InSAR数字高程模型获取、精度分析及构造地貌信息提取
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
西藏高原位于我国西南部,平均海拔高度在4500m以上,高原四周为巨大山系所环绕,地势雄伟,屹立于塔里木盆地和印度河—恒河平原之间,形成一个规模巨大的高原,故有“世界屋脊”之称。西藏高原又是地球上最年轻的构造活动区之一,具有独特的地质构造和复杂的地质结构。西藏高原是现代构造强烈活动的地区。在其周缘和内部都存在许多活断层和地震地表破裂。但是,青藏高原周围和内部活动断层的性质、规模,活动幅度、深部构造以及形成演化历史等方面均有明显的差别,有待于我们加深对其的探索和认识。
     西藏高原与全球气候、生态环境以及人类社会未来发展等一系列重大问题密切相关。对西藏地区的探索并不能完全离开亲临高原,但如果只凭人类的足迹去一点一滴地揭开它的奥秘是不科学的。空间对地观测技术为人类探测青藏高原,发现其资源,认知其机理打开了新的局面,为人类更深刻地认识青藏高原提供了更广阔的途径。
     合成孔径雷达干涉测量作为一种极具潜力的空间对地观测技术,在近10多年得到迅速发展,也成为国际上的研究热点。其优势在于全天候、全天时工作,不受云雾干扰,并能一次大面积成像。一方面对人类难以到达的区域进行大规模、大面积的地形测量;更重要的是差分干涉测量能得到同震形变图,永久散射体差分干涉测量能监测厘米甚至毫米级的形变,为监测西藏活动断层的变化提供了方法,甚至可以为整个青藏高原的动态变化和研究青藏高原与全球的关系提供线索。
     本文研究目的主要是为我国西藏地区研究提供技术支持,探索新途径。我国目前有许多地区由于自然条件恶劣,缺少高精度的地形数据。本文一方面对InSAR技术本身不断探索,另一方面探讨将此技术更好地应用到西藏地区研究中。
     本文主要研究内容包括:
     (1)利用InSAR生成西藏当雄—羊八井地区数字高程模型
     利用ERS-1/2 tandem星载SAR数据,在综合分析SRTM和1:50000DEM的前提下,成功获取当雄—羊八井地区的数字高程模型。在基于和1:50000DEM的比较分析,论证了InSAR-DEM具有较高的准确性,证明了InSAR用于西藏地区制图的可行性。
     (2)分析了InSAR技术测高的影响因素
     特别是基于所用的生成DEM的SAR数据对,深入分析了短基线在用于生成DEM中的不利因素,抗误差能力差,说明了在选择数据时遵循最优基线原则的重要性,空间基线不仅影响空间相关性而且影响高程对干涉相位差的灵敏度,揭示了地面坡度对干涉相位的影响不可忽视,如果高程变化太快,干涉条纹产生重叠,会导致严重的失相关,从而无法对高程进行准确推算。
     (3)外部DEM在干涉测量中的应用
     详细分析了外部DEM在干涉测量中的实质,与在差分干涉测量应用中的异同,并论证了外部DEM在利用干涉测量生成DEM过程中的作用,其主要贡献在于提供参考坐标和降低解缠难度,特别是对于陡坡地段有明显的效果,使地形剖面线走势改善至和真实地形一致。
     (4)PS-InSAR技术的初步应用研究
     通过对处理后PS点进行分析,可以发现,盆地南部所有点随时间呈负向运动,北侧呈正向运动,这也意味着盆地南侧仍处于不断的沉降阶段,北部处于隆升阶段。最大年平均沉降速率为6mm/y,上升速率为7mm/y。
     (5)专题图制作
     利用ETM+光学影像、InSAR-DEM和大范围的SRTM,制作阴影图、坡度图、坡向图和三维立体图,提取研究区的构造地貌信息。
Tibetan Plateau, with an average elevation of over 4500 meters, is located in the southwest of China. The plateau is surrounded by mountains, with Tarim Basin in north and Indo-Gangetic Plain in south, so it is also called the Ridge of the World. Tibeten Plateau is one of the youngest tectonic activitive areas in the world, of particular geological structures. It is also a strong tectonic activitive area, with a lot of active faults and surface ruptures. The different characters, dimensions, active ranges, deep-seated structures, and formational and evolutional histories, are worth our exploration and acqierement.
     Tibetan Plateau is in very close relationship with the global climate, ecology environment and the future of the human being. It is impossible to explore the Tibetan Plateau without any field measurement. However, it is unscientific to reveal its mysteries foot by foot. The technologies of the earth observation from space provide us more approaches to understand the Tibetan Plateau profoundly, and open a new situation for us to detect its mechanism.
     Synthetic aperture radar interferometry (InSAR) has been proposed as a potential earth observation technique, and it is an international research hotspot now. It has the advantages of all time and all weather operation, and cost-effective data acquisition for large areas. So it can be utilized for digital elevation model (DEM) generation, topographic mapping in large areas, especially those areas that are inaccessible. Moreover, D-lnSAR can get the co-seismic fields, and PS-lnSAR can detect the surface changes in cm even mm level, and can be adopted to monitor the changes and movements of active faults, to obtain the dynamic changes of the whole Plateau, which provide the information and clue for the relationship of the plateau area and the globe.
