全极化合成孔径雷达图像处理方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
极化合成孔径雷达成像是一种基于微波的遥感技术,它能够提供对观测对象的大范围的二维高空间分辨率图像。随着各种机载、星载合成孔径雷达系统的出现,相关的数据集变得越来越丰富,这使得合成孔径雷达系统数据处理技术的研究进入了一个快速发展的时期。近年来,关于合成孔径雷达测量及数据处理的技术得到了较快发展,其中的部分技术和应用已经较为成熟。但是,该领域的相关技术仍然有待进一步深入研究。合成孔径雷达成像系统由单极化、单频率成像发展到多极化、多频率成像。多极化、多频率的极化合成孔径雷达图像又被称为多通道的雷达图像,使用多通道雷达对地物进行观测,可以获得比单通道雷达更加丰富的信息。本文围绕单基站、单频率全极化合成孔径雷达图像处理中的相干斑滤波、极化目标特征分解参数的误差校正、非监督分类这三个方面的问题进行了研究。
     首先,对电磁波极化状态的描述方法进行了介绍。对极化合成孔径雷达成像的几何模型和基本原理进行了陈述。对欧洲空间局的开放式处理平台及常见的机载平台数据源进行了介绍。
     其次,对极化合成孔径雷达图像的滤波原则进行了简单分析,归纳出相干斑滤波的目标不仅仅是降低噪声水平,更重要的是,滤波之后的数据所包含的极化属性不能受到破坏。滤波算法必须保持相干矩阵或者协方差矩阵在滤波之后仍然为半正定的Hermitian矩阵。对非线性各向异性扩散方程的扩散行为和能力进行了分析,然后对多维非线性各向异性扩散方程进行了扩展,使之能够适用于相干斑滤波。采用极化合成孔径雷达图像的总功率分量来构建扩散率函数,使用边缘增强方案来设计扩散张量,最后给出了基于非线性各向异性扩散的相干斑滤波算法。实验结果表明,本文提出的算法能够降低噪声水平,同时也可以实现滤波之后的协方差矩阵保持原有极化属性。
     之后,在极化目标特征分解的特征参数计算过程中,研究了由空域平均代替统计平均计算极化目标的二阶统计量所产生的误差。对极化目标特征分解参数的估计量的统计特性进行了分析。利用开放式处理平台生成了若干仿真数据,仿真数据是一种相对理想化的数据。对仿真数据实施渐进式的统计分析,得到了平均阿尔法角和熵参数的统计特性。通过对这两个参数的统计特性的分析,可以得知平均阿尔法角对于采样窗口尺寸的影响几乎可以忽略不计,而熵参数对于采样窗口的尺寸比较敏感。在对仿真数据中的多个随机点进行平均处理后,得出熵与视数具有近似线性变化的关系。通过这种线性变化关系,设计了熵参数的校正算法。实验结果表明,经过校正后的熵参数对于基于特征分解的非监督分类精度的提高有较大帮助。
     最后,极化合成孔径雷达图像的分类是该领域中非常重要的应用,基于监督分类的核心思想将基于散射模型的分解与监督分类结合起来。将基于四分量散射模型分解的结果作为非监督分类的初始分类数据,然后应用威沙特分类器进行分类,并利用离差平方和方法对分类的结果进行聚类。实验结果表明,与传统的三分量散射模型非监督分类相比,新的非监督分类方法的精确度更高。与基于特征分解的非监督分类相比,新的方法能够避免特征参数上下界无法确定的问题。
Polarimetric synthetic aperture radar imaging is a technique based on microwaveremote sensing. Polarimetric synthetic aperture radar can provide large-scaletwo-dimensional high spatial resolution images of the observed objects. In addition, withthe wide availability of PolSAR data from both space borne and airborne SAR systems,the research on processing of PolSAR data is developing fastly. For the past recent years,significant advances in polarimetric synthetic aperture radar instruments and informationextraction techniques have flourished, and related research and applications have reacheda certain degree of maturity. However, part of the techniques in this field deserves athorough investigation. Synthetic aperture radar systems come along from singlepolarization and monochromatic imaging to multi-polarization and multi-frequencyimaging. The later is also called the multi-channel radar imagery. Using multi-channelradar system for observing the earth can acquire much more information than singlechannel radar system. In this thesis, three problems, including speckle filtering, biascorrection for eigen-decomposition parameters and unsupervised classification, in theprocessing of monostatic and monochromatic PolSAR data will be studied.
