利用原位红外光谱研究溶剂热合成BN的反应机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我们以傅立叶变换红外(FTIR)光谱为主要研究手段,以BBr_3和N(CH_3)_3为原料,对苯热条件下由络合物Br_3B·N(CH_3)_3分解生成BN的反应过程进行了系统研究,初步弄清了该体系中cBN和tBN的生成反应机理。并以此为基础,对反应设备和方法进行了改进和完善,实现了纯相氮化硼的可控合成。主要结果如下:
     为了弄清络合物Br_3B·N(CH_3)_3分解生成BN的反应机理,我们首先针对该络合物的热稳定性质进行了研究,并提出了初步的反应模型。进一步地,为了验证提出的模型,我们利用FTIR光谱,对配合物Br_3B·N(CH_3)_3分解生成BN的中间反应过程进行了原位跟踪监测,确认了中间态物质BrB=NCH_3的存在及其结构随温度、反应时间的变化规律,给出了的BN反应机理模型。同时,我们结合相应的验证实验结果对给出的模型进行检验和修正,基本弄清了在苯热条件下cBN和tBN的生成机理。
     通过反应机理的研究,我们认识到:中间过渡态物种及其结构对最终得到的氮化硼的结构具有决定作用。因此,对中间态物种的调控将是实现氮化硼选相合成的关键。根据反应机理模型(见下面给出的Scheme),我们一方面对现有反应设备和合成方法进行了改进和完善,通过对中间态物质的调控,实现了tBN在粒度、纯度以及结晶质量方面的可控制备,以及纯相cBN纳米晶的可控合成。另一方面,我们提出了新的选相原位合成方法,并利用它首次在溶剂热下合成了具有较高结晶质量的新物相c_1BN。
     对反应机理的把握是实现材料可控制备的前提。但是,溶剂热反应体系复杂多变,长期以来人们只能通过大量的实验摸索对其规律进行归纳和总结,而极端反应条件下的溶剂热反应过程(反应机理)正是一个前人没有涉足的课题。本文正是在这种背景下,对溶剂热合成氮化硼的反应机理进行了开创性的探索。尽管现有的结果还有很多不完善之处,但我们相信这项工作不仅具有很强的创新性,而且具有重要的基础和应用价值。另外,通过系统的文献调研,我们发现合成氮化硼常用的原料是BX_3(X:H、O、F、Br等)和NR_3(R:H、Li、CH_3(简称Me)),可见本文给出的反应机理应该具有较强的普适性;另外,以反应机理研究为基础提出的新方法和新设备,不仅适用于BN的制备,同样也适用于其它亚稳态结构材料的制备。
Using Fourier transformation infrared (FTIR) spectrometer as the main tool and BBr_3 and N(CH_3)_3 as starting materials, the reaction process of Br_3BN(CH_3)_3 forming boron nitride (BN) was systematically investigated, and the formation mechanisms of both cubic boron nitride (cBN) and turbostractic boron nitride (tBN) were understood. Then according to the obtained mechanism, through improving both equipments and methods, controllable synthesis of pure phase of BN was realized. The main results are as follows:
     In order to well know the formation mechanism of BN from complex compound Br_3B·N(CH_3)_3, first the thermal stability of Br_3B·N(CH_3)_3 was studied and primary reaction model was proposed. Then, FTIR spectrometer was used to in-situ monitor and collect the spectra of Br_3B·N(CH_3)_3 forming BN, verifying the intermediate BrB=NCH_3 existence, and its transmutation rules with temperature and reaction time was understood. According to the monitor results, formation mechanism model of BN was presented. Furthermore, based on the verification experiments results, the proposed mechanism was modified and the reaction mechanisms of cBN and tBN in benzene-thermal condition were understood.
     Through the above investigation, it is known that the final product structure is directly related to the intermediate compound. Therefore, how to control the intermediate compound is the key to realize BN selective synthesis. According to the reaction mechanism model (see the Scheme 3), on one hand, the equipments in possession and synthetic methods were improved and perfected, realizing the controllable synthesis of tBN with high yield and cBN with rather high quality. On the other hand, a new selective-phase synthetic method was proposed, using which a pure and new phase of cubic boron nitride (named c_1BN) nano-crystal with rather high quality in benzene-thermal route was successfully prepared for the first time.
     Understanding the reaction mechanism is the base to realize the controllable synthesis of materials. However, because of the complexity and mutability of the solvothermal system, for a long time, people had to do many experiments to conclude and summarize the rules. And the solvothermal reaction mechanism in extreme conditions is a completely new subject. No one has ever studied it before. Considering these, it is the first time for us to explore the formation mechanism of BN in benzene-thermal condition. Although the results are still imperfect, it is confirmed that they are not only of strong innovation but also of great value for both basic and application studies. In addition, through systematically literature study, it is found that the raw materials for BN synthesis can be presented as BX_3 (X: H, 0, F, Br and etc) and NR_3 (R: H, Li, CH3 and so on). Thus, the mechanism proposed in this paper is rather universal. Moreover, the developed new equipments and methods are not only fit for BN preparation, but also suit to form other metastable materials.