     The main research motive is to support the Tibetan research expedition, to provide new technology and explore new ways. Traditional mapping methods are no longer the most efficient means of obtaining topographical maps or DEM in large areas especially in inaccessible or difficult environments. Therefore, InSAR technology should be studied carefully, and on the other hand, it should be applied to the Tibetan Plateau research more and more perfectly.
     The main contents of the thesis are:
     (1) Digital Elevation Model generation of Damxung-Yangbajain, Tibet with InSAR
     On the premise of comprehensive analysis of SRTM and 1:50000 DEM, the Digital Elevation Model (DEM) of Damxung-Yangbajain, Tibet is obtained successfully with ERS-1/2 tandem data. Based on the comparison of InSAR DEM and the 1:50000 DEM, it is demonstrated that the InSAR DEM is in high accuracy and confirmed that InSAR can be utilized in Tibet topographic mapping.
     (2) Influential factor analysis of height measurement by InSAR
     Especially based on the SAR image pairs in the study, the small baseline in InSAR DEM generation is analyzed that it is very sensitive to errors. Therefore, it is very important to follow the optimum baseline principle. Meanwhile, the results reveal that the influence of ground gradient to interferometric phase can't be neglected. If the height changes quickly, it results in interferogram overlap and severe decorelation, and the height can't be calculated correctly.
     (3) Using external DEM in InSAR DEM generation
     The essential of using external DEM in InSAR DEM generation, as well as the similarities and differences of using external DEM in differential InSAR is analyzed in detail. Meanwhile, the benefit of external DEM in InSAR DEM generation is demonstrated, which provides the referenced coordinate and makes the phase unwrapping much easier especially for the steep slope, and the profiles that deviate from the ground truth are corrected to be consistent with the truth.
     (4) Primary applied study of PS-lnSAR
     Based on the analysis of the permanent scatter points, the result can be achieved, that points in the south of the basin subside, while points in the north rise. The maximal sedimentation rate is 6mm per year, while the maximal ascending rate is 7mm per year.
     (5) Execution of special maps
     Slope, aspect, shade and 3D maps are made by ETM+ images, InSAR-DEM and SRTM. Tectonic physiognomy of the study area is identified.
引文
陈正位,申旭辉,曹忠权等,2004,基于数字高程模型对亚东—谷露构造带第四纪活动习性的研究,地震,24(B10)。
    程三友,刘少峰,张会平等,2005,大别山构造地貌的DEM初步分析,地质力学学报。
    丁晓利,陈永奇,李志林等,2000,合成孔径雷达干涉技术及其在地表形变监测中的应用,紫金山天文台台刊,19(2)。
    傅肃性,2002,遥感专题分析与地学图谱,科学出版社。
    国家地震局地质研究所,1992,西藏中部活动断层,地震出版社。
    郭华东,2000(a),雷达对地观测理论与应用,科学出版社。
    郭华东,王长林,2000(b),全无候全天时三维航天遥感技术——介绍航天飞机雷达地形测图计划,遥感信息。
    郭树桂编,1984,卫星遥感与制图,中国人民解放军测绘学院。
    韩同林,1983,西藏当雄—崩错一带1951~1952年地震形变带的初步考察,地震地质。
