环糊精葡萄糖基转移酶的分子改造及合成糖基化L-抗坏血酸
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
2-氧-D-吡喃型葡萄糖基-L-抗坏血酸(2-O-D-glucopyranosyl-L-ascorbic acid,AA-2G),是一种L-抗坏血酸(L-ascorbic acid,L-AA;俗称Vitamin C)的衍生物。它克服了L-AA在水溶液中(特别是存在光、热和金属离子等因素)容易被氧化的缺点,增强了其在水溶液中的稳定性。目前,AA-2G的生产方法主要是生物合成法,其中常用的催化剂为环糊精葡萄糖基转移酶(Cyclodextrin glycosyltransferase,CGTase)。在CGTase催化合成AA-2G的过程中,由于α-和β-环糊精具有较高的转化率,常被用作糖基供体。然而,由于α-环糊精价格昂贵,β-环糊精很难溶于水,所以从生产成本考虑,两者均不适合大规模生产AA-2G。寻求便宜易溶的底物取代α-和β-环糊精作为糖基供体生产AA-2G具有重要意义。
     本论文以来源于Paenibacillus macerans JFB05-01的CGTase为研究对象,通过不同方法对其改造,提高其利用麦芽糊精及可溶性淀粉等便宜易溶的底物生产AA-2G的转化率。主要结果如下:
     1.以P. macerans JFB05-01基因组为模板,PCR扩增获得不含自身信号肽的cgt基因,插入质粒pET-20b(+)中构建pET-20b(+)/cgt重组质粒,并导入E. coli BL21(DE3)中表达。经硫酸铵沉淀及镍柱纯化后,获得较纯的CGTase,SDS-PAGE验证其分子量约为75kDa。
     2.以pET-20b(+)/cgt为模板,对47位点的赖氨酸定点饱和突变,通过比较突变体利用麦芽糊精合成AA-2G的转化效率,筛选出了4种阳性突变体:K47V、K47F、K47L和K47W。纯化后对它们酶学性质的研究发现:它们利用麦芽糊精合成AA-2G时,最适反应温度为36℃,最适反应pH为5.5,最适底物配比为麦芽糊精/L-AA=1/1。K47V、K47F、K47L和K47W分别在反应8h、12h、24h和12h时AA-2G产量最高。K47L合成AA-2G最高产量为1.97g L-1,比原始CGTase提高了64%。动力学研究发现,与原始CGTase相比,四种突变酶针对麦芽糊精的米氏常数Km分别降低了25%、19%、23%和14%,说明它们对麦芽糊精亲和力增强。而Kcat/Km均提高说明催化效率提高。同时比较了它们不同催化反应活力,发现突变酶环化活力降低而歧化活力增强。最后通过同源模拟CGTase的三维晶体结构对实验结果做了推测性解释。
     3.通过对+2亚位点的3个位点氨基酸(Y260、Y195和Q265)定点饱和突变,并选取各自最优突变体进行组合突变,最终获得7种阳性突变酶:Y195S、Y260R、Q265K、Y260R/Q265K、Y260R/Y195S、Q265K/Y195S和Y260R/Q265K/Y195S。突变酶Y260R/Q265K/Y195S以麦芽糊精作为糖基供体生产AA-2G的产量为1.88g L-1,比原始CGTase提高了60%。酶学性质研究发现,突变酶Y260R/Q265K和Y260R/Q265K/Y195S的最适反应pH为6.5。突变酶Y260R和Q265K最适反应pH为5.0,Y195S和Y260R/Y195S最适pH为5.5。突变酶Q265K/Y195S最适pH为7.0。它们的最适反应温度均为36℃。动力学研究表明,七种突变酶针对麦芽糊精的米氏常数Km降低,说明它们对麦芽糊精亲和力增强。而Kcat/Km均提高说明催化效率提高。不同催化反应活力比较,发现突变酶环化活力降低,而水解活力和歧化活力增强。最后通过同源模拟CGTase的三维晶体结构对实验结果做了推测性解释。
     4.通过对CGTase中-6亚位点的4个位点氨基酸(Y167、G179、G180和N193)迭代饱和突变,最终获得四种阳性突变酶:Y167S、Y167S/G179K、Y167S/G179K/G193R、Y167S/G179K/G193R/G180R。纯化后酶学性质研究发现,突变酶最适温度从原始型的36℃变为28℃;最适pH较原始型也发生不同程度的变化。在最佳反应条件下,纯化后的Y167S/G179K/G193R/G180R利用麦芽糊精转化合成AA-2G的最高产量为2.12g L-1,比原始CGTase提高了84%。分别对突变酶和原始酶的环化,水解和歧化活力测定发现突变酶环化活力基本丧失,水解和歧化活力增强。此外,动力学研究表明突变株对麦芽糊精的底物结合能力较原始型有所提高。最后通过同源模拟CGTase的三维晶体结构对实验结果做了推测性解释。
     5.将来自于碱性Alkalimonas amylolytica淀粉酶的CBM与来自于P. macerans CGTase融合,构建了两种嵌合酶:CGT-CBMAmy和CGT△E-CBMAmy并纯化。纯化后酶学性质研究表明:以可溶性淀粉为糖基供体生产AA-2G时,嵌合酶最适温度从原始型的36℃变为28℃;最适pH则原始型CGTase相同为pH6.5。AA-2G产量分别是原始型CGTase的5.94和3.94倍。分别对嵌合酶和原始酶的环化,水解和歧化活力测定发现嵌合酶环化活力基本丧失,水解和歧化活力增强。此外,动力学研究表明嵌合酶对麦芽糊精的底物结合能力较原始酶有所提高。并通过同源模拟对实验结果做了可能性解释。
     6.通过将6种自组双亲短肽融合到来源于P. macerans CGTase的N-末端,构建了6种重组酶:SAP1-CGTase~SAP6-CGTase。纯化后进行酶学性质研究,发现6种重组酶的环化活力跟原始CGTase比较均有较大程度的下降,而SAP5-CGTase和SAP6-CGTase的歧化活力增加,并且以可溶性淀粉为糖基供体时,这两种重组酶合成AA-2G产量分别比原始CGTase提高了近1.33倍和2.36倍。动力学研究表明它们对可溶性淀粉底物结合能力增强。通过对原始CGTase和SAP6-CGTase三维结构的模拟及分析,为实验结果提供了一个推测性的解释依据。
2-O-D-glucopyranosyl-L-ascorbic acid (AA-2G), one of L-ascoribc acid (L-AA)derivatives, is prepared by transferring a glycosyl residue from α-1,4-glucan to the C2position of L-AA. AA-2G overcomes the extreme instability of L-AA in aqueous solutionespecially under particular oxidative conditions such as heat, light and metal ions, improvesthe stability in aqueous solution. Nowadays biological transformation is the main approachesfor AA-2G synthesis and cyclodextrin glycosyltransferase (CGTase) is generally consideredto be the most effective biological catalyst. Usually, α-and β-cyclodextrin are used asglycosyl donors for AA-2G production with CGTase as the catalyst because of their hightransformation efficiencies. However, neither is suitable for large-scale production of AA-2Gowing to the high cost of α-cyclodextrin and low solubility of β-cyclodextrin in aqueoussolution. To find a cheap and easily soluble substrate replacing α-and β-cyclodextrin forAA-2G industrial production is the important future development direction.In this study, molecular modification was performed on the CGTase from Paenibacillusmacerans to improve its specificity for maltodextrin and soluble starch, both of which wereregarded as cheap and easily soluble glycosyl donor for AA-2G synthesis. The main researchcontents are listed as follows:
     1. We obtained the cgt gene encoding α-CGTase from P. macerans JFB05-01by polymerasechain reaction (PCR) with the genome of P. macerans JFB05-01as the template. Then thecgt gene was cloned into the pET-20b(+) victor, and the expression plasmidpET-20b(+)/cgt was constructed and transformed into the host E. coli BL21(DE3). Afterexpression and purification, we got the purified CGTase which was approximately75kDa.
