用户名: 密码: 验证码:
SnO_2形貌调控与改性及其在Ag基电接触材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ag/SnO2是当前替代有毒Ag/CdO电接触材料的一种极具发展前景的环保型电接触材料,在低压电器方面已经获得一定程度的研究与应用。现有Ag/SnO2电接触材料主要采用粉末冶金法和Ag-Sn合金内氧化法制备。然而,SnO2颗粒在Ag基体中分散性差、易偏析等问题导致电接触材料接触电阻大、温升高、抗电弧侵蚀性差、电寿命短。因此,开展SnO2增强相的研究,改善SnO2与Ag的润湿性及其在Ag基体中的分布,对于制备高性能Ag/SnO2电接触材料具有重要的理论意义与实用价值。
     本文采用湿化学方法,控制纳米Sn02的制备与组装,获得不同形貌的SnO2颗粒,在此基础上通过表面载银、制备Ag-SnO2中间体等手段改善SnO2与Ag的润湿性及其在Ag基体中的分布,研究了SnO2形貌及改性方法对Ag/SnO2电接触材料性能的影响,探索具有优异电学性能和力学性能的Ag/SnO2电接触材料的制备方法。主要研究内容及结论如下:
     (一)采用湿化学方法制备不同形貌的SnO2颗粒,系统研究原料配方与工艺条件对Sn02颗粒形貌的影响,实现对SnO2纳米颗粒、实心微球、空心微球、亚微米棒的可控制备。(1)采用液相沉淀法,以SnCl4为原料,PEG2000作为分散剂,在pH=8条件下制备出分散性好、晶粒尺寸为13nm的金红石相SnO2内米颗粒;(2)采用溶剂热法,以PEG6000为模板导向剂,在180℃下反应12h制备出由SnO2纳米晶组装而成、尺寸为1μm左右的单分散SnO2微球;(3)采用水热法,以Na2SnO3和尿素为原料,尿素分解形成气泡为模板,在150℃下反应24h制备出具有开口结构的SnO2空心微球,并对开口形成机制进行研究;(4)采用液相沉淀法,以PEG400与乙醇为混合溶剂,制备出由SnO2纳米晶组装而成,直径为200nm、长径比为15:1的Sn02亚微米棒。
     (二)开展Sn02微球表面载银改性研究,制备出表面包覆效果好、Ag-SnO2键合力强的载银SnO2复合微球。(1)利用Sn2+表面修饰Sn02实心微球,以PVP为还原剂,可有效调控纳米Ag颗粒在Sn02实心微球表面形核、生长,实现Ag纳米颗粒对Sn02实心微球的包覆;(2)以Na2SnO3、AgNO3为原料,尿素分解形成气泡为模板,在150℃水热反应24h,实现SnO2空心微球制备与表面载银的同步进行,制备出表面包覆Ag纳米颗粒的SnO2空心微球,Sn02核与Ag壳之间存在较强的键合作用。
     (三)开展Ag-SnO2中间体复合粉体制备研究,实现SnO2纳米颗粒在Ag粉中的弥散分布。(1)以SnO2内米颗粒及化学银粉为原料,采用高能球磨工艺在添加质量百分数为5%的PEG6000为工艺控制剂、球料比为10:1、转速为260r/min、球磨时间4h的条件下,利用高能球磨机械碰撞及挤压作用实现SnO2纳米颗粒均匀弥散镶嵌于Ag粉中,制备出Sn02质量百分数为60%的Ag-SnO2(60)中间体复合粉体;(2)采用阴阳离子共沉淀法,以Na2SnO3、AgNO3为原料,通过调节体系pH值,利用SnO32-与Ag+的共同沉积实现Sn02纳米颗粒与Ag纳米颗粒的均匀复合,制备出Sn02质量百分数为42%的Ag-SnO2(42)中间体复合粉体;(3)采用氧化还原沉淀法,以SnCl2·2H2O、AgNO3为原料,在弱碱性条件下,利用Sn2+与Ag+的氧化还原反应,实现SnO2内米颗粒与Ag纳米颗粒的均匀复合,制备出Sn02质量百分数为63%的Ag-SnO2(63)中间体复合粉体。
     (四)采用复压复烧工艺制备Ag/SnO2电接触材料,考察了SnO2形貌及表面载银、制备Ag-SnO2中间体等改性方法对Ag/SnO2电接触材料性能的影响。(1)在Sn02纳米颗粒、实心微球、空心微球、亚微米棒等形貌中,以Sn02亚微米棒为增强相的电接触材料具有较好的综合性能,其闭合燃弧时间和能量比Sn1-xSbxO2增强的材料减小了1/3,接触电阻稳定,熔焊力小,质量损失减少约80%,材料的抗电弧侵蚀性能好;(2)Sn02微球表面载银可以改善与Ag基体的润湿性,提高电接触材料的性能,与载银前相比,电接触材料的密度、硬度及电导率都得到一定程度的提高,组织结构均匀;(3)采用Ag-SnO2中间体向Ag/SnO2电接触材料中引入纳米Sn02颗粒,可以减轻Sn02纳米颗粒在Ag/SnO2电接触材料制备、烧结过程中的团聚,明显改善电接触材料的结构与性能,尤其是高能球磨制备的中间体。与传统制备方法相比,Sn02纳米颗粒在Ag/SnO2电接触材料中弥散分布,可使电接触材料的闭合燃弧时间由10ms变为6ms,燃弧能量由1000mJ变为500mJ,材料的接触电阻低且稳定,熔焊力小,抗电弧侵蚀能力好。
Ag/SnO2, an environmentally friendly electrical contact material for the re-placement of toxic Ag/CdO, has been studied and found application in different low voltage switchgear devices to some extent. The most common commercial routes to manufacture Ag/SnO2electrical contact materials are powder metallurgy and internl oxidation of Ag-Sn alloy. However, the bad distribution and aggregatation of SnO2in Ag matrix will increase the contact resistance and over-temperature, degrade the an-ti-arc erosion ability and shorten the electrical endurance. So, it is hence of great the-oretical and practical significance to research the surface modification of SnO2phase, improvement of the wettability between SnO2and Ag and the dispersion of SnO2in Ag martix for the preparation of Ag/SnO2electricial contact materials with superior performance.
