缬草细胞培养合成缬草素的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
缬草素(Valtrate)具有镇静安神、抗肿瘤、增加冠脉流量、抗心律失常、胃肠平滑肌解痉等突出的药理活性。缬草不易人工栽培,且药用成分含量很低,使得提取缬草素的成本高。本论文采用细胞组织培养、GC-MS、HPLC-PDA、Plackett–Burman主因素筛选、Box–Behnken响应面分析、RT-PCR等研究方法,对缬草细胞培养合成缬草素进行研究,分析了3种缬草的主要化学活性成分、建立了缬草素高产细胞培养体系、优化了生物合成缬草素条件并建立动力学模型、对缬草素生物合成调控因子优化,并分析了缬草素生物合成调控因子对dxr基因表达的影响,研究结果表明:
     从缬草根部提取物中鉴定出4种环烯醚萜三酯(缬草素、Isovaltrate、Diavaltrate和Acevaltrate),其中最具药用活性和强极性的缬草素在黑水缬草中含量最高。在GC-MS分析,从黑水缬草中鉴定出43种化合物,所含的Isobornylacetate(27.6%)在已报道的缬草属植物挥发油中含量最高;北缬草中鉴定出44种化合物,含量最高的为α-Selinene(16.7%);毛节缬草中鉴定出39种化合物,含量最高的为Bornyl acetate(39.1%)。
     通过筛选外植体、基础培养基和激素组合,诱导了黑水缬草愈伤组织和不定根,分析了愈伤组织、固体不定根、悬浮细胞和悬浮不定根4种培养体系。发现悬浮不定根细胞系中缬草素含量最高,以其为基础建立了缬草素高产细胞培养体系。建立了悬浮不定根培养体系的组织生长、缬草素合成和基质消耗动力学模型,根据这3个动力学模型可定量评估产缬草素效果,优化培养工艺流程和控制培养条件。通过Plackett–Burman主因素筛选试验的结果表明:摇床转速、NH4NO3和KH2PO4浓度对于黑水缬草悬浮不定根培养体系有显著影响(P<0.01)。进一步通过Box–Behnken设计的响应面分析,得到最佳水平为摇床转速=76r/min,NH4NO3浓度=0.0069mol/L,KH2PO4浓度=0.0436mol/L。在此条件下,实际获得缬草素含量最大值为8.36±0.20mg/g。
     调控因子促进缬草素合成的试验结果表明,3种诱导子(茉莉酸甲酯、茉莉酸和壳聚糖)对缬草素积累具有显著的促进作用。应用香茅醛进行前体饲喂,发现在低浓度条件下,可以促进缬草素的合成。通过响应面分析,得到了3种诱导子的最优浓度组合:茉莉酸甲酯=419.6mg/L、茉莉酸=102.8mg/L、壳聚糖=29.0mg/L。在此条件下,缬草素含量的实际最大值为17.40±0.26mg/g。3种诱导子对缬草素的积累具有很强的协同作用。
     克隆出的黑水缬草中萜类代谢关键酶—5-磷酸脱氧木酮糖还原异构酶(DXR)的cDNA片段基因编码区长为1425bp,编码474个氨基酸残基。原核表达证明,该基因编码蛋白的分子量约为50.98kD。dxr基因在缬草组织中的表达强弱为:不定根>野生植株根和根茎>野生植株叶片>悬浮细胞。调控因子(茉莉酸甲酯、茉莉酸和壳聚糖)对dxr基因表达的影响与对缬草素合成量的影响呈正相关,说明对缬草素合成具有调控作用。3种调控因子对dxr基因表达强弱顺序为:茉莉酸甲酯>茉莉酸>壳聚糖。
     在建立缬草素高产细胞培养体系基础上,优化了细胞培养合成缬草素条件及建立了力学模型,并通过调控缬草素合成前体物质及关键酶活性促进因子,使缬草素合成量与野生型相比提高了14.15倍。进一步研究表明,缬草素生物合成调控因子不但可以促进目标化合物的合成,并且可以促进dxr基因表达量。本研究为今后大量生物合成缬草素或其它环烯醚萜三酯类化合物奠定了坚实的基础;探寻缬草素生物合成的机理,具有重要的理论和实际意义。
Valtrate is a pharmacologically important compound. It’s well known thatpharmaceutically active functions of sedative, antineoplastic, increase coronary bloodflow, gastrointestinal smooth muscle, spasm spasmolysis analgesics and antiarrhythmic.Valeriana is difficult to artificial cultivation, and its wild sample has low content ofmedicine ingredients. The cost of traditional valtrate extract method is very expensive.In our research, biosynthesis of valtrate from in vitro culture system was studied bymethods of Cell Culture, GC-MS, HPLC-PDA, Plackett–Burman Design, Box–Behnken Design and RT-PCR. Therefore, we focused on analysis of the main chemicalconstituents of3kinds of Valeriana, establishment of valtrate high yield culture system,optimization of culture condition to enhance valtrate accumulation establishment ofkinetic model of adventitious roots suspension culture system, optimization ofregulation factors to enhance valtrate accumulation and analysis of the effect ofregulation factors on expression of dxr gene. The results are showed as follows:
     Through GC-MS analysis,43kinds of chemicals were identified from the essentialoil of Valeriana amurensis Smir. ex Kom., the maximum content of Isobornyl acetatewas27.6%, which was the highest value in reported research.44kinds of chemicalswere identified from Valeriana fauriei Briq. essential oil, and α-Selinene (16.7%) wasthe main constituent.39kinds of chemical were identified from Valeriana alternifoliaBunge. essential oil, and Bornyl acetate (39.1%) was the main constituent.4kinds ofvalepotriates (Valtrate, Isovaltrate, Diavaltrate and Acevaltrate) were identified byHPLC. Valtrate was the main constituent, which has best medicinal properties.