     At first, the description method for polarization state of electromagnetic wave ispresented. Then the geometrical configuration and principles of imaging system inpolarimetric synthetic aperture radar is put forward. The open-source platform by theEuropean space agency and mainstream airborne datasets are listed.
     Thereafter a simple analysis is put forward at first about the principles in specklefiltering. One of the most important clauses is preserving the polarimetric properties andreducing the speckle level in the data. The coherency matrix and covariance matrix afterspeckle filtering must be semi-definite positive. A study on the behavior and performanceof the nonlinear anisotropic diffusion equation is accomplished. Whereafter an extensionto the multi-dimensional nonlinear anisotropic diffusion is done. The total scattered poweris employed to construct the diffusivity function and the edge-enhancing diffusion schemeis adopted to design the diffusion tensor. At last the algorithm of speckle filtering usingnonlinear anisotropic diffusion is listed. It can be easily observed from the experimentalresults that the new proposed method can preserve the polarimetric properties and reducethe speckle level.
     Whereafter in the calculation of eigen-parameters for polarimetric target decomposition, the ensemble averaging is substituted by the spatial averaging. Thus theestimation for coherency matrix or covariance matrix will contain bias, which will bestudied in this thesis. Consequently the statistics of these parameters are analyzed at first.The simulated data generated by the PolSARpro platform is used for the reason that it hasdodged the influence of the artifact and system noise. The simulated data can be viewedas a realized data. An asymptotically statistical analysis is performed on simulated dataand thereafter the statistical behavior of averaged alpha angle and entropy are acquired.Based on the statistical behavior, it can be concluded that the influence caused by thewindow size on averaged alpha angle can be ignored. Nevertheless the entropy issensitive to the windows size. After performing an averaging of many random points insimulated data, it can be seen that approximate linear relation between entropy andwindow size is valid. Bias correction algorithm is constructed based on the aboveapproximate linear relation. It can be concluded from the experimental results that theentropy which has been corrected will enhance the accuracy of unsupervisedclassification using eigen-decomposition.
     At last, polarimetric classification is one of the most important applications inPolSAR imaging. The kernel idea of supervised classification is employed in this thesis.The scattering model based decomposition is combined with the supervised classification.The four-component scattering model based decomposition is used as the initial input ofclassification. The Wishart classifier is used iteratively. It is shown from the experimentalresults that the new unsupervised classification method possesses higher accuracycompared with the classic three-component method. Compare with the classic methodbased on eigen-decomposition, the new method stay away from the problem of uncertainupper-bound and lower-bound.
引文
[1] Lou Y. Review of the NASA JPL airborne synthetic aperture radar system. In:Proceedings of IEEE International Geoscience and Remote Sensing Symposium.Toronto, Canada: IEEE,2002.24~28
    [2] Way J, Rignot E., McDonald K., et al. Monitoring temporal change in Alaskan forestsusing airsar data. In: Proceedings of International Conference on Geoscience andRemote Sensing Symposium. Espoo, Finland: IEEE,1991.1117~1119