     2. Site-saturation engineering of Lys47in CGTase was performed with pET-20b(+)/cgt asthe template. When using maltodextrin as glycosyl donor, four mutants K47F, K47L,K47V and K47W showed higher AA-2G yield as compared with that produced by thewild-type CGTase. The enzymatic characteristics suggested that their optimal temperature,pH and substrate ratio were36oC, pH5.5and maltodextrin/L-AA=1/1, respectively. Attheir optimal conditions, K47V,K47F,K47L and K47W got their highest AA-2G yieldsat8,12,24and12h, respectively. The highest AA-2G titer produced by K47L was1.97g L-1, which increased64%than the wild type CGTase (WT). The reaction kineticsanalysis showed that the Km(maltodextrin) of the four mutants were lower than the WTCGTase while the Kcat/Kmof them were higher than the WT. It was also found thatcompared with the WT, the four mutants had relatively lower cyclization activities andhigher disproportionation activities. Finally, the possible reasons were further explored by
     structure modeling of the mutant CGTases.3. Combination site-saturation engineering was performed on Tyr260, Tyr195and Asn265of the CGTase and seven positive mutants Y195S,Y260R,Q265K,Y260R/Q265K,Y260R/Y195S, Q265K/Y195S and Y260R/Q265K/Y195S were obtained. After purification, the highest AA-2G titer produced by Y260R/Q265K/Y195S withmaltodextrin as the glycosyl donor was1.88g L-1, which increased60%than WT. Theenzymatic characteristics suggested that their optimal temperature were36oC. And for theoptimal pH: Y260R/Q265K and Y260R/Q265K/Y195S were pH6.5, Y260R and Q265Kwere pH5.0, Y195S and Y260R/Y195S were pH5.5, Q265K/Y195S was pH7.0. Thereaction kinetics analysis showed that the affinity and catalytic efficiency of the sevenmutants towards maltodextrin were higher than the WT. It was also found that comparedwith the WT, the four mutants had relatively lower cyclization activities and higherdisproportionation activities. Finally, the possible reasons were further explored bystructure modeling of the mutant CGTases.
     4. Iterative saturation mutagenesis (ISM) was performed on-6subsite of the CGTase toimprove the maltodextrin specificity for AA-2G synthesis. Four positive mutants Y167S,Y167S/G179K, Y167S/G179K/G193R and Y167S/G179K/G193R/G180R wereobtained and purified. The enzymatic characteristics showed that the optimal temperatureof the mutants was28oC (different from WT), and the optimal pH were also differentfrom WT. The highest AA-2G titer produced by Y167S/G179K/G193R/G180R withmaltodextrin as the glycosyl donor was2.12g L-1, which increased84%than WT. Thereaction kinetics analysis showed that the affinity ability towards maltodextrin of the fourmutants was higher than WT. It was also found that compared with the WT, the fourmutants had relatively lower cyclization activities and higher disproportionation activities.Finally, the possible reasons were further explored by structure modeling of the mutantCGTases.
     5. Two chimeric enzymes CGT-CBMAmyand CGT△E-CBMAmywere obtained by fusing acarbohydrate-binding module (CBM) from Alkalimonas amylolytica α-amylase (CBMAmy)to cyclodextrin glycosyltransferase (CGTase) from P. macerans. The enzymaticcharacteristics showed that when using soluble starch as the glycosyl donor for AA-2Gsynthesis, the optimal temperature and pH of the two chimeric enzymes were28oC andpH6.5. The highest AA-2G titers of CGT-CBMAmyand CGT△E-CBMAmywere3.94-and5.94-fold of yield from WT. The reaction kinetics analysis showed that the affinity abilityof the two chimeric enzymes towards soluble starch improved. Compared to WT, the twofusion enzymes had relatively high hydrolysis and disproportionation activities. Finally,the possible reasons were further explored by structure modeling of the mutant CGTases.
     6. Fuse six self-assembling amphipathic peptides (SAPs) to the N-terminal of CGTase toimprove AA-2G synthesis with soluble starch as the glycosyl donor. The enzymaticcharacteristics showed that all fusion enzymes have lower cyclization activities than WT.Compared to WT, SAP5-CGTase and SAP6-CGTase increased the disproportionationactivities, and the AA-2G titers produced by them increased about1.33-and2.36-fold.The reaction kinetics analysis showed that the affinity ability of the two fusion enzymestowards soluble starch improved compared to WT. Finally, the possible reasons werefurther explored by structure modeling of the mutant CGTases.