     Through screening of explants, culture medium and hormone combination, callusand adventitious roots were induced. Then, callus, suspended cell, solid and suspendedadventitious roots culture system were established. The highest content of valtrate (1.77times than wild root sample) was gotten from suspended adventitious roots culturesystem which was chosen as the high-yield cultlure system. Plackett–Burman designcriterion was applied to identify the significant effects of various cultural parameters.Among the various variables screened, the rotating speed, NH4NO3and KH2PO4concentrations were most significant factors. Through the Box–Behnken design, thespecific optimum levels of these significant parameters were determined as follows: the rotate speed (76r/min), NH4NO3concentration (0.0069mol/L) and KH2PO4concentration (0.0436mol/L). And the maximum valtrate content (8.46mg/g,6.79times than wild root sample) was gotten under this optimized conditions. Using theOrigin software to non-linear fit the experimental data, the kinetics model of tissuegrowth, valtrate production and substrate consumption were established. Thismathematical model can interpret and reflect the change of key parameters in theprocess of suspension adventitious root culture.
     We assayed the effects of different regulation factors on the production of valtrate.Methyl jasmonate, Jasmonic acid and Chitosan showed the significant promotion effecton valtrate production. The test results of precursor feeding indicated that citronellal hada modest promotion effect on valtrate production. Using the response surfacemethodology, the optimal combination of methyl jasmonate, jasmonic acid and chitosanwas shown to have strong synergistic effect on valtrate production, which wasconfirmed by actual experiments. After the test of best time of induction treatment, wegot the maximum valtrate content of17.40±0.26mg/g, which was14.15times thanwild root sample, and this was the highest value in reported research.
     DXR is a key enzyme in terpenoid metabolic pathways. One dxr gene was clonedfrom cell of V. amurensis by RTPCR. The cDNA fragment code region of dxr was1425bp long, encoding474amino acids. According to the test results of prokaryoticexpression, a fragment about50.98kD was achieved as expect. This order of geneexpressed strength from different tissues of V. amurensis is: adventitious roots>wildroot&rhizome>wild leaf>suspended cell. The effect of regulatory factor on theexpression of dxr gene has positive correlation with the effect of regulatory factor onproduction of valtrate. The results show dxr gene is an effective gene target in thesynthesis pathway of valtrate. Through the research of establishment of valtrate highyield culture system, the culture condition was optimized, the kinetic model ofadventitious roots suspension culture system was established, the regulation factors wasoptimized, and the valtrate production level was significantly enhanced. Further studieshave shown that the biosynthesis regulatory factors can not only promote the synthesisof the target compound, but also enhance the level of dxr gene expression. The results ofthis study provide the theoretical basis for large-scale biosynthesis of varltrate, and arehighly significant to reveal the mechanism of varltrate biosynthesis.
引文
[1]刘娟,汪洋.缬草属药用植物的研究进展[J].黑龙江医药科学,2007,30(1):94-95.
    [2]周琳,张悦,张静,等.缬草开发前景广阔[J].国土与自然资源研究,2003,3:91-92.
    [3]张振学,姚新生.药用植物缬草的生物活性研究进展与开发[J].沈阳药科大学学报,2000,17(3):222-225.