引文
[1] 魏运洋,李建,化学反应机理导论,北京,科学出版社,2004
    [2] 许越,化学反应动力学,北京,化学工业出版社,2004
    [3] 叶秀林,立体化学,北京,北京大学出版社,1999
    [4] S. Ramakrishnan, K.M. Kadish, M.N. Vijayashree, X. Gao, M.T. Jones, M.D. Miller, K.L. Krause, T. Suenobu, S. Fukuzumi, Chemical generation of C_(60)~(2-) and electron transfer mechanism for the reaction with alkyl bromides, J. Phys. Chem., 1996,100: 16327-16335
    [5] L. Liu, R.D. Steven, Matrix isolation spectroscopic study of tetrafluorethylene oxidation, J. Phys. Chem., 1992,96: 9719-9724
    [6] 杨第伦,张先满,程金龙,P-硝基氯苯与α-氰基乙酸乙酯-α-碳负离子的电子转移,化学学报,1991,49:176-182
    [7] G.A. Olah, G. Liang, G.D. Mateescu, J.L Riemenschneider, Stable carbocations. CL. fourier transform carbon-13 nuclear magnetic resonance and x-ray photoelectron spectroscopic study of the 2-norbornyl cation, J. Am. Chem. Soc., 1973,95: 8698-8702
    [8] P.R. Griffiths, Fourier transform infrared spectrometry, Science, 1983, 222: 297-302
    [9] L. Rayleigh, Approximately monochromatic interference fringes by a highly dispersive medium, Phil. Mag., Ser. 5,1892, 34: 407-411
    [10] P. Fellgett, A propos de la theorie du spectrometer interferential multiplex, J. Phys. Radium, 1958,19:187-191
    [11] (a) P. Jacquinot, "17~e Congress du GAMS", Paris, 1954; (b) A. Girarad, P. Jacquinot, "Advanced Optical Techniques", 71,109, North Holland Publ., 1967.
    [12] J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series, Mart. Comput., 1965,19: 297-301
    [13] M.L. Forman, Spectral interpolation: zero fill or convolution, Appl. Opt, 1977, 16:2801-2801
    [14] 韩哲文,张其锦,陈昆松,沈红桥,甲基丙烯酸三丁基锡酯的聚合反应动力学的研究,中国科学技术大学学报,1987,17(1):51-53
    [15] 韩哲文,余竹卿,余茂宽,陈昆松,甲基丙烯酸三乙基锡酯的聚合反应动力学的研究,高分子学报,1986,17(4):317-320
    [16] J.P. Sung, D.W. MacDonald, Infrared chemiluminescence studies of chlorine substitution reactions with brominated unsaturated hydrocarbons, J. Chem. Phys., 1976,64:2518-2527
    [17] D.B. Chase, F.J. Weigert, Fourier-ransform infrared measurement of the catalyst lifetime in the pentacarbonyliron(0) photocatalyzed olefin isomerization, J. Am. Chem. Soc., 1981(103), 977-978
    [18] R.J. Jakobsen, L.L. Brown, S. Winters, R.M. Gendreau, Effects of flow rate and solution concentration on in situ protein adsorption behavior, J. Biomedical Mater. Res.,1983,17:199-201
    [19] S. Winters, R.M. Gendreau, R.I. Leininger, D. Fink, C.R. Hassler, R.J. Jakobsen, Fourier transform infrared spectroscopy of protein adsorption from whole blood: Ⅱ. Ex vivo sheep studies, Appl. Spectro., 1982, 36: 404-409
    [20] M.L.P. Leitao, C.M.R. Nobre, J.L. jesus, J.S. Redinha, Phase transition in trans and cis-l,2-cyclohexanediol studied by infrared spectroscopy, J. Therm. Anal Cal., 1999,57:111-118
    [21] (a) C.S.P. Sung, N.S. Schneider, Temperature dependence of hydrogen bonding in toluene diisocyanate based polyurethanes, Macromolecules, 1977,10: 452-458; (b) V.L. Furer, The IR spectra and hydrogen bonding of toluene-2,6-bis(methyl) and 4,4-diphenylmethane-bis(methyl) carmates, J. Mol. Struct., 2000, 520: 117-123
    [22] H.W. Siesler, Characterization of molecular order in solid polymers by rheo-optical Fourier-transform infrared spectroscopy: recent advances, Pure Appl. Chem., 1985, 57: 1603-1616
    [23] 吴平平,绍春宇,朱敦明,韩哲文,傅立叶变换红外光谱技术及应用研讨会论文集,中国环境科学出版社,1987,p.111-115
    [24] R.J. Karpowicz, T.B. Brill, Kinetic data for solid phase transition by Fourier transformation spectroscopy, Appl. Spectrosc., 1983,37(1): 79-81
    [25] S.B. Lin, J.L. Koenig, Spectroscopic characterization of solvent-induced crystallization of PET, J. Polym. Sci., Polym. Phys. Ed., 1983,21:1539-1558
    [26] K. Holland-Moritz, I. Holland-Moritz, K. van Werden, Application of FTIR-spectroscopy on orientation processes in polythylenen films, Colloid Polym. Sci., 1981,259:156-162
    [27] M. Br(?)uchler, C. Boeffel, H.W. Spiess, Dynamic Fourier transform infrared spectroscopy of liquid-crystalline elastomers, Die Makromol Chem., 1991, 191: 1153-1176
    [28] V.L. Solozhenko, D. Hausermann, M. Mezouar, M. Kunz., Equation of state of, wurtzitic boron nitride to 66 GPa, Appl Phys. Lett., 1998, 72: 1691-1693.