    [3] van Zyl J., Carande R., Lou Y., et al. The NASA/JPL Three-frequency PolarimetricAirsar System. In: Proceedings of International Conference on Geoscience andRemote Sensing Symposium. New York, USA: IEEE,1996.1612~1614
    [4] Carande R., Chapman B., Lou Y., et al. JPL Airsar Processing Activities andDevelopments. In: Proceedings of International Conference on Geoscience andRemote Sensing Symposium. Houston, USA: IEEE,1992.1152~1154
    [5] Andreas Reigber, Andreas Ulbricht. P-band repeat-pass interferometry with the DLRexperimental SAR. In: Proceedings of International Conference on Geoscience andRemote Sensing Symposium. New York, USA: IEEE,1998.1914~1916
    [6] Borner T. Development of a coherent scattering model for polarimetric SARinterferometry applications. In: Proceedings of International Conference onGeoscience and Remote Sensing Symposium. Piscataway, USA: IEEE,1999.1414~1416
    [7] Hoekman D.H., Vissers M.A.M., Tran T.N. Unsupervised Full-Polarimetric SAR DataSegmentation as a Tool for Classification of Agricultural Areas. IEEE Journal ofSelected Topics in Applied Earth Observations and Remote Sensing,2011,4(2):402~411
    [8] Guneriussen T., Johnsen H., Solberg R., et al. Snow monitoring using EMISAR andERS-1data within the European Multi-sensor Airborne Campaign EMAC-95. In:Proceedings of International Conference on Geoscience and Remote SensingSymposium. New York, USA: IEEE,1997.631~633
    [9] Christensen E.L., Dall J. EMISAR: a dual-frequency, polarimetric airborne SAR. In:Proceedings of International Conference on Geoscience and Remote SensingSymposium. Piscataway, USA: IEEE,2002.1711~1713
    [10] Dubois-Fernandez P., du Plessis O.R., le Coz D. et al. The ONERA RAMSES SARsystem. In: Proceedings of IEEE Conference on Geoscience and Remote SensingSymposium. Piscataway, USA: IEEE,2002.1723~1725
    [11] Pastore L., Cantalloube H., Priou A., et al. Evaluation of P-band foliage penetrationthrough polarimetric high resolution SAR imaging with the RAMSES radar. In:Proceedings of IEEE Conference on Radar. London, UK: IEE,2002.516~520
    [12] Baque R., Bonin G., Ruault du Plessis O. The airborne SAR-system: SETHI airbornemicrowave remote sensing imaging system. In: Proceedings of IEEE Conference onRadar. Piscataway, USA: IEEE,2009.1~5
    [13] Bruyant Jean-Paul. SETHI flying lab: A tool for remote sensing applications. In:Proceedings of11th International Radar Symposium. Piscataway, USA: IEEE,2010.1~4
    [14] Bonin Gregory, Dreuillet Philippe. The Airborne SAR-System: SETHI-AirborneMicrowave Remote Sensing Imaging System. In: Proceedings of International RadarConference Radar. Piscataway, USA: IEEE,2009.5~5
    [15] Goodenough D.G., Hao Chen, Dyk A. Evaluation of Convair-580and SimulatedRadarsat-2Polarimetric SAR for Forest Change Detection. In: Proceedings of IEEEConference on Geoscience and Remote Sensing Symposium. Piscataway, USA:IEEE,2006.1840~1843
    [16] Watanabe M., Shimada M., Rosenqvist A. Tight correlations between forestparameters and backscattering coefficient derived by the L-band airborne SAR. In:Proceedings of IEEE Conference on Geoscience and Remote Sensing Symposium.Piscataway, USA: IEEE,2004.2340~2343
    [17] Pasquali P., Holecz F., Small D., et al. Calibration and classification of SIR-Cpolarimetric and interferometric SAR data in areas with slope variations. In:Proceedings of IEEE Conference on Geoscience and Remote Sensing Symposium.New York, USA: IEEE,1997.448~450
    [18] Perissin D., Prati C., Rocca F., et al. ERS-ENVISAT Permanent Scatterers. In:Proceedings of IEEE Conference on Geoscience and Remote Sensing Symposium.Piscataway, USA: IEEE,2003.1130~1132
    [19] Suchandt S., Runge H., Eineder M., et al. First results of ground moving targetanalysis in TerraSAR-X data. In: Proceedings of IEEE Conference on Geoscienceand Remote Sensing Symposium. Piscataway, USA: IEEE,2007.3943