    [4] Tang J Y,Zeng Y S,Peter C,et al.Effects of Valeriana officinalis Extract onRat Depression Model[J]. Journal of Chinese Clinical Medicine,2008,3(7):374-378.
    [5]张忠立.黑水撷草化学成分和生物活性研究[D].哈尔滨:黑龙江中医药大学学位论文,2007:5-10.
    [6]龚占峰.缬草杭心律失常活性成分及血清药物化学研究[D].武汉:湖北中医学院学位论文,2009:6-22.
    [7]周颖.缬草抗心律失常活性物质及指纹图谱研究[D].武汉:湖北中医学院学位论文,2008:4-30.
    [8]肖婷,闫智勇,左长英,等.蜘蛛香总黄酮大孔树脂纯化工艺[J].中国实验方剂学杂志,2010,16(17):36-39.
    [9]左月明.黑水撷草抗老年痴呆有效部位化学成分和药理作用研究[D].哈尔滨:黑龙江中医药大学学位论文,2007:5-15.
    [10] Gr nicher F,Christen P,Kamalaprija P,et al.An Iridoid Diester fromValeriana officinalis var. sambucifolia Hairy Roots[J].Phytochemistry,1995,38(1):103-105.
    [11] Nishiya K, Kimura T, Takeya K, et al. Sesquiterpenoids and IridoidGlycosides from Valeriana fauriei[J].Phytochemistry,1992,31(10):3511-3514.
    [12] Bach K K, Ghia F, Torssell K B. Valtrates and Lignans in Valerianamicrophylla[J].Planta Med,1993,59(05):478-479.
    [13]都晓伟,孙晖,吴军凯.黑水缬草挥发油的提取方法及其化学成分研究[J].中草药,2007,39(1):32-34.
    [14]黄龙,肜霖,朱巍,等.缬草挥发油的超临界CO2萃取及其在烟草中的应用[J].湖北农业科学,2011,50(21):4492-4495.
    [15]杨杰.缬草精油提取工艺、化学成分分析及其活性功能研究[D].长沙:中南林业科技大学学位论文,2009:9-21.
    [16] Mathela C S,Chanotiya C S,Sati S,et al.Epoxysesquithujene, a NovelSesquiterpenoid from Valeriana hardwickii var. hardwickii[J].Fitoterapia,2007,78(4):279-282.
    [17]周霆,黄宝康.缬草挥发油的化学成分及药理活性研究进展[J].时珍国医国药,2008,9(11):2663-2664.
    [18]谭斌.宽叶缬草黄酮类物质研究[D].长沙:湖南农业大学学位论文,2008:3-10.
    [19]杜娟,黄英,刘娟,等.栽培黑水缬草中挥发油成分分析[J].黑龙江医药科学,2010,33(3):65-66.
    [20]张占平.蜘蛛香提取物体外抗结肠癌作用研究:西南交通大学,2010
    [21] Ueda S,Iwahashi Y,Tokuda H.Production of Anti-Tumor-Promoting IridoidGlucosides in Genipa americana and Its Cell Cultures[J].Journal of NaturalProducts,1991,54(6):1677-1680.
    [22]张书勤,薛存宽,何学斌,等.缬草环烯醚萜酯体外抗肿瘤作用的实验研究[J].医药导报,2008,1:32-34.
    [23] Tufik S, Fujita K, Seabra M L V, et al. Effects of a ProlongedAdministration of Valepotriates in Rats on the Mothers and TheirOffspring[J].Journal of Ethnopharmacology,1994,41(1-2):39-44.
    [24]黄宝康,黄流清,赵忠新,et al.国产缬草属4种药用植物镇静催眠作用的比较研究[J].时珍国医国药,2008,9(11):2710-2711.
    [25] Schulz H,Jobert M.Effects of Hypericum Extract on the Sleep EEG in OlderVolunteers[J].Journal of Geriatric Psychiatry and Neurology,1994,7(1):39-43.
    [26]彭佳.蜘蛛香环烯醚萜类成分中枢抑制作用研究[D].西安:西南交通大学学位论文,2009:6-12.
    [27] Maurmann N,De Carvalho C M B,Silva A I L,et al.ValepotriatesAccumulation in Callus, Suspended Cells and Untransformed Root Cultures ofValeriana glechomifolia[J]. In Vitro Cellular&Developmental Biology-Plant,2006,42(1):50-53.
    [28]姚新生.天然药物化学[M].北京:人民卫生出版社,1994:288-289.
    [29]黎继烈,黄凌,崔培梧,等.大孔吸附树脂纯化宽叶缬草中缬草素工艺优化[J].食品科学,2010,31(12):101-105.