     In this paper, SnO2particles with different morphology were obtained by domi-nating the preparation and assembly of SnO2nanoparticles via wet chemical methods. The wettability between SnO2and Ag was enhanced by coating SnO2with Ag nano-particles and the dispersivity of SnO2in Ag matrix was improved by introducing Ag-SnO2intermediates. Effects of morphology and surface modification of SnO2on the properties of Ag/SnO2electrical contact materials were investigated. Methods for preparing Ag/SnO2electrical contact materials with excellent electrical and mechani-cal performance were explored. The main results are as follows:
     SnO2particles with different morphology were prepared by wet chemical methods and effects of raw materials and technological paramters on the morphology of SnO2were investigated. Realized the controllable preparation of SnO2nanoparticles, SnO2microspheres and SnO2submicron rods:(1) Well-dispersed rutile SnO2nanoparticles with an average grain size of ca.13nm were prepared by chemical precipitation method, using SnCl4as raw materials and PEG2000as dispersing agent.(2) Mono-dispersed SnO2microspheres with a diameter of ca.1μm, self-assembled by nano-crystalline, were obtained using PEG6000as inducing template reagents via sol-vothermal method at180℃for12hours.(3) SnO2hollow microspheres with an open structure were prepared using Na2SnO3and urea as raw materials, bubles as the tem-plate via hydrothermal method, and the formation mechanism were analyzed.(4) SnO2submicron rods with a diameter of ca.200nm assembled by nanocrystals were prepared by precipitation method using PEG400and ethanol as solvent. The ratio of length to diameter is approximately20:1.
     SnO2microspheres coated with Ag were prepared and realized the strong inter-action between Ag layer and SnO2core:(1) Utilizing PVP as mild and green reductant to regulate the nucleation and growth of Ag nanoparticles on Sn2+-decorated SnO2microspheres and realized the well coating of SnO2microspheres with Ag nanoparti-cles.(2) Utilizing AgNO3and Na2SnO3as the raw materials, bubbles released by the decomposition of urea as the template, realized the simultaneous process of prepara-tion of SnO2and coating Ag on SnO2hollow microspheres. The hollow SnO2micro-spheres coated with Ag nanoparticles showed strong interaction between SnO2core and Ag shell.
     Ag-SnO2intermediates composite powders were prepared and realized the great-er SnO2dispersion in Ag matrix:(1) Ag-SnO2(60) intermediates with a mass percent-age of SnO2is60%were prepared by high-energy ball milling process for4hours at a speed of260r/min, using Ag and SnO2nanoparticles as the raw materials,5%PEG6000as the additives. The dispersion of SnO2nanoparticles was realized with the help of drastic mechanical collision and squeeze during high energy milling.(2) By varying pH values, Ag-SnO2(42) intermediates with a mass percentage of SnO2is42%were prepared by coprecipitation reaction of SnO32-and Ag+,using AgNO3and Na2SnO3as raw materials.(3) Ag-SnO2(63) intermediates with a mass percentage of SnO2is63%were prepared by oxidation reduction reaction of Sn2+and Ag+in weak alkaline condition, using AgNO3and SnCl2as raw materials.
     Ag/SnO2electrical contact materials were prepared by re-pressing and re-sintering technology and effects of the morphology of SnO2, surface modification of SnO2and the intermediates on the properties of Ag/SnO2electrical contact materi-als were investigated:(1) Ag/SnO2electrical contact material prepared from SnO2submicron rods exhibits best overall properties.Compared with Sn1-xSbxO2reinforced electrical contact materials, the making arcing duration and arcing energy of electrical contact materials form SnO2submicron rods are reduced by1/3while the weight loss decreased by80%. It's stable contact resistance and smaller welding force result in the better anti-arc erosion and anti welding.(3) SnO2microspheres coated with Ag nano-particles enhanced the wettability between SnO2particles and Ag matrix, improved the homogeneity of organization structure and the properties of Ag/SnO2electrical contact materials.(4) Ag-SnO2intermediates can alleviate the aggregation of SnO2nanoparticles in the following molding and sintering of Ag/SnO2electrical contact material and improved the properties of Ag/SnO2electrical contact materials,espe-cially for intermediates by high-energy ball milling. Compared with the electrical contact material prepared by traditional method, the better dispersion of SnO2nano-particles from intermediates significantly improved the properties of Ag/SnO2electri-cal contact material.The making arcing time and arcing energy are reduced from10ms to5ms,1000mJ to500mJ, respectively. The lower contact resistance and smaller welding force improve the anti-arc erosion ability and anti welding ability of Ag/SnO2electrical contact materials.