    [29] T. Yoshida, Vapour phase deposition of cubic boron nitride , Diamond Relat Mater., 1996, 5: 501-507.
    [30] N.V. Novikov, LA. Petrusha, L.K. Shvedov, S.B. Polotnyak, S.N. Dub, S.A. Shevchenko, Abrupt irreversible transformation of rhombohedral BN to a dense form in uniaxial compression of CVD material, Diam. Relat Mater., 1999, 8: 361-363.
    [31] A.V. Kurdyumov, V.L. Solozhenko, W.B. Zelyavski, Lattice parameters of boron nitride polymorphous modifications as a function of their crystal-structure perfection, J. Appl. Cryst., 1995,28: 540-545.
    [32] J. Liu, Y.K. Vohra, J.T. Tarvin, S.S. Vagarali, Cubic-to-rhombohedral transformation in boron nitride induced by laser heating: In situ Raman spectroscopy studies, Phys. Rev. B, 1995,51: 8591-8594.
    [33] J.H. Edgar, S. Strite, I. Akasaki, H. Amano, C. Wetze, "properties, processing and applications of Gallium Nitride and Related Semiconductors", London: IEE, p23
    [34] K. Watanabe, T.Taniguchi, H. Kanda, Direct-bandgap properties and evid- ence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat. Mater., 2004, 3:404-409.
    [35] (a)郭志猛,宋月清,陈宏霞,贾成厂,超硬材料与工具,冶金工业出版社,1996,p19-23
    [36] N. Miyata, K. Moriki, O. Mishima, M. Fujisawa, T. Hattori, Optical constants of cubic borom,phys.Rev.B,1989,40:12028-12029(b)田民波,刘德令编译.薄膜科学与技术手册,机械工业出版社,1991,p861-865
    [37] S.P.S. Aray, A. D'amico, Preparation, properties and applications of boron nitride thin films, Thin Solid Films, 1998,157(2): 267-282.
    [38] G.M. Ingo, G. Padeletti. X-ray photoelectron spectroscopy and secondary-ion mass spectrometry of boron nitride thin films on austenitic stainless steel, Thin Solid Films, 1993,228(1-2): 276-279.
    [39] G. Satta, G. Cappellini, M. Palummo. Ab initio optical properties of BN in the cubic and in the layered hexagonal phase, Comput Mater. Sci., 2001,22: 78-80.
    [40] H. Edgar. Prospects for device implementation of wide band gap semiconductors, J. Mater. Res., 1992, 7(1): 235-235.
    [41] Y. Kimura, T. Wakabayashi, K. Okada. Boron nitride as a lubricant additive, Wear, 1999,232: 199-206.
    [42] R.C. DeVries, "Cubic Boron Nitride: Handbook of Properties", General Electric Company, Schenectady, New York, 1972.
    [43] 宋志忠,郭永平,张仿清,立方氮化硼薄膜的研究现状及应用前景,物理,1995,24(5):307-319
    [44] R.C. DeVies, Diamond and Diamond-like Films amd Coatings, R.E. Clausing, 1991,p.l53.
    [45] T. Wada, N. Yamashita, Formation of cBN films by ion beam assisted deposition, J. Vac Sci. Technol. A, 1992,10(3): 515-520.
    [46] O. Mishima, "Synthesis and Properties of Boron Nitride", Edited by J.J. Pouch and S.A. Alterovitz, 1990, 54/55, p313.
    [47] O. Mishima, J. Tanaca, S. Yamaoka., High-temperature cubic boron nitride p-n junction diode sade at high pressure, Science, 1987, 238: 181-183
    [48] O. Mishima, K. Era, J. Tanaka, S. Yamaoka, Ultraviolet light-emitting diode of a cubic boron nitride p-n junction made at high pressure, Appl. Phys. Lett., 1988, 53(11): 962-964.