    [30]陈建伟,武孔云,梁光义,等.两点法测定宽叶缬草中总缬草素的含量[J].时珍国医国药,2009,3:607-608.
    [31]狄宏晔,石晋丽,闫兴丽,等.HPLC法测定蜘蛛香中缬草素、乙酰缬草素及其分解产物Baldrinal[J].中草药,2007,38(12):1892-1894.
    [32] Salles L A,Silva A L,Fett-Neto A G,et al.Valeriana glechomifolia: in VitroPropagation and Production of Valepotriates[J].Plant Science,2002,163(1):165-168.
    [33]高文远,贾伟.药用植物大规模组织培养[M].北京:化学工业出版社,2005:4-20.
    [34] Mathur J,Ahuja P S.Plant Regeneration from Callus Cultures of Valerianawallichii DC.[J].Plant Cell Reports,1991,9(9):523-526.
    [35] Mathur J. Plantlet Regeneration from Suspension Cultures of Valerianawallichii DC.[J].Plant Science,1992,81(1):111-115.
    [36]危兆安,张乍如,彭晓英,等.宽叶缬草的离体培养及不定芽发生[J].湖南农业大学学报(自然科学版),2010,36(4):395-397.
    [37] De Carvalho C M B,Natasha M,Luz D. I.,et al.Control of Developmentand Valepotriate Production by Auxins in Micropropagated Valerianaglechomifolia[J].Plant Cell Reports,2004,23(4):251-255.
    [38] Gr nicher F, Christen P, Kapetanidis I. High-yield Production ofValepotriates by Hairy Root Cultures of Valeriana officnalis L. var. sambucifoliaMikan[J].Plant Cell Reports,1992,11(7):339-342.
    [39] Baque M d,Hahn E J,Paek K Y.Induction Mechanism of Adventitious Rootfrom Leaf Explants of Morinda citrifolia as Affected by Auxin and LightQuality[J].In Vitro Cellular&Developmental Biology-Plant,2010,46(1):71-80.
    [40] Banik R M,Pandey D K.Optimizing Conditions for Oleanolic Acid Extractionfrom Lantana Camara Roots using Response Surface Methodology[J].IndustrialCrops and Products,2008,27(3):241-248.
    [41] Chen G,Chen J,Srinivasakannan C,et al.Application of Response SurfaceMethodology for Optimization of the Synthesis of Synthetic Rutile from TitaniaSlag[J].Applied Surface Science,2011,258(7):3068-3073.
    [42]张润楚,郑海涛,兰燕.试验设计与分析及参数优化[M].北京:中国统计出版社,2003:10-30.
    [43] He Y Q,Tan T W.Use of Response Surface Methodology to Optimize CultureMedium for Production of Lipase with Candida sp.99-125[J].Journal ofMolecular Catalysis B: Enzymatic,2006,43(1-4):9-14.
    [44] Sayyad S,Panda B,Javed S,et al.Optimization of Nutrient Parameters forLovastatin Production by Monascus purpureus MTCC369Under SubmergedFermentation Using Response Surface Methodology[J].Applied Microbiologyand Biotechnology,2007,73(5):1054-1058.
    [45] Zhang J,Gao N F.Application of Response Surface Methodology in MediumOptimization for Pyruvic Acid Production of Torulopsis glabrata TP19in BatchFermentation[J].Journal of Zhejiang University-Science B,2007,8(2):98-104.
    [46]董妍零,潘学武.植物次生代谢产物简介[J].生物学通报,2002,37(11):17-19.
    [47] Huang T K,McDonald K A.Bioreactor Engineering for Recombinant ProteinProduction in Plant Cell Suspension Cultures[J]. Biochemical EngineeringJournal,2009,45(3):168-184.
    [48] Georgiev M I,Weber J,Maciuk A.Bioprocessing of Plant Cell Cultures forMass Production of Targeted Compounds [J]. Applied Microbiology andBiotechnology,2009,83(5):809-823.
    [49] Zhou J,Ma C,Xu H L,et al.Metabolic Profiling of Transgenic Rice withcryIAc and sck genes: An Evaluation of Unintended Effects at Metabolic Level byusing GC-FID and GC-MS[J].Journal of Chromatography B,2009,877(8-9):725–732.
    [50] Cui J,Chen J,Henny R J.Regeneration of Aeschynanthus radicans via DirectSomatic Embryogenesis and Analysis of Regenerants with FlowCytometry[J].In Vitro Cellular&Developmental Biology-Plant,2009,45(1):34-43.