引文
[1] Rumsey S C, Levine M. Absorption, transport, and disposition of ascorbic acid in humans [J]. JNutr Biochem,1998,9(3):116-130
    [2] Fujinami Y, Tai A, Yamamoto I. Radical scavenging activity against1,1-diphenyl-2-picrylhydrazylof ascorbic acid2-glucoside (AA-2G) and6-acyl-AA-2G [J]. Chem Pharm Bull (Tokyo),2001,49(5):642-644
    [3] Jacob R A, Sotoudeh G. Vitamin C function and status in chronic disease [J]. Nutr Clin Care,2002,5(2):66-74
    [4] Naidu K A. Vitamin C in human health and disease is still a mystery? An overview [J]. Nutr J,2003,2:7
    [5] Yamamoto I, Muto N, Murakami K, et al. L-ascorbic acid α-glucoside formed by regioselectivetransglucosylation with rat intestinal and rice seed α-glucosidases: its improved stability andstructure determination [J]. Chem Pharm Bull (Tokyo),1990,38(11):3020-3023
    [6] Mima H, Nomura H, Imai Y, et al. Chemistry and application of ascorbic acid phosphate [J].Vitamin,1970,41:387
    [7] Watanabe Y, Fang X, Minemoto Y, et al. Suppressive effect of saturated acyl L-ascorbate on theoxidation of linoleic acid encapsulated with maltodextrin or gum arabic by spray-drying [J]. JAgric Food Chem.,2002,50(14):3984-3987
    [8] Dresser G K, Wacher V, Wong S, et al. Evaluation of peppermint oil and ascorbyl palmitate asinhibitors of cytochrome P4503A4activity in vitro and in vivo [J]. Clin Pharmacol Ther,2002,72(3):247-255
    [9] Hsieh H J, Nair G R, Wu W T. Production of ascorbyl palmitate by surfactant-coated lipase inorganic media [J]. J Agric Food Chem,2006,54(16):5777-5781
    [10] Lu P W, Lillard D W, Jr., Seib P A, et al. Synthesis of the2-methyl ether of L-ascorbic acid:stability, vitamin activity, and carbon-13nuclear magnetic resonance spectrum compared to thoseof the1-and3-methyl ethers [J]. J Agric Food Chem,1984,32(1):21-28
    [11] Mandai T, Yoneyama M, Sakai S.5-0-α-D-Glucopyranosyl-L-ascorbic acid, and its preparationand uses [P]. US Patent,5272136.1993-12-21
    [12] Suzuki Y, Miyake T, Uchida K, et al. Biosynthesis of ascorbic acid glucoside [J].ビタミン(Vitamins),1973,47:259-267
    [13] Yamamoto I, Muto N. Bioavailability and biological activity of L-ascorbic acid2-O-α-glucoside[J]. J Nutr Sci Vitaminol (Tokyo),1992, Spec No:161-164
    [14] Tatemoto H, Ootaki K, Shigeta K, et al. Enhancement of developmental competence after in vitrofertilization of porcine oocytes by treatment with ascorbic acid2-O-α-glucoside during in vitromaturation [J]. Biol Reprod,2001,65(6):1800-1806
    [15] Yamamoto I, Suga S, Mitoh Y, et al. Antiscorbutic activity of L-ascorbic acid2-glucoside and itsavailability as a vitamin C supplement in normal rats and guinea pigs [J]. J Pharmacobiodyn,1990,13(11):688-695
    [16] Wakamiya H, Suzuki E, Yamamoto I, et al. In situ intestinal absorption of2-O-α-D-glucopyranosyl-L-ascorbic acid in guinea pigs [J]. J Nutr Sci Vitaminol (Tokyo),1995,41(2):265-272
    [17] Li H S, Shi L Q. Ascorbic acid derivatives, their preparation methods, intermediates and uses incosmetics [P]. US Patent,2010020446A1.2010-8-12
    [18] Yamamoto I, Tai A, Fujinami Y, et al. Synthesis and characterization of a series of novelmonoacylated ascorbic acid derivatives,6-O-acyl-2-O-α-D-glucopyranosyl-L-ascorbic acids, asskin antioxidants [J]. J Med Chem,2002,45(2):462-468
    [19] Yamamoto I, Tanaka M, Muto N. Enhancement of in vitro antibody production of murinesplenocytes by ascorbic acid2-O-α-glucoside [J]. Int J Immunopharmacol,1993,15(3):319-325
    [20] Kumano Y, Sakamoto T, Egawa M, et al. Enhancing effect of2-O-α-D-glucopyranosyl-L-ascorbicacid, a stable ascorbic acid derivatives, on collagen synthesis [J]. Biol Pharm Bull,1998,21(7):662-666
    [21] Kumano Y, Sakamoto T, Egawa M, et al. In vitro and in vivo prolonged biological activities ofnovel vitamin C derivative,2-O-α-D-glucopyranosyl-L-ascorbic acid (AA-2G), in cosmetic fields[J]. J Nutr Sci Vitaminol (Tokyo),1998,44(3):345-359
    [22] Takebayashi J, Tai A, Yamamoto I. Long-term radical scavenging activity of AA-2G and6-acyl-AA-2G against1,1-diphenyl-2-picrylhydrazyl [J]. Biol Pharm Bull,2002,25(11):1503-1505
    [23] Miyai E, Yamamoto I, Akiyama J, et al. Inhibitory effect of ascorbic acid2-O-α-glucoside on thepigmentation of skin by exposure to ultraviolet light [J]. Nishinihon J. Dermatol (in Japanese),1996,58:439-443
    [24] Miyai E, Yanagida M, Akiyama J, et al. Ascorbic acid2-O-α-glucoside, a stable form of ascorbicacid, rescues human keratinocyte cell line, SCC, from cytotoxicity of ultraviolet light B [J]. BiolPharm Bull,1996,19(7):984-987
    [25] Taniguchi M, Arai N, Kohno K, et al. Anti-oxidative and anti-aging activities of2-O-α-glucopyranosyl-L-ascorbic acid on human dermal fibroblasts [J]. Eur J Pharmacol,2012,674(2-3):126-131
    [26] Kinashi Y, Tanaka H, Masunaga S, et al. Ascorbic acid2-glucocide reduces micronucleus inductionin distant splenic T lymphocytes following head irradiation [J]. Mutat Res,2010,695(1-2):69-74
    [27] Toyoda-Ono Y, Maeda M, Nakao M, et al.2-O-(β-D-glucopyranosyl)ascorbic acid, a novelascorbic acid analogue isolated from Lycium fruit [J]. J Agric Food Chem,2004,52(7):2092-2096
    [28] Aga H, Yoneyama M, Sakai S, et al. Synthesis of2-O-α-D-glucopyranosyl L-ascorbic acid bycyclomaltodextrin glucanotransferase from Bacillus stearothermophilus (Biological Chemistry)[J].Agric Biol Chem,1991,55(7):1751-1756
    [29] Yamasaki H, Nishi K, Miyake T. Process for producing2-O-α-D-glucopyranosyl-L-ascorbic acidin high content [P]. EP Patent,1162205.2003-8-27
    [30] Muto N, Suga S, Fujii K, et al. Formation of a stable ascorbic acid2-glucoside by specifictransglucosylation with rice seed α-glucosidase (Biological Chemistry)[J]. Agric Biol Chem,1990,54(7):1697-1703
    [31] Yamamoto I, Muto N, Nagata E, et al. Formation of a stable L-ascorbic acid α-glucoside bymammalian α-glucosidase-catalyzed transglucosylation [J]. Biochim Biophys Acta,1990,1035(1):44-50