    [20] Janoth Juergen, Gantert Steffen, Koppe Wolfgang, et al. TerraSAR-X2-Missionoverview. In: Proceedings of IEEE Conference on Geoscience and Remote SensingSymposium. Piscataway, USA: IEEE,2012.217~220
    [21] Toutin T., Chenier R.3-D Radargrammetric Modeling of RADARSAT-2UltrafineMode: Preliminary Results of the Geometric Calibration. IEEE Geoscience andRemote Sensing Letters,2009,6(3):611~615
    [22] Cloude, S.R. Polarisation: applications in remote sensing. Oxford, New York:Oxford University Press,2010.23~33
    [23] Massonnet D., Souyris J-C. Imaging with Synthetic Aperture Radar. Boca Raton,USA: CRC Press,2008.2~9
    [24] Mott H. Remote Sensing with Polarimetric Radar. New Jersey, USA: Wiley&SonsPress,2007.3~5
    [25]王超,张红,刘智.全极化合成孔径雷达图像处理.第一版.中国,北京:科学出版社,2008.5~7
    [26]周晓光,匡纲要,万建伟.多极化SAR图像斑点抑制综述.中国图象图形学报,2008,13(3):377~385
    [27] Fleisehman J G,Words M A,Ayasli S, et al. Multichannel whitening of SARimagery.IEEE Transactions on Aerospace and Electronic Systems,1996,32(1):156~166
    [28] Tome M R,Vinelli F,FarinaA,et al. Processing of polnrimetric and multifrequencySAR data recorded by Maestro-1Campaign. In: Proceedings of IEEE Conference onGeoscience and Remote Sensing Symposium. Espoo, Finland: IEEE,1991:349~351
    [29] Verbout S M,Netishen C M,Novak L M. Polarimetric techniques for enhancingSAR imagery. In: Proceeding of the SPIE Synthetic Aperture Radar. Los Angeles,USA: SPIE,1992.141~173
    [30] Lu Y.H., Tan S.Y., Yeo T.S., et al. Adaptive filtering algorithms for SAR specklereduction. In: Proceedings of International Conference on Geoscience and RemoteSensing Symposium. New York, USA: IEEE,1996.67~69
    [31] Lee J S. Digital image enhancement and noise filtering by use of local statistics.IEEE Transactions on Pattern Analysis and Machine Intelligence,1980,2(2):165~168
    [32] A. Lopes, R. Touzi, E. Nezry. Adaptive speckle filters and scene heterogeneity. IEEETransactions on Geoscience and Remote Sensing,1990,28(6):992~1000
    [33] V. S. Frost, J. A. Stiles, K. S. Shanmugan, et al. A model for radar images and itsapplication to adaptive digital filtering of multiplicative noise. IEEE Transactions onPattern Analysis and Machine Intelligence,1982,4(2):157~165
    [34] A. Lopes, E. Nezry, R. Touzi. Structure detection and statistical adaptive specklefiltering in SAR images. International Journal of Remote Sensing,1993,14(9):1735~1758
    [35] Sveinsson Johannes R, Benediktsson Jon Atli. Almost translation invariant wavelettransformations for speckle reduction of SAR images. IEEE Transactions onGeoscience and Remote Sensing,2003,41(2):2404~2408
    [36] Qingwei Gao, Yanfei Zhao, Yixiang Lu. Despeckling SAR images using stationarywavelet transform combining with directional filter banks. Applied Mathematics andComputation,2008,205(2):517~524
    [37] Amirmazlaghani, M. Amindavar, H. Moghaddamjoo, A. Speckle Suppression inSAR Images Using the2-D GARCH Model. IEEE Transactions on Image Processing,2009,18(2):250~259
    [38] Espinoza Molina D., Gleich D., Datcu M. Evaluation of Bayesian Despeckling andTexture Extraction Methods Based on Gauss–Markov and Auto-Binomial GibbsRandom Fields: Application to TerraSAR-X Data. IEEE Transactions on Geoscienceand Remote Sensing,2012,50(5):2001~2025
    [39] Hebar M., Gleich D., Cucej Z. Autobinomial Model for SAR Image Despeckling andInformation Extraction. IEEE Transactions on Geoscience and Remote Sensing,2009,47(8):2818~2835
    [40] Pang Bo, Xing Shi-qi, Li Yong-zhen, et al. Speckle filtering algorithm forpolarimetric SAR based on mean shift. In: Proceedings of International Conferenceon Geoscience and Remote Sensing Symposium. New York, USA: IEEE,2012.5892~5895
    [41] Ran Tao, Hui Wan, Yue Wang. Artifact-Free Despeckling of SAR Images UsingContourlet. IEEE Geoscience and Remote Sensing Letters,2012,9(5):980~984