    [51]查宏波,李启任,王东,等.粉叶小檗愈伤组织单细胞克隆[J].生物技术通报,2004,1(1):43-46.
    [52]赵德修,乔传令,汪沂.水母雪莲的细胞培养和高产黄酮细胞系的筛选[J].植物学报,1998,40(6):515-520.
    [53]杜金华,郭勇.高产花色苷玫瑰茄细胞系的筛选[J].生物工程学报,1997,13(4):437-439.
    [54]郭勇,崔堂兵,谢秀祯.植物细胞培养技术与应用[M].北京:化学工业出版社,2004:90-93.
    [55]颜日明,张志斌,邱晓芳,等.杜仲细胞悬浮培养产黄酮及其动力学研究[J].中国生物工程杂志,2008,28(10):60-65.
    [56]张新刚,史冠莹,陶科,等.费氏链霉菌HTP6分批发酵动力学[J].微生物学通讯,2009,36(3):311-315.
    [57]罗凯,查学强,罗建平.怀槐细胞悬浮培养的结构化动力学模型[J].生物工程学报,2007,23(4):657-661.
    [58] Choi J W,Kim Y K,Park H K,et al.Kinetic Model for Biotransformationof Digitoxin in Plant Cell Suspension Culture of Digitalislanata[J].Biotechnology and Bioprocess Engineering,1999,4(4):281-286.
    [59] Weathers P J,Towler M J,Xu J F.Bench to Batch: Advances in Plant CellCulture for Producing Useful Products [J]. Applied Microbiology andBiotechnology,2010,85(5):1339-1351.
    [60] Kolewe M E,Roberts S C,Henson M A.A Population Balance EquationModel of Aggregation Dynamics in Taxus suspension CellCultures[J].Biotechnology and Bioengineering,2012,109(2):472-482.
    [61] Tevatia R,Demirel Y,Blum P.Kinetic Modeling of Photoautotropic Growthand Neutral Lipid Accumulation in Terms of Ammonium Concentration inChlamydomonas Reinhardtii[J].Bioresource Technology,2012,119:419-424.
    [62] Lee M W,Vassiliadis V S,Park J M.Individual-based and StochasticModeling of Cell Population Dynamics Considering SubstrateDependency[J].Biotechnology and Bioengineering,2009,103(5):891-899.
    [63] Verpoorte R,Heijden R,Hoopen H J G,et al.Metabolic Engineering ofPlant Secondary Metabolite Pathways for the Production of FineChemicals[J].Biotechnology Letters,1999,21(6):467-479.
    [64] Rohmer M., Knani M., Simonin P., et al. Isoprenoid Biosynthesis inBacteria: a Novel Pathway for the Early Steps Leading to IsopentenylDiphosphate[J].Biochemical Journal,1993,295(2):517-524.
    [65] Rohmer M. The Discovery of a Mevalonate-independent Pathway forIsoprenoid Biosynthesis in Bacteria, Algae and HigherPlants[Dagger][J].Natural Product Reports,1999,16(5):565-574.
    [66] Zhu C F,Naqvi S,Capell T,et al.Metabolic Engineering of KetocarotenoidBiosynthesis in Higher Plants[J].Archives of Biochemistry and Biophysics,2009,483(2):182–190.
    [67] Feng Q, Zhang Y J, Hao P, et al. Sequence and Analysis of RiceChromosome4[J].Nature,2002,420(6913):316-320.
    [68] The Rice Full-Length c D. N. A. Consortium, National Institute ofAgrobiological Sciences Rice Full-Length c D. N. A. Project Team,KikuchiShoshi,et al.Collection, Mapping, and Annotation of Over28,000cDNAClones from Japonica Rice[J].Science,2003,301(5631):376-379.
    [69] Wurbs D,Ruf S,Bock R.You have Full Text access to this OnlineOpenArticleContained Metabolic Engineering in Tomatoes by Expression ofCarotenoid Biosynthesis Genes from the Plastid Genome[J]. The PlantJournal,2007,49(2):276-288.
    [70] Lauw S,Illarionova V,Bacher A,et al.Biosynthesis of Isoprenoids-Studieson the Mechanism of2C-methyl-d-erythritol-4-phosphate Synthase[J].FEBSJournal,2008,275(16):4060-4073.
    [71]陈建,赵德刚.植物萜类生物合成相关酶类及其编码基因研究进展[J].分子植物育种,2004,6(6):757-764.
    [72] Liao Z H,Tan Q M,Chai Y R,et al.Cloning and Characterisation of theGene Encoding HMG-CoA Reductase from Taxus Media and its FunctionalIdentification in Yeast[J].Functional Plant Biology,2004,31(1):73-81.