引文
[1]M. Braunovic, N. K. Myshkin, V. V. Konchits. Electrical contacts:fundamentals, applications and technology. Boca Raton, CRC Press.2006.
    [2]P. G. Slade. Electrical Contacts:Principles and Applications:Ouch. for the University. Boca Raton, CRC Press LIC.1999.
    [3]European Parliament and of the Council.2002/95/EC The restriction of the use of certain hazardous substances in electrical and electronic equipment. Official Journal of the European Union.2003,13:L37.
    [4]European Parliament and of the Council.02/96/EC The Waste Electrical and Electronic Equipment. Official Journal of the European Union.2003,37:24.
    [5]X. Qiao, Q. Shen, L. Chen, Q. He, X. Fan, H. Yang. Research Progress of AgSnO2 Electrical Contact Materials. Materials Review,2013,27(1):1-6.
    [6]Q. Luo, L. Liu, Y. Wang, B. Ding. Preparation of silver-nickel contact materials by mechanical alloying. Rare Metal Materials and Engineering,2003,32(4):298-300.
    [7]K. Hu, W. Chen. Study of AgW (75) Electrical Contact Material With Infiltration Technology. Electrical Engineering Materials,2009,3:004-008.
    [8]H. X. Sauer. Modern relay technology. Huethig.1986.
    [9]F. R. Hensel. Electric contact material:US,2145690,1939-01-31.
    [10]杜作娟.水热还原法制备银氧化锡复合粉体及其性能研究[博士学位论文].长沙:中南大学冶金科学与工程系,2006.
    [11]F. Hauner, D. Jeannot, K. McNeilly, J. Pinard. Advanced AgSnO2 contact materials for the replacement of AgCdO in high current contactors. Electrical Contacts-2000:Proceedings of the Forty-Sixth leee Holm Conference on Electrical Contacts,2000:225-230.
    [12]汪亮.银基功能梯度复合材料的电接触性能研究[硕士学位论文].武汉:华中科技大学材料物理与化学,2006.
    [13]余海峰.新型AgC电接触材料制备及其性能研究[博士学位论文].上海:上海大学材料学,2009.
    [14]C. Leung, D. Harman, L. Doublet, C. Bourda, Y. Cui, L. Hu. Electrical and mechanical lives of Ag/C and Ag/WC/C contacts.26th International Conference on Electrical Contacts (1CEC 2012),233-239.
    [15]刘雪燕.银/导电陶瓷复合电接触材料电弧损耗特性的光谱研究[博士学位论文].济南:山东大学凝聚态物理,2008.
    [16]O. Nilsson, F. Hauner, D. Jeannot. Replacement of AgCdO by AgSnO2 in DC contactors. Electrical Contacts-2004:Proceedings of the 50th leee Holm Conference on Electrical Contacts/the 22nd International Conference on Electrical Contacts,2004:70-74.
    [17]P. Wingert, C. H. Leung. Comparison of the Inherent Arc Erosion Behaviors of Silver-Cadmium Oxide and Silver-Tin Oxide Contact Materials. Components, Hybrids, and Manufacturing Technology, IEEE Transactions on,1987,10(1):56-62.
    [18]P. G. Slade. The Effect of High-Temperature on the Release of Heavy-Metals from AgCdO and AgSnO; Contacts. IEEE Transactions on Components Hybrids and Manufacturing Technology,1989,12(1):5-15.
    [19]M. J. Stumbock. ELECTRICAL CONTACT ELEMENT:US,2486341,1949-10-25.
    [20]A. Shibata. Ag-CdO:US,3874941,1975-04-01.
    [21]A. Shibata. Electrical contact material:US,3933485,1976-01-20.
    [22]M. J. Stmnboek. Electrical contact material:US,2796346,1957-06-18.
    [23]H. Harigaya, K. Kasai. SILVER ALLOYS HAVING HIGH SULPHURATION:US, 3811876,1974-05-21.
    [24]A.Shibata. Silver-metal oxide composite and method of manufacturing the same:US, 3933486,1976-01-20.
    [25]A. Shibata. Ag-Metal oxides electrical contact materials containing internally oxidized indium oxides and/or tin oxides:US,4150982,1979-04-24.
    [26]K. Motoyoshi, M. Kume, Y. Amano. Electrical contact material:US,4050930, 1977-09-27.
    [27]A. Shibata. Internal oxidized Ag-Sn-In system alloy electrical contact composite:US, 4672008,1987-06-09.
    [28]张万胜.新工艺制备的AgSnO2系材料[J].电工合金.1997,2:15-19.
    [29]张尧卿,郑冀AgSnO2电接触材料研究概述.材料导报.2006,20(004):53-57.
    [30]张万胜.电触头材料国外基本情况.电工合金.1995,1:1-20.
    [31]M. R. German. Powder metallurgy science. New Jersey: Metal Powder Industries Federation,1994.
    [32]陈晓华,贾成广,刘向兵.粉末冶金技术在银基触点材料中的应用.粉末冶金工业,2009,19(04):41-46.
    [33]雷景轩,马学鸣,余海峰,朱丽慧.机械合金化制备电触点材料进展.粉末冶金工业,2002,20(03):457-460.
    [34]张国庆,尹志民.机械合金化工艺对银基陶瓷颗粒复合材料的作用.贵金属,2000.21(002):1-6.
    [35]G. G. LEE. Synthesis of silver alloy with tin dioxide dispersed by mechanical alloying. The Japan Society of Powder and Powder Metallurgy,1998,53(3):35-35(+1).