    [42] Hua Zhong, Yongwei Li. SAR Image Despeckling Using Bayesian Nonlocal MeansFilter With Sigma Preselection. IEEE Geoscience and Remote Sensing Letters,2011,8(4):809~813
    [43] Yongjian Yu, Acton, S.T. Speckle reducing anisotropic diffusion. IEEE Transactionson Image Processing,2002,11(11):1260~1270
    [44] Aja-Fernandez S. On the estimation of the coefficient of variation for anisotropicdiffusion speckle filtering. IEEE Transactions on Image Processing,2006,15(9):2694~2701
    [45] Aja S, Alberola C., Ruiz A. Fuzzy anisotropic diffusion for speckle filtering. In:Proceedings of International Conference on Acoustics, Speech, and SignalProcessing. New York, USA: IEEE,2001.1261~1264
    [46] Novak L M, Bud M C. Optimal speckle reduction in polarimetric SAR imagery.IEEE Transactions on Aerospace and Electronic Systems,1990,26(2):293~305
    [47] Jong-Sen Lee, Grunes, M.R. and G. De Grandi. Polarimetric SAR speckle filteringand its implication for classification. IEEE Transactions on Geoscience and RemoteSensing,1999,37(5),2363~2373
    [48] Jong-Sen Lee, Grunes, M.R., Schuler, D.L., et al. Scattering-model-based specklefiltering of polarimetric SAR data. IEEE Transactions on Geoscience and RemoteSensing,2006,44(1),176~187
    [49] Lopez Martinez C, Fabregas, X. Polarimetric SAR speckle noise model. IEEETransactions on Geoscience and Remote Sensing,2003,41(10),2232~2242
    [50] Lopez-Martinez C. Fabregas, X. Model-based polarimetric SAR speckle filter. IEEETransactions on Geoscience and Remote Sensing,2008,46(11),3894~3907
    [51] Kie B. Eom. Anisotropic adaptive filtering for speckle reduction in syntheticaperture radar images. Optical Engineering,2011,50(5),057206
    [52] J. R. Huynen. Phenomenological theory of radar targets. Delft: Delft University ofTechnology,1970
    [53] Huynen J.R. A new extended target decomposition scheme. In: Proceedings ofInternational Geoscience and Remote Sensing Symposium. New York, USA: IEEE,1994.1124~1125
    [54] Holm W.A., Barnes R.M. On radar polarization mixed state decomposition theorems.In: Proceedings of USA National Radar Conference. New York, USA: IEEE,1988.249~254
    [55] Freeman A., Durden S.L. A three component scattering model for polarimetric SARdata. IEEE Transaction on Geoscience and Remote Sensing,1998,36(3):963~973
    [56] Yamaguchi Y., Moriyama T., Ishido M., et al. Four component scattering model forpolarimetric SAR image decomposition. IEEE Transaction on Geoscience RemoteSensing,2005,43(8):1699~1706
    [57] Yamaguchi Y., Yajima Y., Yamada H, et al. A four component decomposition ofPOLSAR images based on the coherency matrix. IEEE Geoscience on RemoteSensing Letters,2006,3(3):292~296
    [58] Wentao An, Yi Cui, Jian Yang. Three-Component Model-Based Decomposition forPolarimetric SAR Data. IEEE Transactions on Geoscience and Remote Sensing,2010,48(6):2732~2739
    [59] Wentao An, Chunhua Xie, Xinzhe Yuan, et al. Four-Component Decomposition ofPolarimetric SAR Images With Deorientation. IEEE Transactions on Geoscience onRemote Sensing Letters,2011,8(6):1090~1094
    [60] Lamei Zhang, Bin Zou, Hongjun Cai, et al. Multiple-Component Scattering Modelfor Polarimetric SAR Image Decomposition. IEEE Geoscience on Remote SensingLetters,2008,5(4):603~607
    [61] Arii M, van Zyl J.J., Yunjin Kim. Adaptive Model-Based Decomposition ofPolarimetric SAR Covariance Matrices. IEEE Transactions on Geoscience onRemote Sensing,2011,49(3):1104~1113
    [62] Cloude S.R. Group theory and polarization algebra, OPTIK,1986,75(1):26~36
    [63] Cloude S.R. Lie groups in electromagnetic wave propagation and scattering. Journalof Electromechanic Waves Application,1992,6(8):947~974