    [73]周明兵,肖月华,朱冬雪,等.杜仲胶合成相关基因EuFPS的克隆及序列分析[J].分子植物育种,2003,1(1):66-71.
    [74] Akiyuki T,Zhang Y W,Asawatreratanakul K,et al.Cloning, Expressionand Characterization of a Functional cDNA Clone Encoding GeranylgeranylDiphosphate Synthase of Hevea brasiliensis[J].Biochimica et Biophysica Acta(BBA)-Gene Structure and Expression,2003,1625(2):214-220.
    [75] Laskaris G,De Jong C F,Jaziri M,et al.Geranylgeranyl DiphosphateSynthase Activity and Taxane Production in Taxus baccataCells[J].Phytochemistry,1999,50(6):939-946.
    [76] Fung P K,Krushkal J,Weathers P J.Computational Analysis of the Evolutionof1-Deoxy-D-xylulose-5-phosphate Reductoisomerase, an Important Enzyme inPlant Terpene Biosynthesis[J].Chemistry&Biodiversity,2010,7(5):1098-1110.
    [77] Hasunuma T,Shinya T,Shunsuke H,et al.Overexpression of1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase Gene in Chloroplast Contributes toIncrement of Isoprenoid Production[J]. Journal of Bioscience andBioengineering,2008,105(5):518-526.
    [78] Carretero-Paulet L,Cairo A,Botella-Pavia P,et al.Enhanced Flux Throughthe Methylerythritol4-Phosphate Pathway in Arabidopsis Plants OverexpressingDeoxyxylulose5-Phosphate Reductoisomerase[J].Plant Molecular Biology,2006,62(4-5):683-695.
    [79] Rodriguez-Concepcion M,Ahumada I,Diez-Juez E,et al.1-Deoxy-D-Xylulose-5-Phosphate Reductoisomerase and Plastid Isoprenoid BiosynthesisDuring Tomato Fruit Ripening[J].The Plant Journal,2001,27(3):213-222.
    [80] Kim B R,Kim S U,Chang Y J.Differential Expression of Three1-Deoxy-D-Xylulose-5-Phosphate Synthase Genes in Rice[J]. Biotechnology Letters,2005,27(14):997-1001.
    [81] Lucker J,Schwab W,Franssen M C R,et al.Metabolic Engineering ofMonoterpene Biosynthesis: Two-step Production of (+)-Trans-Isopiperitenol byTobacco[J].The Plant Journal,2004,39(1):135-145.
    [82] Abdullahil Baque M,Lee E J,Paek K Y.Medium Salt Strength InducedChanges in Growth, Physiology and Secondary Metabolite Content inAdventitious Roots of Morinda citrifolia: the Role of Antioxidant Enzymes andPhenylalanine Ammonia Lyase[J].Plant Cell Reports,2010,29(7):685-694.
    [83] Russowski D,Maurmann N,Rech S B,et al.Role of Light and MediumComposition on Growth and Valepotriate Contents in Valeriana glechomifoliaWhole Plant Liquid Cultures [J].Plant Cell, Tissue and Organ Culture,2006,86(2):211-218.
    [84]刘佳佳,李晓如,郭勇,等.缺氧胁迫法选育高产银杏内酯悬浮细胞系研究[J].天然产物研究与开发,2001,13(2):1-4.
    [85]张艳霞,史玲玲,戴向辰,等.茉莉酸及其衍生物:一类重要的植物次生代谢诱导子[J].海南师范大学学报(自然科学版),2008,21(3):323-327.
    [86] Zabala M A,Angarita M,Restrepo J M,et al.Elicitation with Methyl-jasmonate Stimulates Peruvoside Production in Cell Suspension Cultures ofThevetia peruviana [J].In Vitro Cellular&Developmental Biology-Plant,2010,46(3):233-238.
    [87] Wang Y D,Yuan Y J,Wu J C.Induction Studies of Methyl Jasmonate andSalicylic Acid on Taxane Production in Suspension Cultures of Taxus chinensisvar. mairei[J].Biochemical Engineering Journal,2004,19(3):259-265.
    [88] Malik S,Cusido R M,Mirjalili M H,et al.Production of the AnticancerDrug Taxol in Taxus baccata Suspension Cultures: A Review[J]. ProcessBiochemistry,2011,46(1):23-34.
    [89]王博,潘利华,罗建平,等.水杨酸对霍山石斛类原球茎细胞生长及多糖合成的影响[J].生物工程学报,2009,25(7):1062-1068.