    [32] Yamamoto I, Muto N, Miyake T. α-glycosyl-L-ascorbic acid, and it's preparation and uses [P]. USPatent,5767149.1998-6-16
    [33] Nakamura A, Nishimura I, Yokoyama A, et al. Cloning and sequencing of an α-glucosidase genefrom Aspergillus niger and its expression in A. nidulans [J]. J Biotechnol,1997,53(1):75-84
    [34] Ogawa M, Nishio T, Minoura K, et al. Recombinant α-glucosidase from Aspergillus niger.Overexpression by Emericella nidulans, purification and characterization [J]. J Appl Glycosci,2006,53(1):13
    [35] Chen D L, Tong X, Chen S W, et al. Heterologous expression and biochemical characterization ofα-glucosidase from Aspergillus niger by Pichia pastroris [J]. J Agric Food Chem,2010,58(8):4819-4824
    [36] Tanaka M, Muto N, Yamamoto I. Characterization of Bacillus stearothermophilus cyclodextringlucanotransferase in ascorbic acid2-O-α-glucoside formation [J]. Biochim Biophys Acta,1991,1078(2):127-132
    [37] Gawande B, Singh R, Chauhan A, et al. Optimization of cyclomaltodextrin glucanotransferaseproduction from Bacillus firmus [J]. Enzyme Microb Technol,1998,22(4):288-291
    [38] Jamuna R, Saswathi N, Sheela R, et al. Synthesis of cyclodextrin glucosyl transferase by Bacilluscereus for the production of cyclodextrins [J]. Appl Biochem Biotechnol,1993,43(3):163-176
    [39] Li Z, Li B, Gu Z, et al. Extracellular expression and biochemical characterization of α-cyclodextringlycosyltransferase from Paenibacillus macerans [J]. Carbohydr Res,2010,345(7):886-892
    [40] Cheng J, Wu D, Chen S, et al. High-level extracellular production of α-cyclodextringlycosyltransferase with recombinant Escherichia coli BL21(DE3)[J]. J Agric Food Chem,2011,59(8):3797-3802
    [41] Jun H K, Bae K M, Kim S K. Production of2-O-α-D-glucopyranosyl L-ascorbic acid usingcyclodextrin glucanotransferase from Paenibacillus sp.[J]. Biotechnol Lett,2001,23(21):1793-1797
    [42] Prousoontorn M H, Pantatan S. Production of2-O-α-glucopyranosyl L-ascorbic acid from ascorbicacid and β-cyclodextrin using immobilized cyclodextrin glycosyltransferase [J]. J Incl PhenomMacro,2007,57(1-4):39-46
    [43] Zhang Z C, Li J H, Liu L, et al. Enzymatic transformation of2-O-α-D-glucopyranosyl-L-ascorbicacid by α-cyclodextrin glucanotransferase from recombinant Escherichia coli [J]. Biotech BioproEng,2011,16(1):107-113
    [44] Zhang Z C, Li J H, Liu L, et al. Enzymatic transformation of2-O-α-D-glucopyranosyl-L-ascorbicacid (AA-2G) by immobilized α-cyclodextrin glucanotransferase from recombinant Escherichiacoli [J]. J Mol Catal B-Enzym,2011,68(3-4):223-229
    [45] Pandey A, Nigam P, Soccol C, et al. Advances in microbial amylases [J]. Biotechnol ApplBiochem,2000,31:135-152
    [46] Babu K, Satyanarayana T. α-Amylase production by thermophilic Bacillus coagulans in solidstate fermentation [J]. Process Biochem,1995,30(4):305-309
    [47] Tanyildizi M S, zer D, Elibol M. Optimization of α-amylase production by Bacillus sp. usingresponse surface methodology [J]. Process Biochem,2005,40(7):2291-2296
    [48] Kwon T, Kim C T, Lee J H. Transglucosylation of ascorbic acid to ascorbic acid2-glucoside by arecombinant sucrose phosphorylase from Bifidobacterium longum [J]. Biotechnol Lett,2007,29(4):611-615
    [49] Kubota M, Tsusaki K, Higashiyama T, et al. α-Isomaltosyl glucosaccharide synthase, process forproducing the same and use thereof [P]. US Patent,7241606.2007-7-10
    [50] Mukai K, Tsusaki K, Kubota M, et al. Process for producing2-O-α-D-glucopyranosyl-l-ascorbicacid [P]. EP Patent,1553186.2005-7-13
    [51] Yamasaki H, Nishi K, Miyake T. Process for producing2-O-α-D-glucopyranosyl-L-ascorbic acidin high content [P]. EP Patent,1162205.2003-8-27
    [52] Aga H, Yoneyama M, Sakai S. Process for preparing high α-glycosyl-L-ascorbic acid, andseparation system for the process [P]. US Patents,5338420.1994-8-16
    [53] Van Der Veen B A, Van Alebeek G J W, Uitdehaag J, et al. The three transglycosylation reactionscatalyzed by cyclodextrin glycosyltransferase from Bacillus circulans (strain251) proceed viadifferent kinetic mechanisms [J]. Eur J Biochem,2000,267(3):658-665
    [54] Klein C, Schulz G E. Structure of cyclodextrin glycosyltransferase refined at2.0resolution [J]. JMol Biol,1991,217(4):737-750
    [55] Jane ek. Parallel β/α-barrels of α-amylase, cyclodextrin glycosyltransferase and oligo-1,6-glucosidase versus the barrel of β-amylase: evolutionary distance is a reflection of unrelatedsequences [J]. FEBS Lett,1994,353(2):119-123
    [56] Van Der Veen B A, Uitdehaag J C, Dijkstra B W, et al. Engineering of cyclodextringlycosyltransferase reaction and product specificity [J]. Biochim Biophys Acta,2000,1543(2):336-360
    [57] Penninga D, Van Der Veen B A, Knegtel R M, et al. The raw starch binding domain ofcyclodextrin glycosyltransferase from Bacillus circulans strain251[J]. J Biol Chem,1996,271(51):32777-32784
    [58] Leemhuis H, Rozeboom H J, Dijkstra B W, et al. Improved thermostability of Bacillus circulanscyclodextrin glycosyltransferase by the introduction of a salt bridge [J]. Proteins,2004,54(1):128-134
    [59] Leemhuis H, Rozeboom H J, Wilbrink M, et al. Conversion of cyclodextrin glycosyltransferaseinto a starch hydrolase by directed evolution: the role of alanine230in acceptor subsite+1[J].Biochemistry,2003,42(24):7518-7526
    [60] Leemhuis H, Rozeboom H J, Dijkstra B W, et al. The fully conserved Asp residue in conservedsequence region I of the α-amylase family is crucial for the catalytic site architecture and activity[J]. FEBS Lett,2003,541(1-3):47-51
    [61] Leemhuis H, Uitdehaag J C, Rozeboom H J, et al. The remote substrate binding subsite-6incyclodextrin-glycosyltransferase controls the transferase activity of the enzyme via an induced-fitmechanism [J]. J Biol Chem,2002,277(2):1113-1119
    [62] Uitdehaag J C, Van Alebeek G J, Van Der Veen B A, et al. Structures of maltohexaose andmaltoheptaose bound at the donor sites of cyclodextrin glycosyltransferase give insight into themechanisms of transglycosylation activity and cyclodextrin size specificity [J]. Biochemistry,2000,39(26):7772-7780