    [36]P. B. Joshi,P. S. Krishnan, R. H. Patel, N. S. S. Murti, V. L. Gadgeel, P. Ramakrishnan. Improved P/M silver-zinc oxide electrical contacts. INTERNATIONAL JOURNAL OF POWDER METALLURGY,1998,34(4):63.
    [37]刘海英,王亚平,丁秉钧.纳米AgSnO2触头材料的制备与组织分析.稀有金属村料与工程,2002,31(2):122-124.
    [38]H. Zoz, H. Ren, N. Spath. Improve Ag-SnO2 Electrical Contact Material Produced by Mechanical Alloying. METALL BERLIN,1999,53:423-428.
    [39]N. Lorrain, L. Chaffron, C. Carry, P. Delcroix, G.L. Caer. Kinetics and formation mechanisms of the nanocomposite powder Ag-SnO2 prepared by reactive milling. Materials Science and Engineering:A,2004,367(1):1-8.
    [40]D. Goia, B. Kempf, I. Fallheier, R. Wolmer, A. Koffler. PROCESS FOR MANUFACTURE OF SILVER-BASED COMPOSITE POWDERS FOR ELECTRICAL CONTACT MATERIALS AND COMPOSITE POWDERS SO PRODUCED,2007, WO Patent 2007112924,2007-11-10.
    [41]G. Fontet, M. Leclercq, J. Muniesa, T. Pagnier, T. Rene. Method of preparing an electrical contact material, and a method of manufacturing a contact element incorporating such a material:US,4971754,1990-11-20.
    [42]E. M. Jost, K. McNeilly. Electrically conductive material and method for making:US, 5846288,1998-12-08.
    [43]R. Wolmer, M. Mueller, F. Heringhaus, D. Ruehlicke, D. Goia. Method for producing composite powders based on silver-tin oxide, the composite powders so produced, and the use of such powders to produce electrical contact materials by powder metallurgy techniques:US,6409794B2,2002-06-25.
    [44]G. G. Lee, T. Ohhira, K. Hoshino, T. Kohno, N. Yamagishi. Synthesis of SnO2 particle dispersed Ag alloy by mechanical alloying. Journal of the Japan Society of Powder and Powder Metallurgy,1996,43(6):795-800.
    [45]V. Behrens, T. Honig, A. Kraus, R. Michal, K. Saeger, R. Schmidberger, T. Staneff. An advanced silver/tin oxide contact material. Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on,1994,17(1):24-31.
    [46]王绍雄.新触头材料AgSnO2的发展和应用.低压电器,1992,1:15-20.
    [47]A. Verma,张万胜.银氧化锡氧化铟电触头材料的加工及其特性.电工合金文集,1992,001:43-47.
    [48]符世继,谢明,陈力,杨有才,黎玉盛,刘莉.合金粉末预氧化法制备Ag-SnO2-Y2O3电接触材料的研究.稀有金属,2009,4:448-451.
    [49]马战红,陈敬超,周晓龙,张剑平.银基电触头产品的发展状况.昆明理工大学学报,2002,27(2):17-20.
    [50]陈敬超.反应合成银氧化锡复合材料的合成机制与性能研究[博士学位论文].昆明:昆明理工大学材料学,2009.
    [51]张德林,林晨光,王家君,李明,崔舜Ag/SnO2电接触材料的研究进展.粉末冶金技术,2009,26(6):459-463.
    [52]王宝珠,王景芹.添加物Bi2O3对触头材料AgSnO2的显微组织影响.电工合金,2000.3:7-10.
    [53]程礼椿,李震彪,邹积岩.添加物对Ag/SnO2触头材料运行性能的影响与作用.电工合金,1995.2(7):7-15.
    [54]D. Jeannot, J. Pinard, P. Ramoni, E.M. Jost. Physical and chemical properties of metal oxide additions to Ag-SnO; contact materials and predictions of electrical performance. Components, Packaging, and Manufacturing Technology, Part A, IEEE Transactions on, 1994,17(1):17-23.
    [55]倪孟良.添加剂对AgSnO2电触头材料组织与性能的影响[博士学位论文].杭州:浙江大学材料加工工程,2006.
    [56]郑冀,刘志勇,张尧卿,李松林.AgSnO2电触头材料表面改性的研究.电工材料,2007.4:16-18.
    [57]A. Koffler, P. Braumann, B. Kempf. The Influence of Manufacturing Process, Metal Oxide Content, and Additives on Switching Behavior of Ag/SnO2 in DC and AC Relays (2). ICEC,2006.
    [58]C. Leung, E. Streicher, D. Fitzgerald. Welding behavior of Ag/SnO2contact material with microstructure and additive modifications. Electrical Contacts,2004.Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts,2004,64-69.
    [59]G. Witter, Z. Chen. A comparison of silver tin indium oxide contact materials using a new model switch that simulates operation of an automotive relay. Electrical Contacts,2004. Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts,2004,382-387.
    [60]X. Wang, J. Zou, S. Liang, Z. Fan, P. Xiao. Effect of Y2O3 addition on the microstructure and density of AgSnO2 contact material. Journal of Ceramic Processing Research,2008, 9(6):646-648.
    [61]朱艳彩,王景芹,王海涛.Bi掺杂纳米AgSnO2的耐电弧侵蚀性能研究.稀有金属材料与工程,2013,42(1):149-151.
    [62]凌国平,王尚军,孟亮,杂质对化学镀Ag-SnO2粉末烧结组织及性能的影响.稀有金属材料与工程,2005,34(6):886-890.