    洪顺英,申旭辉,荆凤等,2007,基于SRTM-DEM的阿尔泰山构造地貌特征分析,国土资源遥感。
    胡庆东,毛士艺,洪文,1999,干涉合成孔径雷达系统的最优基线,电子学报,27(5)。
    季灵运,王庆良,崔笃信等,2007,利用InSAR技术获取南昆仑DEM,工程地球物理学报。
    李璞,西藏地区与新构造可能有关的一些现象,1957,中国科学院第一次新构造运动座谈会发言记录,科学出版社。
    李志林,朱庆,2000,数字高程模型,武汉:武汉测绘科技大学出版社。
    廖明生,2000,由InSAR影像高精度自动生成干涉图的关键技术研究,武汉测绘科技大学博士学位论文。
    廖明生,林珲,2003,雷达干涉测量—原理与信号处理基础,北京:测绘出版社。
    刘国祥,丁晓利,李志林等,2000,InSAR DEM的质量评价,理论研究。
    刘国祥,丁晓利,陈永奇等,2001,使用卫星雷达差分干涉技术测量香港赤腊角机场沉降场,46(14)。
    龙恩,程维明,周成虎等,2007,基于srtm-DEM与遥感的长白山基本地貌类型提取方法,山地学报。
    宁树正,任金卫,单新建等,2006,星载InSAR技术在西藏崩错地区构造地貌研究中的应用,地震地质,28(1)。
    潘斌,杨杰,詹总谦,2004,星载SAR干涉测量生成DEM的两个关键技术的研究,长江科学院院报。
    史世平,2000,使用ERS-1/2干涉测量SAR数据生成DEM,测绘学报,29(4)。
    单新建,宋晓宁,柳稼航等,2001,星载InSAR技术在不同地形地貌区域的DEM提取及其应用评价,科学通报,46(24)。
    舒宁,2000,微波遥感原理,武汉大学出版社。
    舒宁,2003,雷达影像干涉测量原理,武汉:武汉大学出版社。
    钱方等,1982,念青唐古拉山南东麓第四纪冰川地质,青藏高原地质文集(4),地址出版社。
    唐荣昌等,1980,当雄7.5级地震地质构造背景及其成因的初步认识,地震研究,3卷,1期。
    唐新明,林宗坚,吴岚,1999,基于等高线和高程点建立DEM的精度评价方法探讨,遥感信息。
    王超,1997,利用航天飞机成像雷达干涉数据提取数字高程模型,遥感学报,1(1)。
    王超,张红,刘智,2002,星载合成孔径雷达干涉测量,北京:科学出版社。
    王雷,朱杰勇,周燕,2007,基于1:25万DEM昆明地区地貌形态特征分析,昆明理工大学学报(理工版)。
    魏钟铨,王贞松,称元藻等,2001,合成孔径雷达卫星,北京:科学出版社。
    西藏自治区地质局,1980,区域地质调查报告(1:100万拉萨幅地质图H-46,地质部分),地址出版社。
    徐华平,周荫清,李春升,2003,星载干涉SAR中的基线问题,电子学报,31(3)。
    徐华鑫编著,1986,西藏自治区地理,西藏人民出版社。
    杨杰,2004,星载SAR影像定位和从星载InSAR影像自动提取高程信息的研究,武汉大学博士学位论文。
    游新兆,乔学军,王琪等,2002,合成孔径雷达干涉测量原理与应用,大地测量与地球动力学,22(3)。
    袁孝康,2003,星载合成孔径雷达导论,国防工业出版社。
    张红,2002,D-InSAR与POLinSAR的方法及应用研究,中国科学院遥感应用研究所博士学位论文。
    张会平,刘少峰,孙亚平等,2006,基于SRTM-DEM区域地形起伏的获取及应用,国土资源遥感。
    张景发,龚丽霞,姜文亮,2006,PS InSAR技术在地壳长期缓慢形变监测中的应用,国际地震动态。
    赵英时等,2003,遥感应用分析原理与方法,科学出版社。
    中国科学院青藏高原综合科学考察队,1981,青藏高原隆起的时代、幅度和形式问题,科学出版社。
    中国科学院青藏高原综合科学考察队编著,1984,西藏地热,科学出版社。
    朱述龙,张占睦,2000,遥感图像获取与分析,科学出版社。
    Armijo,R.,P.Tapponnier,J.L.Mercier and Han Tong-L,1986,Quaternary extension in southern Tibet:field observation and tectonic implications,J.G.R.,Vol.91,No.B14.
    Atlantis Scientific Incorporation,2004,EVInSAR User's Guide,Atlantis Scientific Inc,20 Colonnade Road,Suite 10,Nepean,Ontario,Canada,K2E 7M6.ESA,http://earth.esa.int
    Esteban F D,P J Meadows,B Schattler,P Mancini,1999,ERS attitude errors and its impact on the processing of SAR data,Proceeding of the CEOS SAR Workshop,Toulouse,France,ESA publication.
    Feder A M,1957,The application of radar in geologic exploration,Bell Aircraft Corp Rept,Buffalo.
    Feder A M,1959,Radar as a terrain-analyzing device,Geol Soc Amer Bull,70(12).
    Ferretti A C,Prati,F Rocca,2000,Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry,IEEE Transactions on Geoscience and Remote Sensing,38(5).
    Fornaro G,Franceschetti G,Lanari R.In:Boerner T,Mittermayer J eds.1996 Proc.of European Conference on Synthetic Aperture Radar(EUSAR'96),Berlin:VDE Verlag,:195.
    Franceschetti G,M Migliaccio,D Riccio,1996,On the baseline decorrelation,Geoscience and Remote Sensing Symposium,IGARSS'96.
    Gabriel A K,R M Goldstein,H A Zebker,1989,Mapping small elevation changes over large areas:Differential radar interferometry,J,Geophys.
    Ge L,X J Li,C Rizos,M Omura,2004,GPS and GIS Assisted Radar Interometry,Photogrammetric Engineering & Remote Sensing.
    