    [63] Van Der Veen B A, Uitdehaag J C, Penninga D, et al. Rational design of cyclodextringlycosyltransferase from Bacillus circulans strain251to increase α-cyclodextrin production [J]. JMol Biol,2000,296(4):1027-1038
    [64] Uitdehaag J C, Kalk K H, Van Der Veen B A, et al. The cyclization mechanism of cyclodextringlycosyltransferase (CGTase) as revealed by a γ-cyclodextrin-CGTase complex at1.8-resolution [J]. J Biol Chem,1999,274(49):34868-34876
    [65] Uitdehaag J C, Mosi R, Kalk K H, et al. X-ray structures along the reaction pathway ofcyclodextrin glycosyltransferase elucidate catalysis in the α-amylase family [J]. Nat Struct Biol,1999,6(5):432-436
    [66] Strokopytov B, Knegtel R M, Penninga D, et al. Structure of cyclodextrin glycosyltransferasecomplexed with a maltononaose inhibitor at2.6angstrom resolution. Implications for productspecificity [J]. Biochemistry,1996,35(13):4241-4249
    [67] Strokopytov B, Penninga D, Rozeboom H J, et al. X-ray structure of cyclodextringlycosyltransferase complexed with acarbose. Implications for the catalytic mechanism ofglycosidases [J]. Biochemistry,1995,34(7):2234-2240
    [68] Parsiegla G, Schmidt A K, Schulz G E. Substrate binding to a cyclodextrin glycosyltransferase andmutations increasing the γ-cyclodextrin production [J]. Eur J Biochem,1998,255(3):710-717
    [69] Schmidt A K, Cottaz S, Driguez H, et al. Structure of cyclodextrin glycosyltransferase complexedwith a derivative of its main product β-cyclodextrin [J]. Biochemistry,1998,37(17):5909-5915
    [70] Knegtel R M, Strokopytov B, Penninga D, et al. Crystallographic studies of the interaction ofcyclodextrin glycosyltransferase from Bacillus circulans strain251with natural substrates andproducts [J]. J Biol Chem,1995,270(49):29256-29264
    [71] Penninga D, Strokopytov B, Rozeboom H J, et al. Site-directed mutations in tyrosine195ofcyclodextrin glycosyltransferase from Bacillus circulans strain251affect activity and productspecificity [J]. Biochemistry,1995,34(10):3368-3376
    [72] Lawson C L, Van Montfort R, Strokopytov B, et al. Nucleotide sequence and X-ray structure ofcyclodextrin glycosyltransferase from Bacillus circulans strain251in a maltose-dependent crystalform [J]. J Mol Biol,1994,236(2):590-600
    [73] Klein C, Hollender J, Bender H, et al. Catalytic center of cyclodextrin glycosyltransferase derivedfrom X-ray structure analysis combined with site-directed mutagenesis [J]. Biochemistry,1992,31(37):8740-8746
    [74] Kanai R, Haga K, Akiba T, et al. Role of Phe283in enzymatic reaction of cyclodextringlycosyltransferase from alkalophilic Bacillus sp.1011: substrate binding and arrangement of thecatalytic site [J]. Protein Sci,2004,13(2):457-465
    [75] Haga K, Kanai R, Sakamoto O, et al. Effects of essential carbohydrate/aromatic stackinginteraction with Tyr100and Phe259on substrate binding of cyclodextrin glycosyltransferase fromalkalophilic Bacillus sp.1011[J]. J Biochem,2003,134(6):881-891
    [76] Ishii N, Haga K, Yamane K, et al. Crystal structure of alkalophilic asparagine233-replacedcyclodextrin glucanotransferase complexed with an inhibitor, acarbose, at2.0resolution [J]. JBiochem,2000,127(3):383-391
    [77] Harata K, Haga K, Nakamura A, et al. X-ray structure of cyclodextrin glucanotransferase fromalkalophilic Bacillus sp.1011. Comparison of two independent molecules at1.8resolution [J].Acta Crystallogr D Biol Crystallogr,1996,52(Pt6):1136-1145
    [78] Kanai R, Haga K, Yamane K, et al. Crystal structure of cyclodextrin glucanotransferase fromalkalophilic Bacillus sp.1011complexed with1-deoxynojirimycin at2.0resolution [J]. JBiochem,2001,129(4):593-598
    [79] Kelly R M, Leemhuis H, Rozeboom H J, et al. Elimination of competing hydrolysis and couplingside reactions of a cyclodextrin glucanotransferase by directed evolution [J]. Biochem J,2008,413(3):517-525
    [80] Wind R D, Uitdehaag J C, Buitelaar R M, et al. Engineering of cyclodextrin product specificityand pH optima of the thermostable cyclodextrin glycosyltransferase from Thermoanaerobacteriumthermosulfurigenes EM1[J]. J Biol Chem,1998,273(10):5771-5779
    [81] Knegtel R, Wind R D, Rozeboom H J, et al. Crystal structure at2.3resolution and revisednucleotide sequence of the thermostable cyclodextrin glycosyltransferase fromThermoanaerobacterium thermosulfurigenes EM1[J]. Order,1996,501:10768
    [82] Dauter Z, Dauter M, Brzozowski A M, et al. X-ray structure of Novamyl, the five-domain"maltogenic" α-amylase from Bacillus stearothermophilus: maltose and acarbose complexes at1.7resolution [J]. Biochemistry,1999,38(26):8385-8392
    [83] Qian M, Haser R, Buisson G, et al. The active center of a mammalian α-amylase. Structure of thecomplex of a pancreatic α-amylase with a carbohydrate inhibitor refined to2.2-resolution [J].Biochemistry,1994,33(20):6284-6294
    [84] Tachibana Y, Takaha T, Fujiwara S, et al. Acceptor specificity of4-α-glucanotransferase fromPyrococcus kodakaraensis KOD1, and synthesis of cycloamylose [J]. J Biosci Bioeng,2000,90(4):406-409
    [85] Kumar V. Analysis of the key active subsites of glycoside hydrolase13family members [J].Carbohydr Res,2010,345(7):893-898
    [86] Okada S. Method of converting starch to β-cyclodextrin [P]. US Patent,3812011.1974-5-21
    [87] Takano T, Fukuda M, Monma M, et al. Molecular cloning, DNA nucleotide sequencing, andexpression in Bacillus subtilis cells of the Bacillus macerans cyclodextrin glucanotransferase gene[J]. J Bacteriol,1986,166(3):1118-1122
    [88] Zheng M, Endo T, Zimmermann W. Enzymatic synthesis and analysis of large-ring cyclodextrins[J]. Aust J Chem,2002,55(2):39-48
    [89] Qi Q, Zimmermann W. Cyclodextrin glucanotransferase: from gene to applications [J]. ApplMicrobiol Biotechnol,2005,66(5):475-485
