fisher, L. Potter. Maximum mutual information principle for dynamic sensor query problems. In Proceeding of Information Processing in Sensor Networks (IPSN’03 ), Palo Alto, CA, April 2003.
    [77] K. Hintz, E. Mcvey. A measure of the information gain attributable to cueing. IEEE Transactions on System. Man Cyb., 21(2): 434-442, 1991.
    [78] J. Liu, J. Reich, F. Zhao. Collaborative in-network processing for target tracking. EURASIP JASP : Special Issues on Sensor Networks, 2003(4): 378-391,March 2003.
    [79] J. Manyika, H. Durrant-Whyte. Data fusion and sensor management: a decentralized information-theoretic approach. Ellis Horwood, New York, 1994.
    [80] Hanbiao Wang, G. Pottie, K. Yao, D. Estrin. Entropy-based sensor selection heuristic for target localization. In Proceeding of Information Processing in Sensor Networks (IPSN’04 ), April 2004.
    [81] Sen Zhang, Lihua Xie, Martin D. Adams. Entropy based feature selection scheme for real time simultaneous localization and map building. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS'05), August 2005.
    [82] J. E. Guivant, E. M. Nebot. Optimization of the simultaneous localization and map-building algorithm for real time implementation. IEEE Transactions on Robotics and Automation. Vol. 17, pp 242-257, 2001.
    [83] G.Dissanayake, H. F. Durrant-Whyte, T. Bailey. A computationally efficient solution to the simultaneous localization and map building (slam) problem. In Proceedings of the IEEE International Conference on Robotics and Automation, San Francisco, USA. April 2000, pp. 1009-1014.
    [84] Sen Zhang, Lihua Xie, Martin D. Adams. An efficient data association approach to simultaneous localization and map building. In Proceedings of the IEEE International Conference on Robotics and Automation, New Orleans, USA. April 2004, pp. 1493-1498.
    [85] Y. Bar-Shalom, T. E. Fortmann. Tracking and data association. Academic Press,Boston, 1988.
    [86] 曲炜, 朱诗兵. 信息论基础及应用. 北京: 清华大学出版社,2005.
    [87] H. Feder, J. Leonard, C. Smith. Adaptive mobile robot navigation and mapping. Vol. 18, pp 650-668, 1999.
    [88] R. C. Smith , P. Cheeseman. On the representation and estimation of spatial uncertainty. The International Journal of Robotics Research, 5(4):56-68, 1986.
    [89] 刘福声, 罗鹏飞. 统计信号处理. 长沙: 国防科技大学出版社, 1999.
    [90] Y. S. Hidaka, A. I. Mourikis, S. I. Roumeliotis. Optimal formations for cooperative localization of mobile robots. In Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, April 2005, pp 4137-4142.
    [91] A. I. Mourikis, S. I. Roumeliotis. Optimal sensing strategies for mobile robot formations: resource-constrained localization. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, August 2005.
    [92] G. Kitagawa. Monte Carlo filter and smoother for non Gaussian nonlinear state space models. Journal of Computational and Graphical Statistics, 1996 (5):1-25.
    [93] Gordon N J, Salmond D J, Smith A F M. A novel approach to nonlinear/non-Gaussian Bayesian state estimation. IEE proceedings-F, 1993, 140(2):107-113.
    [94] Gordon N J , Salmond D J , Ewing C. Bayesian State Estimation for Tracking and Guidance Using the Bootstrap Filter. Journal of Guidance , Control and Dynamics , 1995 , 18(6) : 1434-1443.
    [95] Smith A F M , Gelfand A E. Bayesian Statistics Without Tears : A Sampling-resampling Perspective. The American Statis2tician, 1992, 46(2): 84-88.
    [96] Jun S. Liu, Rong Chen. Sequential monte carlo methods for dynamic systems. Journal of American Statistics Association, 1998, 93(443):1032-1044.
    [97] 曾 涛, 徐 涛, 李 栋, 崔智社. 自举滤波器在非线性目标跟踪系统中的应用. 北京理工大学学报. 2004.5, pp 450-453.
    [98] 江宝安,卢焕章. 粒子滤波器及其在目标跟踪中的应用. 国防科技大学学报. 2003.10, pp170-174.
    [99] Jean-Rene Larocque, James P. Reilly, William N. Particle filters for tracking an unknown number of sources. IEEE Transaction on Signal Processing, vol. 50, no. 12, December 2002, pp 2926-2937.
    [100] R. Van der Merwe, N. D. Freitas, A. Doucet, E. Wan. The unscented particle filter, Advances in Neural Information Processing Systems 13, 2001.
    [101] 袁泽剑,郑南宁,贾新春. 高斯-厄米特粒子滤波器. 电子学报. 2003.7, vol.31, no.7, pp 970-973.
    [102] A. Doucet. On sequential simulation-based methods for Bayesian filtering. Available from http:// www.researchindex.com.
    [103] Guo Fucheng, Sun Zhongkang; Huangfu Kan, A modified covariance extended kalman filtering algorithm in passive location. In Proceeding of IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Oct. 2003, pp 307-311.
    [104] Jayesh H.K, Petar M.D. Gaussian particle filtering. IEEE Transaction on Signal Processing, Vol. 51, No. 10, October 2003.
    [105] John G, Ackenhusen. Real-Time signal Processing-Design and Implementation of signal Processing Systems. 电子工业出版社. 2002年7月.
    [106] 向建军,左继章,白欣. 基于多任务并行处理的实时集群计算机系统. 系统工程与电子技术. 2003.9, Vol.25, No.9.
    [107] R. Van der Merwe, E. Wan. The square-root Unscented Kalman filter for state and parameter-estimation. In Proc of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Salt Lake City, UT, May.2001: 3461-3464.
    [108] S. J. Julier. The scaled Unscented Transformation. In Proc of the American Control Conference, May.2002: 4555-4559.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700