    [90]宫玉艳,段立清,王爱清.茉莉酸诱导对枸杞叶生化物质及酶活性的影响[J].植物保护,2010,36(2):61-65.
    [91]刘文哲.诱导子对喜树幼苗中喜树碱含量及色氨酸脱羧酶活性的影响:西北大学,2007
    [92]张长平,李春,元英进,等.真菌诱导子对悬浮培养南方红豆杉细胞态势及紫杉醇合成的影响[J].生物工程学报,2001,17(4):436-440.
    [93]曾杨,文涛,喻晓.真菌诱导子对植物次生代谢物的影响及应用[J].中国野生植物资源,2007,26(1):1-4.
    [94] Wasternack C,Hause B.Jasmonates and Octadecanoids: Signals in PlantStress Responses and Development[J].Progress in Nucleic Acid Research andMolecular Biology,2002,72:165-221.
    [95] Kumari G,Reddy A,Naik S,et al.Jasmonic Acid Induced Changes inProtein Pattern, Antioxidative Enzyme Activities and Peroxidase Isozymes inPeanut Seedlings[J].Biologia Plantarum,2006,50(2):219-226.
    [96] Onrubia M,Moyano E,Bonfill M,et al.An Approach to the MolecularMechanism of Methyl Jasmonate and Vanadyl Sulphate Elicitation in Taxusbaccata Cell Cultures: The Role of txs and bapt GeneExpression[J].Biochemical Engineering Journal,2010,53(1):104-111.
    [97] Gregory L, Mina B, Georgios T, et al. Induction of GeranylgeranylDiphosphate Synthase Activity and Taxane Accumulation in Taxus baccata CellCultures After Elicitation by Methyl Jasmonate[J].Plant Science,1999,147(1):1-8.
    [98] Wu J Z,Maehara T,Shimokawa T,et al.A Comprehensive Rice TranscriptMap Containing6591Expressed Sequence Tag Sites[J].The Plant Cell,2002,14:525-535.
    [99] Sasaki T,Matsumoto T,Yamamoto K,et al.The Genome Sequence andStructure of Rice Chromosome1[J].Nature,2002,420(6913):312-316.
    [100]孙敬三,朱至清.植物细胞工程实验技术[M].北京:化学工业出版社,2006:5-30.
    [101] Bos R,Woerdenbag H J,Hendriks H,et al.Composition of the EssentialOils from Underground Parts of Valeriana officinalis L. s.l. and Several CloselyRelated Taxa[J].Flavour and Fragrance Journal,1997,12(5):359-370.
    [102] Kovacevic N,Pavlovic M,Menkovic N,et al.Composition of the EssentialOil from Roots and Rhizomes of Valeriana pancicii Hal á csy&Bald[J].Flavour and Fragrance Journal,2002,17(5):355-357.
    [103] Pavlovic M,Kovacevic N,Tzakou O,et al.The Essential Oil of Valerianaofficinalis L. s.l. Growing Wild in Western Serbia[J].Journal of Essential OilResearch,2004,16(5):397-399.
    [104] Tzakou O,Couladis M,Pavlovic M,et al.Composition and AntifungalActivity of the Oil from Aerial Parts and Rhizomes of Valeriana dioscoridisfrom Greece[J].Journal of Essential Oil Research,2004,16(5):500-503.
    [105] Sati S,Chanotiya C S,Mathela C S.Comparative Investigations on the Leafand Root Oils of Valeriana wallichii DC from NorthwesternHimalaya[J].Journal of Essential Oil Research,2005,17(4):408-409.
    [106] Sati S,Mathela C S.Volatile Constituents in the Root and Leaf Oils ofValeriana pyrolaefolia Decne[J].Journal of Essential Oil Research,2006,18(1):29-31.
    [107] Das J,Mao A A,Handique P J.Terpenoid Compositions and AntioxidantActivities of Two Indian Valerian oils from the Khasi Hills of North-eastIndia[J].Natural Product Communications,2011,6(1):129-132.
    [108] Das J,Mao A A,Handique P J.Volatile Constituents of Valeriana hardwickiiWall. Root Oil from Arunachal Pradesh, Eastern Himalaya[J].Records ofNatural Products,2011,5(1):70-73.
    [109] Kittipongpatana N,Davis D L,Porter J R.Methyl Jasmonate Increases theProduction of Valepotriates by Transformed Root Cultures of Valerianellalocusta[J].Plant Cell, Tissue and Organ Culture,2002,71(1):65-75.