    [90] Schmid G. Cyclodextrin glycosyltransferase production: yield enhancement by overexpression ofcloned genes [J]. Trends Biotechnol,1989,7(9):244-248
    [91] Lee M H, Yang S J, Kim J W, et al. Characterization of a thermostable cyclodextringlucanotransferase from Pyrococcus furiosus DSM3638[J]. Extremophiles,2007,11(3):537-541
    [92] Go Y H, Kim T K, Lee K W, et al. Functional characteristics of cyclodextrin glucanotransferasefrom alkalophilic Bacillus sp. BL-31highly specific for intermolecular transglycosylation ofbioflavonoids [J]. J Microbiol Biotechnol,2007,17(9):1550-1553
    [93] Atanasova N, Petrova P, Ivanova V, et al. Isolation of novel alkaliphilic bacillus strains forcyclodextrin glucanotransferase production [J]. Appl Biochem Biotechnol,2008,149(2):155-167
    [94] Kitayska T, Petrova P, Ivanova V, et al. Purification and properties of a new thermostablecyclodextrin glucanotransferase from Bacillus pseudalcaliphilus8SB [J]. Appl BiochemBiotechnol,2011,165(5-6):1285-1295
    [95] Bautista V, Esclapez J, Perez-Pomares F, et al. Cyclodextrin glycosyltransferase: a key enzyme inthe assimilation of starch by the halophilic archaeon Haloferax mediterranei [J]. Extremophiles,2012,16(1):147-159
    [96] Ibrahim A S, Al-Salamah A A, El-Tayeb M A, et al. A novel cyclodextrin glycosyltransferase fromalkaliphilic Amphibacillus sp. NPST-10: purification and properties [J]. Int J Mol Sci,2012,13(8):10505-10522
    [97] Shim J H, Kim Y W, Kim T J, et al. Improvement of cyclodextrin glucanotransferase as anantistaling enzyme by error‐prone PCR [J]. Protein Eng Des Sel,2004,17(3):205-211
    [98] Gawande B, Patkar A. Application of factorial designs for optimization of cyclodextringlycosyltransferase production from Klebsiella pneumoniae pneumoniae AS‐22[J]. BiotechnolBioeng,1999,64(2):168-173
    [99] Rosso A, Ferrarotti S, Krymkiewicz N, et al. Optimisation of batch culture conditions forcyclodextrin glucanotransferase production from Bacillus circulans DF9R [J]. Microb CellFactories,2002,1(1):3
    [100] Wang Z, Qi Q, Wang P G. Engineering of cyclodextrin glucanotransferase on the cell surface ofSaccharomyces cerevisiae for improved cyclodextrin production [J]. Appl Environ Microbiol,2006,72(3):1873-1877
    [101] Paloheimo M, Haglund D, Aho S, et al. Production of cyclomaltodextrin glucanotransferase ofBacillus circulans var. alkalophilus ATCC21783in B. subtilis [J]. Appl Microbiol Biotechnol,1992,36(5):584-591
    [102] Zhou Y, Lee Y S, Park I H, et al. Cyclodextrin glycosyltransferase encoded by a gene ofPaenibacillus azotofixans YUPP-5exhibited a new function to hydrolyze polysaccharides withβ-1,4linkage [J]. Enzyme Microb Technol,2012,50(2):151-157
    [103] Binder F, Huber O, Bock A. Cyclodextrin-glycosyltransferase from Klebsiella pneumoniae M5a1:cloning, nucleotide sequence and expression [J]. Gene,1986,47(2-3):269-277
    [104] Sugimoto T, Kubota M, Sakai S. New polypeptide with cyclomaltodextrin glucanotransferaseactivity produced by recombinant DNA techniques [P]. UK Patent, GB-2169902-A.1986
    [105] Kaneko T, Hamamoto T, Horikoshi K. Molecular cloning and nucleotide sequence of thecyclomaltodextrin glucanotransferase gene from the alkalophilic Bacillus sp. strain no.38-2[J]. JGen Microbiol,1988,134(1):97-105
    [106] Kato T, Horikoshi K. Cloning and expression of the Bacillus subtilis No.313γ-cyclodextrinforming CGTase gene in Escherichia coli [J]. Agric Biol Chem,1986,50(8):2161-2162
    [107] Kimura K, Ishii Y, Kataoka S, et al. Expression of the β-cyclodextrin glucanotransferase gene of analkalophilic Bacillus sp.#1011in Escherichia coli cells and characterization of the synthesizedenzyme [J]. Agric Biol Chem,1990,54(3):641-648
    [108] Hellman J, Mantsala P. Construction of an Escherichia coli export-affinity vector for expressionand purification of foreign proteins by fusion to cyclomaltodextrin glucanotransferase [J]. JBiotechnol,1992,23(1):19-34
    [109] Hellman J, Lassila P, Mantsala P. In vitro refolding of cyclomaltodextrin glucanotransferase fromcytoplasmic inclusion bodies formed upon expression in Escherichia coli [J]. Protein Expr Purif,1995,6(1):56-62
    [110] Lin D G, Jeang C L. Extracellular Production of Bacillus macerans authentic cyclodextringlucanotransferases in Bacillus subtilis [J]. J Chinese Agric Chem Soc,1998,36:640-651
    [111] Jeang C L, Wung C H, Chang B Y, et al. Characterization of the Bacillus macerans cyclodextringlucanotransferase overexpressed in Escherichia coli [J]. Proc Natl Sci Counc Repub China B,1999,23(2):62-68
    [112] Kim M H, Lee J K, Kim H K, et al. Overexpression of cyclodextrin glycosyltransferase gene fromBrevibacillus brevis in Escherichia coli by control of temperature and mannitol concentration [J].Biotechnol Tech,1999,13(11):765-770
    [113] Jeang C L, Lin D G, Hsieh S H. Characterization of cyclodextrin glycosyltransferase of the samegene expressed from Bacillus macerans, Bacillus subtilis, and Escherichia coli [J]. J Agric FoodChem,2005,53(16):6301-6304
    [114] Kim S G, Kweon D H, Lee D H, et al. Coexpression of folding accessory proteins for production ofactive cyclodextrin glycosyltransferase of Bacillus macerans in recombinant Escherichia coli [J].Protein Expr Purif,2005,41(2):426-432
    [115] Charoensakdi R, Murakami S, Aoki K, et al. Cloning and expression of cyclodextringlycosyltransferase gene from Paenibacillus sp. T16isolated from hot spring soil in northernThailand [J]. J Biochem Mol Biol,2007,40(3):333-340
    [116] Jemli S, Ben Messaoud E, Ben Mabrouk S, et al. The cyclodextrin glycosyltransferase ofPaenibacillus pabuli US132strain: molecular characterization and overproduction of therecombinant enzyme [J]. J Biomed Biotechnol,2008,2008:692573
    [117] Ong R M, Goh K M, Mahadi N M, et al. Cloning, extracellular expression and characterization ofa predominant β-CGTase from Bacillus sp. G1in E. coli [J]. J Ind Microbiol Biotechnol,2008,35(12):1705-1714