    Gens R, J L Van Genderen, 1996, SAR interferometry—Issues, techniques, applications,International Journal of Remote Sensing, 17(10).
    
    Goldstein R M, H A Zebker, C L Werner, 1988, Satellite Radar Interferometry: Two-Dimensional Phase Unwrapping, Radio Science, 23(4).
    
    Goldstein R M, 1995, Atmospheric limitations to repeat-track radar interferometry, Geophysical Research Letters, 22(18).
    
    Hanssen R F, Weckerth H A, Zebker H A et al. 1999, Science, 283.
    
    Hoffman P, 1954, Interpretation of radar scope photographs, Photogram Engr, 20(3).
    
    Hoffman P, 1958, Photogram metric applications of radar photo interpretation, Photogram Engr,24(5).
    
    MacDonald H C, 1969, Geological evaluation of radar imagery from Darien Province, Panama,Modern Geology.
    
    Madsen S, Zebker H A, Martin J, 1993, IEEE Trans, Geosci, Remote Sens, 31.
    
    Sherwin C W, Ruina J P, Rawclisse R D, 1962, Some early developments in synthetic aperture radar systems, IRE Trans On Military Eletronics, MIL-6.
    
    Tapponner, P. et al, 1981, Field evidence for active normal fault in Tibet, Nature, Vol. 294.
    
    Zebker H A, T G Farr, R P Salazar, T H Dixon, 1994, Mapping the world's topography using radar interferometry: the TOPSAT mission, IEEE Proceeding, 82(12).
    
    Zebker H A, Werner C L, Rosen P A et al, 1995, IEEE Trans, Geosci, Remote Sens, 33(2).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700