    [110] Olszowska O,Alfermann A W,Furmanowa M.Eugenol from Normal andTransformed Root Cultures of Coluria Geoides[J].Plant Cell, Tissue and OrganCulture,1996,45(3):273-276.
    [111] Fulzele D P,Satdive R K,Pol B B.Untransformed Root Cultures ofNothapodytes foetida and Production of Camptothecin[J].Plant Cell, Tissueand Organ Culture,2002,69(3):285-288.
    [112] Liu C,Callow P,Rowland L,et al.Adventitious Shoot Regeneration fromLeaf Explants of Southern Highbush Blueberry Cultivars[J].Plant Cell, Tissueand Organ Culture,2010,103(1):137-144.
    [113] Zhu X Y,Chai S J,Chen L P,et al.Induction and Origin of AdventitiousRoots from Chimeras of Brassica juncea and Brassica oleracea[J].Plant Cell,Tissue and Organ Culture,2010,101(3):287-294.
    [114] Reis R,Borges A,Chierrito T,et al.Establishment of Adventitious RootCulture of Stevia rebaudiana Bertoni in a Roller Bottle System [J].Plant Cell,Tissue and Organ Culture,2011,106(2):329-335.
    [115] Dass S,Ramawat K.Elicitation of Guggulsterone Production in Cell Culturesof Commiphora wightii by Plant Gums[J].Plant Cell, Tissue and OrganCulture,2009,96(3):349-353.
    [116] Frankfater C,Dowd M,Triplett B.Effect of Elicitors on the Production ofGossypol and Methylated Gossypol in Cotton Hairy Roots[J].Plant Cell,Tissue and Organ Culture,2009,98(3):341-349.
    [117] Korsangruang S,Soonthornchareonnon N,Chintapakorn Y,et al.Effects ofAbiotic and Biotic Elicitors on Growth and Isoflavonoid Accumulation inPueraria candollei var. candollei and P. candollei var. mirifica Cell SuspensionCultures[J].Plant Cell, Tissue and Organ Culture,2010,103(3):333-342.
    [118] Lee Y,Lee D E,Lee H S,et al.Influence of Auxins, Cytokinins, andNitrogen on Production of Rutin from Callus and Adventitious Roots of theWhite Mulberry Tree (Morusalba L.)[J]. Plant Cell, Tissue and OrganCulture,2011,105(1):9-19.
    [119] Coste A,Vlase L,Halmagyi A,et al.Effects of Plant Growth Regulatorsand Elicitors on Production of Secondary Metabolites in Shoot Cultures ofHypericum hirsutum and Hypericum maculatum[J].Plant Cell, Tissue andOrgan Culture,2011,106(2):279-288.
    [120] Gundlach H,Müller M J,Kutchan T M,et al.Jasmonic Acid is a SignalTransducer in Elicitor-induced Plant Cell Cultures[J]. Proceedings of theNational Academy of Sciences,1992,89(6):2389-2393.
    [121] Lenard o E J,Botteselle G V.,De Azambuja F,et al.Citronellal as keyCompound in Organic Synthesis[J].Tetrahedron,2007,63(29):6671-6712.
    [122] Ali M,Yu K W,Hahn E J,et al.Methyl Jasmonate and Salicylic AcidElicitation Induces Ginsenosides Accumulation, Enzymatic and Non-enzymaticAntioxidant in Suspension Culture Panax ginseng Roots inBioreactors[J].Plant Cell Reports,2006,25(6):613-620.
    [123] Wang W,Zhang Z Y,Zhong J J.Enhancement of Ginsenoside Biosynthesisin High-Density Cultivation of Panax notoginseng Cells by Various Strategies ofMethyl Jasmonate Elicitation[J].Applied Microbiology and Biotechnology,2005,67(6):752-758.
    [124] Yu K W,Gao W Y,Hahn E J,et al.Jasmonic Acid Improves GinsenosideAccumulation in Adventitious Root Culture of Panax ginseng C.A.Meyer[J].Biochemical Engineering Journal,2002,11(2-3):211-215.
    [125] Linden J C,Phisalaphong M.Oligosaccharides Potentiate Methyljasmonate-induced Production of Paclitaxel in Taxus canadensis[J].Plant Science,2000,158(1-2):41-51.
    [126] Walter M H,Hans J,Strack D.Two Distantly Related Genes Encoding1-Deoxy-D-Xylulose5-Phosphate Synthases: Differential Regulation in Shootsand Apocarotenoid-accumulating Mycorrhizal Roots[J].The Plant Journal,2002,31(3):243-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700