    [63]郑冀,高晶,李松林,李群英.新型银氧化锡电接触材料.稀有金属材料与工程,2005,34(3):483-485.
    [64]凌国平,王尚军,孟亮.化学镀法制备超细Ag-SnO2粉末的烧结.粉末冶金技术,2005,23(3):204-207.
    [65]吕建.纳米掺杂AgSnO2电触头材料的化学镀研究[硕士学位论文].天津:天津大学材料学,2008.
    [66]赵建国.银覆氧化锡纳米晶电触头材料的研究.2004年上海粉末冶金学术年会,2004,85.
    [67]Y. Wang, B. Ding. The preparation and the properties of microcrystalline and nanocrystalline CuCr contact materials. Components and Packaging Technologies, IEEE Transactions on,1999,22(3):467-472.
    [68]P. M. Weaver, K. Pechrach, J. W. McBride. The energetics of gas flow and contact erosion during short circuit arcing. Components and Packaging Technologies, IEEE Transactions on,2004,27(1):51-56.
    [69]B. L. Mordike, J. Kaczmar, M. Kielbinski, K.U. Kainer. Effect of tungsten content on the properties and structure of cold extruded Cu-W composite materials. PMI. Powder metallurgy international,1991,23(2):91-95.
    [70]K. Tousimi, A. R. Yavari, J. H. Ahn, A. Sulpice. Microstructure, Conductivity and Hardness of Cu and Ag-Based Compacts with Immiscible Elements. Journal of Metastable and Nanocrystalline Materials,1999,307:223-230.
    [71]M. A. Morris, D. G. Morris. Microstructures and mechanical properties of rapidly solidified CuCr alloys. Acta metallurgica,1987,35(10):2511-2522.
    [72]傅广艳,牛焱,吴维.二元双相Cu-50Cr合金在700-900℃空气中的氧化.金属学报,1998,34(2):159-163.
    [73]胡连喜,王尔德.机械合金化Cu-5%Cr合金的制备及其组织性能的研究.粉末冶金工业,1999,9(3):7-12.
    [74]付广艳,牛焱,吴维.纳米晶Cu-Cr合金涂层在不同氧分压下的氧化.金属学报,2001,37(10):1079-1082.
    [75]李秀勇,王亚平.微晶,纳米晶CuCr触头材料的组织及性能.稀有金属,1999,23(5):363-365.
    [76]张启芳,潘一凡.钨-铜系纳米材料研究.南京林业大学学报:目然科学版,1998,22(004):63-66.
    [77]王亚平,张丽娜.细晶-超细晶CuCr(?)头材料的研究进展.高压电器,1997,33(2):34-39.
    [78]刘海英,王亚平,丁秉钧.纳米AgSnO2触头材料的制备与组织分析.稀有金属材料与工程,2002,31(002):122-124.
    [79]王俊勃,李英民,王亚平,丁秉钧.纳米复合银基电触头材料的研究.稀有金属材料与工程,2005,33(11):1213-1217.
    [80]徐爱斌,王亚平,丁秉钧.新型AgSnO2触头材料的制备和电弧侵蚀特性.材料研究学报,2003,17(2):156-161.
    [81]王尚军.银氧化锡复合材料的制备及性能研究[博士学位论文].杭州:浙江大学材料科学与工程系,2006.
    [82]J. B. Wang,. Y. Zhang, M. G. Yang, B. J. Ding, Z. M. Yang. Observation of arc discharging process of nanocomposite Ag-SnO2and La-doped Ag-SnO2 contact with a high-speed camera. Materials Science and Engineering:B,2006,131(1):230-234.
    [83]V. Cosovica, A. Cosovic, N. Talijan, D. Zivkovic, D. Manasijevic, D. Minic. Improving dispersion of SnO2 nanoparticles in Ag-SnO2 electrical contact materials using template method. Journal of Alloys and Compounds,2013,567:33-39.
    [84]M. Ommer, U. E. Klotz, J. Fischer-Bu" hner, B. Kempf, B. Wielage. Structure characterization of switched Ag-metal oxide contact materials. Mat.-wiss. u. Werkstofftech. 2008,39(12):928-932.
    [85]F. Heringhaus, P. Braumann, D. Ruhlicke, E. Susnik, R. Wolmer. On the improvement of dispersion in Ag-SnO2-based contact materials. ICEC,2000,199-204.
    [86]黄培云.粉末冶金原理.北京:冶金工业出版社,1997.
    [87]国家技术监督局.电触头材料基本性能实验方法.GBT5586-1998.中华人民共和国国家标准,1998.
    [88]P. G. Slade. Electrical contacts:principles and applications. CRC,1999.
    [89]R. W. Heckel. Density-pressure relationships in powder compaction. Trans Metall Soc AIME,1961.221(4):671-675.
    [90]国家技术监督局.电触头材料基本性能实验方法.GBT5586-1998.中华人民共和国国家标准,1998.
    [91]周茂祥.低压电器设计手册.北京:机械工业出版社,1992.
    [92]堵永国,白书欣.二氧化锡颗粒增强银基复合材料的电阻率.功能材料,1994,25(2):150-153.
    [93]黄锡文.电触头材料的导电性探讨.电工合金,1998,3:26-32.
    [94]费铸铭,李贤淦,王惠.颗粒增强金属基复合材料的热导率.复合材料学报,1990,7(3):27-32.