    [49] T.K. Harris, E.J. Brookes, C.J. Taylor, The effect of temperature on the hardness of polycrystalline cubic boron nitride cutting tool materials, Int. J. Refract. Met. H. Mater., 2004,22: 105-110
    [50] Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure, Science, 2007, 317: 932- 934.
    [51] Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Hexagonal boron nitride single crystal growth at atmospheric pressure using Ni-Cr solvent, Chem. Mater., 2008, 20(5): 1661-1663.
    [52] (a) F. Guilhon, B. Bonnetot, D. Cornu, H. Mongeot, Conversion of tris(isopropylamino)borane to polyborazines. Thermal degradation to boron nitride, Polyhedron, 1996, 15: 851-859; (b) D. Cornu, P. Miele, R. Faure, B. Bonnetot, H. Mongeot.J. Bouix, Conversion of B(NHCH_3)_3 into boron nitride and polyborazine fibres and tubular BN structures derived therfrom, J. Mater. Chem., 1999, 9: 757-761; (c) J.A. Perdigon- Melon, A. Auroux, C. Guimon, B. Bonnetot, Micrometric BN powders used as catalyst support: influence of the precursor on the properties of the BN ceramic, J. Solid State Chem., 2004,177: 609-615
    [53] (a) X.P. Hao, M.Y. Yu, D.L. Cui, X.G. Xu, Q.L. Wang, M.H. Jiang, The effect of temperature on the synthesis of BN nanocrystals, J. Cryst. Growth, 2002, 241: 124-128; (b) X.P. Hao, D.L. Cui, G.X. Shi, Y.Q. Yin, X.G. Xu, J.Y. Wang, M.H. Jiang, X.W. Xu, Y.P. Li, B.Q. Sun, Synthesis of Cubic Boron Nitride at Low-Temperature and Low-Pressure Conditions, Chem. Mater., 2001, 13: 2457-2459; (c) M.Y. Yu, D.L. Cui, K. Li, Sh.Y. Yan, Q.L. Wang, Ch. Lei, Hydrothermal synthesis of cubic boron nitride crystals, Mater. Sci. Engirt. B, 2005, 121:166-169.
    [54] (a) P. Dibandjo, F. Chassagneux, L. Bois, C. Sigala, P. Miele, Synthesis of boron nitride with a cubic mesostructure, Microporous Mesoporous Mater., 2006, 92: 286-291; (b) W. Auwaerter, H.U. Suter, H. Sachdev, T. Greber-Chemlnform, Synthesis of one monolayer of hexagonal boron nitride on Ni(111) from B-trichloroborazine (C1BNH)_3, Chem. Mater., 2004, 16: 343-345; (c) P.C. Yang, J.T. Prater, W. Liu, J.T. Glass, R.F. Davis, The formation of epitaxial hexagonal boron nitride on nickel substrates, J. Elect Mater., 2005,34: 1558-1564
    [55] (a) V.V. Pokropivny, V.V. Skorokhod, G.S. Oleinik, A.V. Kurdyumov, T.S. Bartnitskaya, A.V. Pokropivny, A.G. Sisonyuk, D.M. Sheichenko, Boron nitride analogs of fullerenes (the fulborenes), nanotubes and fullerites )the fulborenites), J. Solid State Chem., 2000, 154: 214-222; (b)L.L Chen, H.H Ye, Y. Gogotsi, Carbothermal synthesis of boron nitride coatings on silicon carbide, J. Am. Ceram. Soc., 2003, 86:1830-1837
    [56] P.B. Mirkarimi, K.F. McCarty, D.L. Medlin, Review of advances in cubic boron nitride film synthesis, Mater. Sci. Engin., 1997, R21:47-100
    [57] (a) Q.X. Guo, Y. Xie, Ch.Q. Yi, L. Zhu, P. Gao, Synthesis of ultraviolet luminescent turbostratic boron nitride powders via a novel low-temperature, low-cost, and high-yield chemical route, J. Solid Stat. Chem. 2005, 178: 1925-1928; (b) F. Xu, Y Xie, X. Zhang, Sh.Y. Zhang, X.M. Liu, X.B. Tian, Synergic Nitrogen Source Route to Inorganic Fullerene-like Boron Nitride with Vessel, Hollow Sphere, Onion, and Peanut Nanostructures, Inorg. Chem., 2004, 43: 822-829; (c) X.J. Wang, Y. Xie, Q.X. Guo, Synthesis of quality inorganic fullerene-like BN hollow spheres via a simple chemical route, Chem. Comm., 2003,2688-2689.
    [58] M. Hubacek, M. Ueki, Chemical reactions in hexagonal boron nitride system, J. Solid State Chem., 1996,123: 215-222.
    [59] 余丽丽,溶剂热合成纳米BN反应过程及其热稳定性研究,山东大学硕士学位论文,2006.