    [64] Cloude S.R., Pottier E. A review of target decomposition theorems in radarpolarimetry. IEEE Transaction on Geoscience and Remote Sensing,1996,34(2):498~518
    [65] Cloude S.R., E. Pottier. An entropy based classification scheme for land applicationsof polarimetric SAR. IEEE Transactions on Geosciences and Remote Sensing,1997,35(1):68~78
    [66] van Zyl J.J. Application of Cloude’s target decomposition theorem to polarimetricimaging radar data. In: Proceedings of SPIE Conference on Radar Polarimetry. SanDiego, USA: SPIE,1992.184~191
    [67] Krogager E. New decomposition of the radar target scattering matrix. ElectronicsLetters,1990,26(18):1525~1527
    [68] Cameron W.L., Leung L.K. Feature motivated polarization scattering matrixdecomposition. In: Proceedings of IEEE International Radar Conference. New York,USA: IEEE,1990.10
    [69] Touzi, R. Target Scattering Decomposition in Terms of Roll-Invariant TargetParameters. IEEE Transactions on Geoscience and Remote Sensing,2007,45(1):73~84
    [70] Touzi R., Deschamps A., Rother G. Phase of Target Scattering for WetlandCharacterization Using Polarimetric CBand SAR. IEEE Transactions on Geoscienceand Remote Sensing,2009,47(9):3241~3261
    [71] Jong-Sen Lee, Eric Pottier. Polarimetric radar imaging: from basics to applications.Florida, USA:CRC Press,2009:265
    [72] Yonghui Wu, Kefeng Ji, Wenxian Yu, et al. Region-Based Classification ofPolarimetric SAR Images Using Wishart MRF. IEEE Geoscience and RemoteSensing Letters,2008,5(4):668~672
    [73] J.A. Kong, Swartzb A.A., Yuehc H.A., et al. Identification of terrain cover using theoptimal terrain classifier. Journal of Electromagnetic Waves and Applications,1988,2(2):171~194
    [74] J.J. van Zyl, C.F. Burnette. Baysian classification of polarimetric SAR images usingadaptive a priori probability. International Journal of Remote Sensing,1992,13(5):835~840
    [75] J.S. Lee, M.R. Grunes, R. Kwok. Classification of multilook polarimetric SARimagery based on complex Wishart distribution. International Journal of RemoteSensing,1994,15(11),2299~2311
    [76] L.J. Du, J.S. Lee. Fuzzy classification of earth terrain covers using multi lookpolarimetric SAR image data. International Journal of Remote Sensing,1996,17(4):809~826
    [77] Chen K.S., Huang W.P., Tsay, D.H., et al. Classification of multifrequencypolarimetric SAR image using a dynamic learning neural network. IEEETransactions on Geoscience and Remote Sensing,1996,34(3):814~820
    [78] Y.C. Tzeng, K.S. Chen. A fuzzy neural network for SAR image classification. IEEETransactions on Geoscience and Remote Sensing,1998,36(1):301~307
    [79] L.J. Du, J.S. Lee, K. Hoppel, et al. Segmentation of SAR image using the wavelettransform. International Journal of Imaging System and Technology,1992,4(4):319~329
    [80] J.S. Lee, M.R. Grunes, T.L. Ainsworth, et al. Unsupervised classification usingpolarimetric decomposition and the complex Wishart classifier. IEEE Transactionson Geoscience and Remote Sensing,1999,37(5):2249~2258
    [81] J.S. Lee, M.R. Grunes, E. Pottier, et al. Unsupervised terrain classificationpreserving scattering characteristics. IEEE Transactions on Geoscience and RemoteSensing,2004,42(4):722~731
    [82] Eric Pottier, Laurent Ferro-Famil, PolSARPro V5.0: An ESA educational toolboxused for self-education in the field of POLSAR and POL-INSAR data analysis, In:Proceedings of IEEE International Geoscience and Remote Sensing Symposium.New York, USA: IEEE,2012.7377~7380
    [83] Carlos Lopez-Martinez, Xavier Fabregas. Polarimetric SAR speckle noise model.IEEE Transactions on Geoscience and Remote Sensing,2003,41(10):2232~2242
    [84] Carlos Lopez-Martinez, Xavier Fabregas, Eric Pottier. Multidimensional SpeckleNoise Model. EURASIP Journal on Applied Signal Processing,2005,2005(20):3259-3271