    [95]熊兆贤.无机材料研究方法-合成制备、分析表征与性能检测.厦门:厦门大学出版社,2001.
    [96]周曦亚.复合材料.北京:化学工业出版社.2005.
    [97]刘家浚,李诗卓.材料磨损原理及其耐磨性.北京:清华大学出版社.1993.
    [98]刘想梅,郑冀.纳米Sn02-TiO:银基触头材料的制备与性能.电工材料,2003,1:12-15.
    [99]王俊勃,张燕,杨敏鸽,陈立成,丁秉钧.纳米掺杂Ag(SnFe)O2电接触合金的研究.稀有金属材料与工程,2006,34(11):1790-1793.
    [100]刘志勇.纳米掺杂AgSnO2电接触材料的计算与研究[硕士学位论文].天津:天津大学材料学,2007.
    [101]邢宏龙,徐国财.纳米粉体的分散及纳米复合材料的成型技术.材料导报,2001.15(009):62-64.
    [102]B. G. Pawar, D. V. Pinjari, S. S. Kolekar, A. B. Pandit, S. H. Han. Effect of Sintering Temperatures on the Synthesis of SnO2 Nanospheres.ISRN Chemical Engineering,2012, 1-7.
    [103]K. Li, Y. Wang, Y. Xu, H. Chen, C. Su, D. Kuang. Macroporous SnO2 Synthesized via a Template-Assisted Reflux Process for Efficient Dye-Sensitized Solar Cells. Appl. Mater. Interfaces,2013, DOI:10.1021/am4009727.
    [104]S. Chen, M. Wang, J. Ye, J. Cai, Y. Ma, H. Zhou, L. Qi. Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance. Nano Research,2013,6(4):243-252.
    [105]X. Hou, B. Liu, X. Wang, Z. Wang, Q. Wang, D. Chen, G. Shen. SnO2 Microtubes Assembled Cloth for Fully Flexible Self-Powered Photodetector Nanosystems. Nanoscale, 2013, DO1:10.1039/C3NR02300A.
    [106]H. Wang, D. Wesolowski, T. Proffen, L. Vlcek, W. Wang, L. Allard, A. Kolesnikov, M. Feygenson, L. Anovitz, R. Paul. Structure and Stability of SnO2 Nanocrystals and Surface-Bound Water Species. J. Am. Chem. Soc.,2013,135 (18):6885-6895.
    [107]A. Ayeshamariam, C. Sanjeeviraja. Synthesis,Structural and Optical Characterizations of SnO2 Nanoparticles. Journal on Photonics and Spintronics,2013,2(2):4-8.
    [108]S. He, S. Wang, Q. Ding, X. Yuan, W. Zheng, X. Xiang, Z. Li, X. Zu. Role of chelating agent in chemical and fluorescent properties of SnO2 nanoparticles. Phys. Cinese Physics B,2013,22(5):058102-1-058102-4.
    [109]R. Mishra, P. K. Bajpai. Synthesis, Dielectric and Electrical Characterization of SnO2 Nano-particle Prepared by Co-precipitation Method. Journal of International Academy of Physical Sciences,2012,14(2).
    [110]H. Wang, G. Liu, Z. Yang, B. Wang, L. Chen, Q. Jiang. Facile Synthesis of Mesoporous SnO2 Submicrospheres by Microemulsion Approach as High-Capacity Anodes Material for Lithium-Ion Batteries. Int. J. Electrochem. Sci.,2013,8:2345-2353.
    [111]W. S. Kim, D. Kim, K. J. Choi, J. G. Park, S. H. Hong. Epitaxial directional growth of tin oxide (101) nanowires on titania (101) substrate. CRYSTAL GROWTH & DESIGN,2010, 10(11):4746-4751.
    [112]X. Zhou, W. Fu, H. Yang, D. Ma, J. Cao, Y. Leng, J. Guo, Y. Zhang, Y. Sui, W. Zhao. Synthesis and ethanol-sensing properties of flowerlike SnO2 nanorods bundles by poly (ethylene glycol)-assisted hydrothermal process. Materials Chemistry and Physics,2010, 124(1):614-618.
    [113]Y. Liu, J. Dong, M. Liu. Well-Aligned "Nano-Box-Beams" of SnO2. Advanced materials,2004,16(4):353-356.
    [114]Q. Zhao, Y. Gao, X. Bai, C. Wu, Y. Xie. Facile synthesis of SnO2 hollow nanospheres and applications in gas sensors and electrocatalysts. European journal of inorganic chemistry, 2006.8:1643-1648.
    [115]S. Liu, Y. Li, M. Xie, X. Guo, W. Ji, W. Ding, Y. Chen. Novel Hierarchical Urchin-Like Hollow SnO2 Nanostructures with Enhanced Gas Sensing Performance. Journal of Nanoscience and Nanotechnology,2010,10(10):6725-6731.
    [116]X. M. Yin, C. C. Li, M. Zhang, Q. Y. Hao, S. Liu, L. B. Chen, T. H. Wang. One-step synthesis of hierarchical SnO2 hollow nanostructures via self-assembly for high power lithium ion batteries. The Journal of Physical Chemistry C,2010,114(17):8084-8088.
    [117]R. Yang, Y. Gu. Y. Li, J. Zheng, X. Li. Self-assembled 3-D flower-shaped SnO2 nanostructures with improved electrochemical performance for lithium storage. Acta Materialia,2010,58(3):866-874.