    [1] V.H. Hess, Strucktubestimmungen an bor-stickstoff-verbindungen. Ⅲ. Die kristall-und molekularstuktur von trimethylamin-bortrichlorid, Acta Cryst. Sect. B, 1969,25: 2338-2341
    [2] P.H. Clippard, J.C. Hanson, R.C. Taylor, Crystal and molecular structures of three trimethylamine-boron halide adducts: (CH_3)_3NBCl_3, (CH_3)_3NBBr_3 and (CH_3)_3NBI_3, J. Cryst Mol. Struct., 1971,1: 363-371
    [3] (a) J. Olander, K. Larsson, Cubic boron nitride growth from NH_3 and BBr_3 precursors: a theretical study, Diam. Relat. Mater., 2002, 11: 1286-1289; (b) J. Olander, K. Larsson, Initial growth of hexagonal and cubic noron nitride: a theoretical study, Phys. Rev. B, 2003 (68), 075411-075418.
    [4] (a) Q.X. Guo, Y. Xie, Ch.Q. Yi, L. Zhu, P. Gao, Synthesis of ultraviolet luminescent turbostratic boron nitride powders via a novel low-temperature, low-cost, and high-yield chemical route, J. Solid Stat. Chem. 2005, 178: 1925-1928; (b) F. Xu, Y. Xie, X. Zhang, Sh.Y. Zhang, X.M. Liu, X.B. Tian, Synergic Nitrogen Source Route to Inorganic Fullerene-like Boron Nitride with Vessel, Hollow Sphere, Onion, and Peanut Nanostructures, Inorg. Chem., 2004, 43: 822-829; (c) X.J. Wang, Y. Xie, Q.X. Guo, Synthesis of quality inorganic fullerene-like BN hollow spheres via a simple chemical route, Chem. Comm., 2003,2688-2689.
    [5] (a) X.P. Hao, M.Y. Yu, D.L. Cui, X.G. Xu, Q.L. Wang, M.H. Jiang, The effect of temperature on the synthesis of BN nanocrystals, J. Cryst. Growth, 2002, 241: 124-128; (b) X.P. Hao, D.L. Cui, G.X. Shi, Y.Q. Yin, X.G. Xu, J.Y. Wang, M.H. Jiang, X.W. Xu, Y.P. Li, B.Q. Sun, Synthesis of Cubic Boron Nitride at Low-Temperature and Low-Pressure Conditions, Chem. Mater., 2001, 13: 2457-2459.
    [6] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr.T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, and J.A. Pople, Gaussian, Inc., Wallingford CT, 2004.
    [7] J.B. Foresman, "Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian ", Frisch E (ed): Gaussian, Inc., Pittsburg, PA, 1996
    [8] A.P. Scott, L.J. Radom, Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Moller-Plessent, Quadratic Configuration, Density Functional Theory, and Semiempirical Scale Factors, J. Phys. Chem., 1996, 100: 16502-16513
    [9] G. Rauhut, P.J. Pauly, Transferable scaling factors for density functional derived force fields, J. Phys. Chem., 1995,99: 3093-3100
    [10] (a) P.H. Laswick, R.C. Taylor, Spectroscopic studies of lewis acid-base complexes. Ⅳ. an infrared study of oriented single crystals and normal coordinate analysis of trimethylamine-boron halide adducts, J. MoL Struct., 1976, 34: 197-218; (b) R.L. Amster, R.C. Taylor, Spectoscopic studies of lewis acid-base complexes-I vibrational spectra and assignments for trimethylymine complexes of boron halides, Spectrochimica Acta., 1964,20: 1487-1502
    [11] (a) J.D. Carpenter, B.S. Ault, Infrared matrix isolation characterization of aminoborane and related compounds, J. Phys. Chem., 1991, 95: 3502-3506; (b) R.C. Taylor, D.L.W. Kwoh, Spectroscopic studies of lewis acid-base complexes Part7. vibrational spectra and normal coordinate calculations for trimethylphosphine-gallium halide complexes, Spectrochimica Acta A, 1996, 52: 305-314; (b) E. Bozkurt, (?). Kartal, F. K(?)ksal, Y. Soydas Bozkurt, Electron paramagnetic resonance of γ-irradiated [(CH_3)_4N]_2ZnF_4 and [(CH_3)_4N]_2CdF_4 single crystals and vibrational spectra of their unirradiated forms, Radiat. Phys. Chenu, 2008,77: 1005-1008.