    [118] Li Z F, Li B, Liu Z G, et al. Calcium leads to further increase in glycine-enhanced extracellularsecretion of recombinant α-cyclodextrin glycosyltransferase in Escherichia coli [J]. J Agric FoodChem,2009,57(14):6231-6237
    [119] Kaulpiboon J, Prasong W, Rimphanitchayakit V, et al. Expression and characterization of a fusionprotein-containing cyclodextrin glycosyltransferase from Paenibacillus sp. A11[J]. J BasicMicrobiol,2010,50(5):427-435
    [120] Li Z F, Gu Z B, Wang M, et al. Delayed supplementation of glycine enhances extracellularsecretion of the recombinant α-cyclodextrin glycosyltransferase in Escherichia coli [J]. ApplMicrobiol Biotechnol,2010,85(3):553-561
    [121] Ding R R, Li Z F, Chen S, et al. Enhanced secretion of recombinant α-cyclodextringlucosyltransferase from E. coli by medium additives [J]. Process Biochem.,2010,45(6):880-886
    [122] Low K O, Mahadi N M, Abdul Rahim R, et al. Enhanced secretory production ofhemolysin-mediated cyclodextrin glucanotransferase in Escherichia coli by random mutagenesisof the ABC transporter system [J]. J Biotechnol,2010,150(4):453-459
    [123] Ismail N F, Hamdan S, Mahadi N M, et al. A mutant L-asparaginase II signal peptide improves thesecretion of recombinant cyclodextrin glucanotransferase and the viability of Escherichia coli [J].Biotechnol Lett,2011,33(5):999-1005
    [124] Low K O, Mahadi N M, Rahim R A, et al. An effective extracellular protein secretion by an ABCtransporter system in Escherichia coli: statistical modeling and optimization of cyclodextringlucanotransferase secretory production [J]. J Ind Microbiol Biotechnol,2011,38(9):1587-1597
    [125] Cheng J, Wu D, Chen S, et al. High-level extracellular production of α-cyclodextringlycosyltransferase with recombinant Escherichia coli BL21(DE3)[J]. J Agric Food Chem,2011,59(8):3797-3802
    [126] Zhou J W, Liu H, Du G C, et al. Production of α-cyclodextrin glycosyltransferase in Bacillusmegaterium MS941by systematic codon usage optimization [J]. J Agric Food Chem,2012,60(41):10285-10292
    [127] Liu H, Li J H, Du G C, et al. Enhanced production of α-cyclodextrin glycosyltransferase inEscherichia coli by systematic codon usage optimization [J]. J Ind Microbiol Biotechnol,2012,39(12):1841-1849
    [128] Lee Y S, Zhou Y, Park D J, et al. β-cyclodextrin production by the cyclodextrin glucanotransferasefrom Paenibacillus illinoisensis ZY-08: cloning, purification, and properties [J]. World J MicrobiolBiotechnol,2013,29(5):865-873
    [129] Ramli N, Abd-Aziz S, Alitheen N B, et al. Improvement of cyclodextrin glycosyltransferase geneexpression in Escherichia coli by insertion of regulatory sequences involved in the promotion ofRNA transcription [J]. Mol Biotechnol,2013,54(3):961-968
    [130] Liu H, Li J H, Du G C, et al. Enhanced production of α-cyclodextrin glycosyltransferase inEscherichia coli by systematic codon usage optimization [J]. J Ind Microbiol Biotechnol,2012,39(12):1841-1849
    [131] Zhou J, Liu H, Du G, et al. Production of α-cyclodextrin glycosyltransferase in Bacillusmegaterium MS941by systematic codon usage optimization [J]. J Agric Food Chem,2012,60(41):10285-10292
    [132] Leemhuis H, Dijkstra B W, Dijkhuizen L. Mutations converting cyclodextrin glycosyltransferasefrom a transglycosylase into a starch hydrolase [J]. FEBS Lett,2002,514(2):189-192
    [133] Kim Y H, Bae K H, Kim T J, et al. Effect on product specificity of cyclodextringlycosyltransferase by site-directed mutagenesis [J]. Biochem Mol Biol Int,1997,41(2):227-234
    [134] Nakagawa Y, Takada M, Ogawa K, et al. Site-directed mutations in Alanine223and Glycine255in the acceptor site of γ-cyclodextrin glucanotransferase from alkalophilic Bacillus clarkii7364affect cyclodextrin production [J]. J Biochem,2006,140(3):329-336
    [135] Sin K A, Nakamura A, Masaki H, et al. Replacement of an amino acid residue of cyclodextringlucanotransferase of Bacillus ohbensis doubles the production of γ-cyclodextrin [J]. J Biotechnol,1994,32(3):283-288
    [136] Nakamura A, Haga K, Yamane K. Four aromatic residues in the active center of cyclodextringlucanotransferase from alkalophilic Bacillus sp.1011: effects of replacements on substratebinding and cyclization characteristics [J]. Biochemistry,1994,33(33):9929-9936
    [137] Yamamoto T, Fujiwara S, Tachibana Y, et al. Alteration of product specificity of cyclodextringlucanotransferase from Thermococcus sp. B1001by site-directed mutagenesis [J]. J BiosciBioeng,2000,89(2):206-209
    [138] Van Der Veen B A, Uitdehaag J C, Dijkstra B W, et al. The role of arginine47in the cyclizationand coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain251implications for product inhibition and product specificity [J]. Eur J Biochem,2000,267(12):3432-3441
    [139] Van Der Veen B A, Leemhuis H, Kralj S, et al. Hydrophobic amino acid residues in the acceptorbinding site are main determinants for reaction mechanism and specificity ofcyclodextrin-glycosyltransferase [J]. J Biol Chem,2001,276(48):44557-44562
    [140] Kelly R M, Leemhuis H, Dijkhuizen L. Conversion of a cyclodextrin glucanotransferase into anα-amylase: assessment of directed evolution strategies [J]. Biochemistry,2007,46(39):11216-11222
    [141] Goh P H, Illias R M, Goh K M. Rational mutagenesis of cyclodextrin glucanotransferase at thecalcium binding regions for enhancement of thermostability [J]. Int J Mol Sci,2012,13(5):5307-5323
    [142] Rimphanitchayakit V, Tonozuka T, Sakano Y. Construction of chimeric cyclodextringlucanotransferases from Bacillus circulans A11and Paenibacillus macerans IAM1243andanalysis of their product specificity [J]. Carbohydr Res,2005,340(14):2279-2289
    [143] Kaulpiboon J, Pongsawasdi P, Zimmermann W. Molecular imprinting of cyclodextringlycosyltransferases from Paenibacillus sp. A11and Bacillus macerans with γ‐cyclodextrin [J].FEBS J,2007,274(4):1001-1010