    [118]J. Xu, D. Wang, L. Qin, W. Yu, Q. Pan. SnO2 nanorods and hollow spheres:Controlled synthesis and gas sensing properties. Sensors and Actuators B:Chemical,2009,137(2): 490-495.
    [119]Z. Miao, Y. Wu, X. Zhang, Z. Liu, B. Han, K. Ding, G. An. Large-scale production of self-assembled SnO2 nanospheres and their application in high-performance chemiluminescence sensors for hydrogen sulfide gas. Journal of Materials Chemistry, 2007.17(18):1791-1796.
    [120]M. Epifani, J. Arbiol, R. Diaz, M.J. Peralvarez, P. Siciliano,J.R. Morante. Synthesis of SnO2 and ZnO colloidal nanocrystals from the decomposition of tin (Ⅱ) 2-ethylhexanoate and zinc (Ⅱ) 2-ethylhexanoate. Chemistry of Materials,2005,17(25):6468-6472.
    [121]C. Ribeiro, E. J. H. Lee, T. R. Giraldi, E. Longo, J. A. Varela, E. R. Leite. Study of synthesis variables in the nanocrystal growth behavior of tin oxide processed by controlled hydrolysis. The Journal of Physical Chemistry B,2004,108(40):15612-15617.
    [122]F. Gu, S. F. Wang, M. K. Lu, Y. X. Qi, G. J. Zhou, D. Xu, D. R. Yuan. Luminescent characteristics of Eu 3+in SnO2 nanoparticles. Optical Materials,2004,25(1):59-64.
    [123]A. S. Lanje, S. J. Sharma, R. B. Pode, R. S. Ningthoujam. Dielectric study of Tin oxide nanoparticles at low temperature. Archives of Applied Science Research,2010,2(2): 127-135.
    [124]V. Senthilkumar, P. Vickraman, M. Jayachandran, C. Sanjecviraja. Structural and electrical studies of nano structured Sn1-xSbxO2 (x=0.0,1,2.5,4.5 and 7 at%) prepared by co-precipitation method. Journal of Materials Science:Materials in Electronics,2010, 21(4):343-348.
    [125]R. Adhikari, A. K. Das, D. Karmakar, T. V. C. Rao, J. Ghatak. Structure and magnetism of Fe-doped SnO2 nanoparticles. Physical Review B,2008,78(2):024404-024412.
    [126]J. R. Zhang, L. Gao. Synthesis and Characterization of Sb Doped SnO2 (ATO) Nanoparticles. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE EDITION,2003,24(9):1544-1547.
    [127]K. Nejati. Synthesis by precipitation method and investigation of SnO2 nanoparticles. Crystal Research and Technology,2012,47(5):567-572.
    [128]D. V. Dang, X. H. Vu, Q. T. Khuc. Synthesis of SnO2 micro-spheres, nano-rods and nano-flowers via simple hydrothermalroute. Elsevier: Physica E:Low-dimensional Systems and Nanostructures,2011,44(2):345-349.
    [129]M. Wang, Y. Gao, L. Dai, C. X. Cao, X. H. Guo. Influence of surfactants on the morphology of SnO; nanocrystals prepared via a hydrothermal method. Journal of Solid State Chemistry,2012,189:49-56.
    [130]C. Ma, J. Lu, W. Shao, F. Gu, S.Jing. Efficient Light Scattering from Nanochains Encapsulated in SnO2 Hollow Spheres. Int. J. Electrochem. Sci.,2013,8:3580-3588.
    [131]X. Qiao, L. Chen, H. Yang, X. Fan. Q. Shen. Synthesis of Tin Oxide Nanoparticles by Precipitation Method:effects of pH and Temperature on the Particle Size and Morphology [J]. Rare Metal Materials and Engineering,2012,43(3):166-169.
    [132]N. N. Greenwood, A. Earnshaw. Chemistry of the Elements. Oxford etc.:Pergamon press, 1984.
    [133]C. lbarguen, A. Mosquera, R. Parra, M.S. Castro, J.E. Rodriguez-Paez. Synthesis of SnO2 nanoparticles through the controlled precipitation route. Materials Chemistry and Physics, 2007,101(2):433-440.
    [134]M. J. Van Bommel, W. A. Groen, H. A. M. Van Hal, W. C. Keur. T. N. M. Bernards. The electrical and optical properties of thin layers of nano-sized antimony doped tinoxide particles. Journal of Materials Science,1999,34(19):4803-4809.
    [135]C. Goebbert. M. A. Aegerter, D. Burgard, R. Nass, H. Schmidt. Ultrafiltration conducting membranes and coatings from redispersable, nanoscaled, crystalline SnO2:Sb particles. J. Mater. Chem.,1999,9(1):253-258.
    [136]江名喜.配合-水热氧化法合成锑掺杂二氧化锡纳米粉末及其吸波性能的研究[博士学位论文].长沙:中南大学,2006.
    [137]L. P. Ravaro, L. V. A. Scalvi. Influence of pH of colloidal suspension on the electrical conductivity of SnO2 thin films deposited via Sol-Gel-Dip-Coating. Materials Research, 2011,14(1):113-117.
    [138]B. A. Chandra, D. Kalpana, P. Thangadurai, S. Ramasamy. Synthesis and characterization of nanocrystalline SnO2 and fabrication of lithium cell using nano-SnO2. Journal of Power Sources,2002,107(1):138-141.
    [139]沈钟,赵振国,王果庭.胶体与表面化学.北京:化学工业出版社,2004.