    [85] Perona P., Malik J. Scale space and edge detection using anisotropic diffusion. IEEETransactions on Pattern Analysis and Machine Intelligence,1990,12(7):629~639
    [86] J. Weickert. Efficient and reliable schemes for nonlinear diffusion filtering. IEEETransactions on Image Processing,1998,7(3):423~450
    [87] J. Weickert. Coherence-enhancing diffusion filtering. International journal ofcomputer vision,1999,31(2-3):111~127
    [88] Achilleas S. Frangakis, Reiner Hegerl. Nonlinear anisotropic diffusion inthree-dimensional electron microscopy. In: Proceedings of Scale-Space Theories inComputer Vision. Berlin, Germany: Springer-Verlag,1999.386~397
    [89] Ivan Bajla, Igor Hollander. Nonlinear filtering of magnetic resonance tomograms bygeometry-driven diffusion. Machine Vision and Applications,1998,10(5):243~255
    [90] Dirk-Jan Kroon, Cornelis H. Slump, Thomas J. J. Optimized anisotropic rotationalinvariant diffusion scheme on cone-beam CT. In: Proceedings of13th InternationalConference on Medical Image Computing and Computer-Assisted Intervention.Berlin, Germany: Springer-Verlag,2010:221~228
    [91]杨儒贵.电磁场与电磁波.第二版.北京:高等教育出版社,2003:8~12
    [92]吴望一.流体力学.第一版.北京:北京大学出版社,1982(2004重印):52~56
    [93] Joachim Weickert. A review of nonlinear diffusion filtering. In: Proceedings of FirstInternational Conference on Scale-Space Theory in Computer Vision. Berlin,Germany: Springer-Verlag,1997.1~28
    [94]王大凯,侯榆青,彭进业.图像处理的偏微分方程方法.第一版.北京:科学出版社,2008:81~86
    [95]陆金甫,关治.偏微分方程数值解法.第一版.北京:清华大学出版社,2004:113~172
    [96] Ferro-Famil L., Pottier E., Jong-Sen Lee. Unsupervised classification ofmultifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishartclassifier. IEEE Transactions on Geoscience and Remote Sensing,2001,39(11):2332~2342
    [97] J. K. Weissel, K. R. Czuchlewski, Y. Kim. Synthetic aperture radar (SAR)-basedmapping of volcanic flows: Manam Island, Papua New Guine. Natural Hazards andEarth System Science,2004,4(2):339~346
    [98] Lopez-Martinez C., Pottier E., Cloude S.R. Statistical Assessment ofEigenvector-Based Target Decomposition Theorems in Radar Polarimetry. IEEETransactions on Geoscience and Remote Sensing,2005,43(9):2058~2074
    [99] Jong-Sen Lee, Hoppel K.W., Mango S.A., et al. Intensity and phase statistics ofmultilook polarimetric and interferometric SAR imagery. IEEE Transactions onGeoscience and Remote Sensing,1994,32(5):1017~1028
    [100] E. Rignot, R. Chellappa, P. Dubois. Unsupervised segmentation of polarimetricSAR data using the covariance matrix. IEEE Transactions on Geoscience andRemote Sensing,1992,30(4):697~705
    [101] A. Saepuloh, K. Koike, M. Omura. Applying Bayesian Decision Classification toPi-SAR Polarimetric Data for Detailed Extraction of the Geomorphologic andStructural Features of an Active Volcano. IEEE Geoscience and Remote SensingLetters,2012,9(4):554~558
    [102] J.S. Lee, M.R. Grunes, R. Kwok. Classification of multi look polarimetric SARimagery based on complex Wishart distribution. International Journal of RemoteSensing,1994,15(11):2299~2311
    [103] Jong-Sen Lee, Ainsworth T.L., Kelly J., et al. Evaluation and bias removal ofmulti-look effect on entropy/alpha/anisotropy. In: Proceedings of IEEE InternationalGeoscience and Remote Sensing Symposium. Piscataway, USA: IEEE,2007.172~175
    [104] Yajima Y., Yamaguchi Y., Sato R., et al. POLSAR Image Analysis of WetlandsUsing a Modified Four-Component Scattering Power Decomposition. IEEETransactions on Geoscience and Remote Sensing,2008,46(6):1667~1673
    [105] Youan Ke. Notes on invariant characters of radar cross sections. In: Proceedings of2001CIE International Conference on Radar. Piscataway, USA: IEEE,2001.418~422
    [106]高惠璇.应用多元统计分析.第一版.北京:北京大学出版社,2005:236

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700