    [144] Martins R F, Plieva F M, Santos A, et al. Integrated immobilized cell reactor-adsorption system forβ-cyclodextrin production: a model study using PVA-cryogel entrapped Bacillus agaradhaerenscells [J]. Biotechnol Lett,2003,25(18):1537-1543
    [145]李兆丰.软化类芽孢杆菌α-环糊精葡萄糖基转移酶在大肠杆菌中的表达及其产物特异性分析[D]:[博士学位论文].无锡:江南大学食品学院,2009
    [146] Li Z F, Zhang J Y, Sun Q, et al. Mutations of Lysine47in cyclodextrin glycosyltransferase fromPaenibacillus macerans enhance β-cyclodextrin specificity [J]. J Agric Food Chem,2009,57(18):8386-8391
    [147]张子臣.酶法转化合成2-氧-α-D-吡喃葡萄糖基抗坏血酸[D]:[硕士学位论文].无锡:江南大学生物工程学院,2010
    [148] Arnold K, Bordoli L, Kopp J, et al. The SWISS-MODEL workspace: a web-based environment forprotein structure homology modelling [J]. Bioinformatics,2006,22(2):195-201
    [149] Shindyalov I N, Bourne P E. Protein structure alignment by incremental combinatorial extension(CE) of the optimal path [J]. Protein Eng,1998,11(9):739-747
    [150] Laskowski R A, Macarthur M W, Moss D S, et al. PROCHECK: a program to check thestereochemical quality of protein structures [J]. J Appl Crystallogr,1993,26(2):283-291
    [151] Bowie J U, Luthy R, Eisenberg D. A method to identify protein sequences that fold into a knownthree-dimensional structure [J]. Science,1991,253(5016):164-170
    [152] Wallner B, Elofsson A. Can correct protein models be identified?[J]. Protein Sci.,2009,12(5):1073-1086
    [153] Johannes T W, Zhao H. Directed evolution of enzymes and biosynthetic pathways [J]. Curr OpinMicrobiol,2006,9(3):261-267
    [154] Reetz M T, Prasad S, Carballeira J D, et al. Iterative saturation mutagenesis accelerates laboratoryevolution of enzyme stereoselectivity: rigorous comparison with traditional methods [J]. J AmChem Soc,2010,132(26):9144-9152
    [155] Reetz M T, Carballeira J D. Iterative saturation mutagenesis (ISM) for rapid directed evolution offunctional enzymes [J]. Nat Protoc,2007,2(4):891-903
    [156] Costa H, Distefano A J, Marino-Buslje C, et al. The residue179is involved in product specificityof the Bacillus circulans DF9R cyclodextrin glycosyltransferase [J]. Appl Microbiol Biotechnol,2012,94(1):123-130
    [157] Uitdehaag J, Van Der Veen B A, Dijkhuizen L, et al. Enzymatic circularization of a malto‐octaoselinear chain studied by stochastic reaction path calculations on cyclodextrin glycosyltransferase [J].Proteins Struct Funct Genet,2001,43(3):327-335
    [158] Christiansen C, Abou Hachem M, Jane ek, et al. The carbohydrate‐binding module family20–diversity, structure, and function [J]. FEBS J,2009,276(18):5006-5029
    [159] Coutinho P M. The modular structure of cellulases and other carbohydrate-active enzymes: anintegrated database approach [J]. Genet Biochem Ecol Cellulose Degrad,1999:15-23
    [160] Lin L L, Lo H F, Chi M C, et al. Functional expression of the raw starch‐binding domain ofBacillus sp. Strain TS‐23α‐amylase in recombinant Escherichia coli [J]. Starch/St rke,2003,55(5):197-202
    [161] Dalmia B K, Sch ü tte K, Nikolov Z L. Domain E of Bacillus macerans cyclodextringlucanotransferase: An independent starch‐binding domain [J]. Biotechnol Bioeng,1995,47(5):575-584
    [162] Yang H Q, Liu L, Shin H D, et al. Comparative analysis of heterologous expression, biochemicalcharacterization optimal production of an alkaline α-amylase from alkaliphilic Alkalimonasamylolytica in Escherichia coli and Pichia pastoris [J]. Biotechnol Prog,2013,29(1):39-47
    [163] Yang H, Fung S Y, Pritzker M, et al. Modification of hydrophilic and hydrophobic surfaces usingan ionic-complementary peptide [J]. PLoS One,2007,2(12): e1325
    [164] Fung S Y, Yang H, Bhola P T, et al. Self‐assembling peptide as a potential carrier for hydrophobicanticancer drug ellipticine: complexation, release and in vitro delivery [J]. Adv Funct Mater,2009,19(1):74-83
    [165] Mishra A, Loo Y, Deng R, et al. Ultrasmall natural peptides self-assemble to strongtemperature-resistant helical fibers in scaffolds suitable for tissue engineering [J]. Nano Today,2011,6(3):232-239
    [166] Ge J, Lu D N, Yang C, et al. A lipase-responsive vehicle using amphipathic polymer synthesizedwith the lipase as catalyst [J]. Macromol Rapid Comm,2011,32(6):546-550
    [167] Koutsopoulos S, Kaiser L, Eriksson H M, et al. Designer peptide surfactants stabilize diversefunctional membrane proteins [J]. Chem Soc Rev,2012,41(5):1721-1728
    [168] Schoch G A, Attias R, Belghazi M, et al. Engineering of a water-soluble plant cytochrome P450,CYP73A1, and NMR-based orientation of natural and alternate substrates in the active site [J].Plant Physiol,2003,133(3):1198-1208
    [169] Wang Q G, Yang Z M, Gao Y, et al. Enzymatic hydrogelation to immobilize an enzyme for highactivity and stability [J]. Soft Matter,2008,4(3):550-553
    [170] Lu X Y, Liu S, Zhang D X, et al. Enhanced thermal stability and specific activity of Pseudomonasaeruginosa lipoxygenase by fusing with self-assembling amphipathic peptides [J]. Appl MicrobiolBiotechnol,2013:1-9
    [171] Yang H Q, Lu X Y, Liu L, et al. Fusion of an oligopeptide to the N terminus of an alkalineα-amylase from Alkalimonas amylolytica simultaneously improves the enzyme's catalyticefficiency, thermal stability, and resistance to oxidation [J]. Appl Environ Microbiol,2013,79(9):3049-3058
    [172] Reddy G B, Bharadwaj S, Surolia A. Thermal stability and mode of oligomerization of thetetrameric peanut agglutinin: a differential scanning calorimetry study [J]. Biochemistry,1999,38(14):4464-4470
    [173]杨海泉.碱性淀粉酶的异源表达及分子改造[D]:[博士学位论文].无锡:江南大学生物工程学院,2013
    [174] Vieille C, Zeikus G J. Hyperthermophilic enzymes: sources, uses, and molecular mechanisms forthermostability [J]. Microbiol Mol Biol Rev,2001,65(1):1-43
    [175] Tendeng C, Krin E, Soutourina O A, et al. A novel H-NS-like protein from an antarcticpsychrophilic bacterium reveals a crucial role for the N-terminal domain in thermal stability [J]. JBiol Chem,2003,278(21):18754-187

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700