    [12] (a) J.T. Braunholtz, E.A.V. Bsworth, F.G Mann, N. Sheppard, An infrared absorption band of the N-methyl group in the region of 2800cm~(-1), J. Chenu Soc., 1958, 80: 2780-2783; (b) S. Fleming, R.W. Parry, The coordination of fluorodiakylaminophosphines with boron acids. The formation of boron-phosphorus and boron-nitrogen bonds, Inorg. Chem., 1972, 11: 1-6; (c)吴瑾光,近代傅立叶变化红外光谱技术与应用,第1版,北京,科学技术文 献出版社,1994,p.582-588&592-595。
    [13] 沈兴,差热、热重分析与非等温固相反应动力学,北京,冶金工业出版社,1995
    [14] R.C. Osthoff, C.A. Brown, F.H. Clarke, Addition compound of boron tribromide and trimethylamine, J. Am. Chem. Soc., 1951, 73: 4045-4045
    [15] (a) M. Hubacek, M. Ueki, Chemical reactions in hexagonal boron nitride system, J. Solid State Chem., 1996,123: 215-222; (b) F. Guilhon, B. Bonnetot, D. Cornu, H. Mongeot, Conversion of tris(isopropylamino)borane to polyborazines. Thermal degradation to boron nitride, Polyhedron, 1996,15: 851-859
    [16] C. Bertrand, M. Laurence, Recent developments in the chemistry of amine-and-phosphine-boranes, Tetrahenron, 1999,55:1197-1248
    [17] (a) X. Blase, A. Rubio, S.G. Louie, M.L. Cohen, Stability and band gap constancy of boron nitride nanotubes, Europhys. Lett., 1994, 28(5): 335-340; (b) N.G. Chopra, R.J. Luyken, K. Cherrrey, V.H. Crespi, M.L. Cohen, S.G Louie, A. Zettl, Boron nitride nanotubes, Science, 1995,269: 966-967
    [18] (a) D. Cornu, P. Miele, R. Faure, B. Bonnetot, H. Mongeot,J. Bouix, Conversion of B(NHCH_3)_3 into boron nitride and polyborazine fibres and tubular BN structures derived therfrom, J. Mater. Chem., 1999, 9: 757-761; (b) J.A. Perdigon-Melon, A. Auroux, D. Cornu, P. Miele, B. Toury, B. Bonnetot, Porous boron nitride supports obtained from molecular precursors. Influence of the precursor formulation and of the thermal treatment on the properties of the BN ceramic, J. Organometallic Chem., 2002, 657: 98-106; (c) J.A. Perdigon- Melon, A. Auroux, C. Guimon, B. Bonnetot, Micrometric BN powders used as catalyst support: influence of the precursor on the properties of the BN ceramic, J. Solid State Chem., 2004,177: 609-615
    [1] J. B. Foresman, "Exploring Chemistry with Electronic Structure Methods: A Guide to Using Gaussian ", Frisch E (ed): Gaussian, Inc., Pittsburg, PA, 1996
    [2] A.P. Scott, L.J. Radom, Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Moller-Plessent, Quadratic Configuration, Density Functional Theory, and Semiempirical Scale Factors, J. Phys. Chem., 1996, 100: 16502-16513
    [3] (a) J.T. Braunholtz, E.A.V. Bsworth, F.G. Mann, N. Sheppard, An infrared absorption band of the N-methyl group in the region of 2800cm~(-1), J. Chem. Soc., 1958, 80: 2780-2783; (b) S. Fleming, R.W. Parry, The coordination of fluorodiakylaminophosphines with boron acids. The formation of boron-phosphorus and boron-nitrogen bonds, Inorg. Chem., 1972,11: 1-6;(c)吴瑾光,近代傅立叶变化红外光谱技术及应用,第1版,北京,科学技术文献出版社,1994,p.582-588&592-595。
    [4] C. Bertrand, M. Laurence, Recent developments in the chemistry of amine-and-phosphine-boranes, Tetrahenron, 1999, 55: 1197-1248
    [5] (a) M. Hubacek, M. Ueki, Chemical reactions in hexagonal boron nitride system, J. Solid State Chem., 1996, 123: 215-222; (b) F. Guilhon, B. Bonnetot, D. Cornu, H. Mongeot, Conversion of tris(isopropylamino)borane to polyborazines. Thermal degradation to boron nitride, Polyhedron, 1996,15: 851-859
    [6] (a) J. Olander, K. Larsson, Cubic boron nitride growth from NH_3 and BBr_3 precursors: a theretical study, Diam. Relat. Mater., 2002, 11: 1286-1289; (b) J. Olander, K. Larsson, Initial growth of hexagonal and cubic boron nitride: a theoretical study, Phys. Rev. B, 2003 (68), 075411-075418.
    [7] J.Y. Huang, Y.T.T. Zhu, Atomic-scale structural investigations on the nucleation of cubic boron nitride from amorphous boron nitride under high pressure and temperature, Chem. Mater. 2002,14:1873-1878
    [8] E.B. Wilson, "Molecular Vibrations", N. Y.: Dover Publications, Inc., 1980
    [9] M. Gussoni, "Infrared and Raman Intensities from Electro-Optical Parameters, in 'Advancies in Infrared and Raman Spectroscopy'", vol. 6(Ed, R. J. H. Clark, R. E. Hester) Philadephia: Heyden & Son Inc., 1980:161.