    [140]Z. Li, Y. Xiong, Y. Xie. Selected-control synthesis of ZnO nanowires and nanorods via a PEG-assisted route. Inorganic chemistry,2003,42(24):8105-8109.
    [141]S. Bu, Z. Jin, X. Liu, L. Yang. Z. Cheng. Fabrication of TiO2 porous thin films using peg templates and chemistry of the process. Materials Chemistry and Physics,2004,88(2): 273-279.
    [142]J. Jiao, Q. Xu, L. Li. Porous TiO2 composite prepared using PEG as template direction reagent with assistance of supercritical CO2. Journal of colloid and interface science,2007, 316(2):596-603.
    [143]Z. Z. Wu, D. Z. Wang, B. Xu. Preparation of Hollow MoS2 Microspheres by Addition of PEG as Template. Acta Physico-Chimica Sinica,2008.24(10):1927-1931.
    [144]W. Guo, Y. W. Sun, G. S. Luo, Y. J. Wang. Interaction of PEG with ionic surfactant SDS to form template for mesoporous material. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2005,252(1):71-77.
    [145]X. Zhou, S. Chen, D. Zhang, X. Guo, W. Ding, Y. Chen. Microsphere organization of nanorods directed by PEG linear polymer. Langmuir:the ACS journal of surfaces and colloids,2006,22(4):1383-1387.
    [146]Y. Chen, Q. Chen, L. Song, H. P. Li, F. Z. Hou. Preparation and characterization of encapsulation of Europium complex into meso-structured silica monoliths using PEG as the template. Microporous and Mesoporous Materials,2009,122(1-3):7-12.
    [147]Y. Han, X. Wu. G. Shen, B. Dierre, L. Gong, F. Qu, Y. Bando, T. Sekiguchi, F. Filippo, D. Golberg. Solution Growth and Cathodoluminescence of Novel SnO2 Core-Shell Homogeneous Microspheres. The Journal of Physical Chemistry C,2010,114(18): 8235-8240.
    [148]Y. Q. Guo, Y. Li, R. Q. Tan. W. J. Song. Synthesis of SnO2 hollow microspheres with core-shell structures through a facile template-free hydrothermal method. Materials Science and Engineering:B,2010.171(1):20-24.
    [149]X. Chen, Z. Wang, X. Wang, R. Zhang, X. Liu, W. Lin, Y. Qian. Synthesis of novel copper sulfide hollow spheres generated from copper (Ⅱ)-thiourea complex. Journal of Crystal Growth,2004.263(1):570-574.
    [150]X. Li, Y. Xiong, Z. Li, Y. Xie. Large-scale fabrication of TiO2 hierarchical hollow spheres. Inorganic chemistry,2006,45(9):3493-3495.
    [151]C. Y. Cao, J. Qu, W. S. Yan, J. F. Zhu, Z. Y. Wu, W. G. Song. Low-Cost Synthesis of Flowerlike α-Fe2O3 Nanostructures for Heavy Metal Ion Removal:Adsorption Property and Mechanism. Langmuir:the ACS journal of surfaces and colloids,2012,28(9): 4573-4579.
    [152]F. Gu, C. Z. Li, S. F. Wang, M. K. Lu. Solution-phase synthesis of spherical zinc sulfide nanostructures. Langmuir:the ACS journal of surfaces and colloids,2006,22(3): 1329-1332.
    [153]于化顺.金属基复合材料及其制备技术.北京:化学工业出版社,2006.
    [154]朱流.金属—陶瓷复合粉体制备与机理及其应用研究[博士学位论文].杭州:浙江大学材料与化学工程学院,2006.
    [155]卢锡年,张芮.颗粒填充复合材料强韧化效应的力学分析.力学学报,1995,27(5):619-623.
    [156]B. S. Terry, O. S. Chinyamakobvu. In situ production of Fe-TiC composites by reactions in liquid iron alloys. Journal of materials science letters,1991,10(11):628-629.
    [157]S. C.Tjong, Z. Y. Ma. Microstructural and mechanical characteristics of in situ metal matrix composites. Materials Science and Engineering:R:Reports,2000,29(3):49-113.
    [158]王基才,尤显卿,郑玉春,程娟文.颗粒增强金属基复合材料的研究现状及展望.硬质合金,2003,20(1):51-55.
    [159]王武孝,袁森.铸造法制备颗粒增强金属基复合材料的研究进展.铸造技术.2001,2:42-45.
    [160]邹正光,陈寒元,麦立强.钛铁矿原位碳热还原合成TiC/Fc复合材料的研究.硅酸盐学报,2001,29(3):199-203.
    [161]张奎,樊建中,张永忠,吕晋宁,桑吉梅,张少明,石力开.颗粒增强复合材料增强体颗粒分布均匀性研究.稀有金属,1999,23(1):62-65.
    [162]邹正光,陈寒元,麦立强.钛铁矿原位碳热还原合成TiC/Fe复合材料的研究.硅酸盐学报,2001,29(3):199-203.
    [163]骆心怡,朱正吼,卢翔,李顺林.高能球磨制备纳米CeO2/Al复合粉末.热加工工艺,2003,2:14-16.
    [164]E. Orowan. Mechanism of seismic faulting. Geol. Soc. Am. Mem,1960,79(323):45-49.
    [165]W. S. Cremens. Use of Submicron Metal and Nonmetal Powders for Dispersion-Strengthened Alloys. Ultrafine Particles. WE Kuhn, ed. John Wiley & Sons, Inc.,1963,457-478.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700