    [10] (a)郑重知,不可逆热力学及现代反应动力学导论,1990;(b)李绍芬,反应工程,第2版,北京,化学工业出版社,2000;(c)许越,化学反应动力学,北京,化学工业出版社,2004,12。
    [11] (a) J.A. Perdigon-Melon, A. Auroux, C. Guimon, B. Bonnetot, Micrometric BN powders used as catalyst support: influence of the precursor on the properties of the BN ceramic, J. Solid State Chem., 2004, 177: 609-615; (b) J.A. Perdigon-Melon, A. Auroux, D. Cornu, P. Miele, B. Toury, B. Bonnetot, Porous boron nitride supports obtained from molecular precursors. Influence of the precursor formulation and of the thermal treatment on the properties of the BN ceramic, J. Organometallic Chenu, 2002,657:98-106
    [12] (a) Q.X. Guo, Y. Xie, Ch.Q. Yi, L. Zhu, P. Gao, Synthesis of ultraviolet luminescent turbostratic boron nitride powders via a novel low-temperature, low-cost, and high-yield chemical route, J. Solid Stat. Chem. 2005, 178: 1925-1928; (b) F. Xu, Y. Xie, X. Zhang, SLY. Zhang, X.M. Liu, X.B. Tian, Synergic Nitrogen Source Route to Inorganic Fullerene-like Boron Nitride with Vessel, Hollow Sphere, Onion, and Peanut Nanostructures, Inorg. Chem., 2004, 43: 822-829
    [13] (a) X.P. Hao, M.Y. Yu, D.L. Cui, X.G Xu, Q.L. Wang, M.H. Jiang, The effect of temperature on the synthesis of BN nanocrystals, J. Cryst Growth, 2002, 241: 124-128; (b) X.P. Hao, D.L. Cui, G.X. Shi, Y.Q. Yin, X.G. Xu, J.Y Wang, M.H. Jiang, X.W. Xu, Y.P. Li, B.Q. Sun, Synthesis of Cubic Boron Nitride at Low-Temperature and Low-Pressure Conditions, Chenu Mater., 2001, 13: 2457-2459; (c) X.P. Hao, D.L. Cui, G.X. Shi, Y.Q. Yin, X.G. Xu, M.H. Jiang, X.W. Xu, Y.P. Li, Low temperature benzene thermal synthesis and characterization of boron nitride nanocrystals, Mater. Lett., 2001, 51: 509-513
    [14] (a) J.D. Carpenter, B.S. Ault, Infrared matrix isolation characterization of aminoborane and related compounds, J. Phys. Chenu, 1991, 95: 3502-3506; (b) E. Bozkurt, I. Kartal, F. Koksal, Y. Soydas Bozkurt, Electron paramagnetic resonance of γ-irradiated [(CH_3)_4N]_2ZnF_4 and [(CH_3)_4N]_2CdF_4 single crystals and vibrational spectra of their unirradiated forms, Radiat. Phys. Chem., 2008,77:1005-1008;(c)董庆年,红外光谱法,石油化学工业出版社,1977
    [1] (a)李绍芬,反应工程,第2版,北京,化学工业出版社,2000;(b)许越,化学反应动力学,北京,化学工业出版社,2004
    [2] 余丽丽,溶剂热合成纳米BN反应过程及其热稳定性研究,山东大学,2006
    [3] 金家骏,液相化学反应动力学原理,上海科学技术出版社,1984
    [4] 魏运洋,李建,化学反应机理导论,科学出版社,2004过渡态理论的基本假设:(1)反应物分子在从初态到终态的反应进程中,应先活化成处于过渡态的活化络合物,然后再分解成产物;(2)反应物与活化络合物之间处于热力学平衡;(3)活化络合物以一定的速率分解产物。反应独立共存原理:基元反应的反应速率常熟和服从的基本动力学规律不因其他基元反应的存在与否而有所不同。
    [5] P.T.T. Wong, D.J. Moffatt, F.L. Baudais, Crystalline quartz as an internal pressure calibrant for high-pressure infrared spectroscopy, AppL Spectrosc., 1985,39:733-735
    [6] C. Bertrand, M. Laurence, Recent developments in the chemistry of amine-and-phosphine-boranes, Tetrahenron, 1999(55), 1197-1248
    [7] 汪志诚,热力学·统计物理,高等教育出版社,1993
    [8] S. Fahy, C.A. Taylor, R. Clarke, Islanding and strain-induced shifts in the infrared absorption peaks of cubic boron nitride thin films, Phys. Rev. B, 1997, 56: 12573-12579
    [9] (a) D.R. McKenzie, W.D. McFall, W.G. Sainty, C.A. Davis, R.E. Collins, Compressive stress-induced formation of cubic boron nitride, Diam. Relat. Mater., 1993, 2: 970-976; (b) H. S. Yang, Y. Zhang, X. B. Zhang, Influence of the compressive stress on the infrared absorption of sp~2-bonded boron nitride in cubic boron nitride thin fihn,Appl. Phys. Lett., 2007, 91: 061907-061909
    [10] O. Brafrnan, G. Lenhyel, S.S. Mitra, P.J. Gielisse, J.N. Plendl, L.C. Mansur, Raman spectra of AlN, cubic BN and BP, Solid State Commun., 1968, 6: 523-526
    [11] G. Kessler, K.D. Bauer, W. Pompe, J.J. Scheibe, Laser pulse vapour deposition of polycrystalline wurtzite-type BN, Thin solid films, 1987,147: L45-L50
    [12] S.S. Batznov, G.E. Blochin, A.A. Deribas, Strukturnyeizmeneniya nitrida bora, Zh. Strukt Khimii, 1965,6: 227-232
    [13] A. Olszyna, J. Konwerska-Hrabowska, M. Lisicki, Molecular structure of E-BN, Diamond Relat. Mater., 1997,6: 617-620
    [14] Q.X. Guo, Y. Xie, C.Y. Yi, L. Zhu, P. Gao, Synthesis of ultraviolet luminescent turbostratic boron nitride powders via a novel low-temperature, low-cost, and high-yield chemical route, J. Solid Stat. Chem. 2005,178: 1925-1928
    [15] R. Geick, C.H. Perry, G. Rupprecht, Normal modes in hexagonal boron nitride, Phys. Rev. 1966,146: 543-547
    [16] J. Liu, Y.K. Vohra, T.J. T.; S.S. Vagarali, Cubic-to-rhombohedral transformation in boron nitride by laser heating: in situ Raman-spectroscopy studies, Phys. Rev. B, 1995,51(13):8591-8594
    [17] M. Gussoni, "Infrared and Raman Intensities from Electro-Optical Parameters, in 'Advancies in Infrared and Raman Spectroscopy'", vol. 6(Ed, R. J. H. Clark, R. E. Hester) Philadephia: Heyden & Son Inc., 1980: 161
    [18] P.B. Mirkarimi, K.F. McCarty, D.L. Medlin, Review of advances in cubic nitride film synthesis, Mater. Sci. Eng., 1997, R21: 47-100
    [19] T. Akashi, H.R. Pak, A. Sawaoka, Structural changes of wurtzite-type and zincblende-type boron nitrides by shock treatments, J. Mater. Sci., 1986, 21: 4060-4066
    [1] (a) X.P. Hao, M.Y. Yu, D.L. Cui, X.G. Xu, Q.L. Wang, M.H. Jiang, The effect of temperature on the synthesis of BN nanocrystals, J. Cryst. Growth, 2002, 241: 124-128; (b) X.P. Hao, D.L. Cui, G.X. Shi, Y.Q. Yin, X.G. Xu, J.Y. Wang, M.H. Jiang, X.W. Xu, Y.P. Li, B.Q. Sun, Synthesis of Cubic Boron Nitride at Low-Temperature and Low-Pressure Conditions, Chem. Mater., 2001, 13: 2457-2459; (c) S.Y. Dong, X.P. Hao, X.G. Xu, D.L. Cui, M.H. Jiang, The effect of reactants on the benzene thermal synthesis of BN, Mater. Lett., 2004, 58: 2791-2794
    [2] (a) F. Xu, Y. Xie, X. Zhang, Sh.Y. Zhang, X.M. Liu, X.B. Tian, Synergic Nitrogen Source Route to Inorganic Fullerene-like Boron Nitride with Vessel, Hollow Sphere, Onion, and Peanut Nanostructures, Inorg. Chem., 2004, 43: 822-829; (b) Q.X. Guo, Y. Xie, Ch.Q. Yi, L. Zhu, P. Gao, Synthesis of ultraviolet luminescent turbostratic boron nitride powders via a novel low-temperature, low-cost, and high-yield chemical route, J. Solid Stat. Chem. 2005, 178: 1925-1928; (c) J.A. Perdigon-Melon, A. Auroux, C. Guimon, B. Bonnetot, Micrometric BN powders used as catalyst support: influence of the precursor on the properties of the BN ceramic, J. Solid State Chem., 2004,177: 609-615
    [3] (a)李绍芬,反应工程,第2版,北京,化学工业出版社,2000;(b)许越,化学反应动力学,北京,化学工业出版社,2004
    [4] J.X. Huang, Y. Xie, B. Li, Y. Lin, Y.T. Qian, S.Y. Zhang, In-situ source template interface reaction route to semiconductor CdS submicrometer hollow spheres, Adv. Mater., 2000,12:808-811
    [5] H. Reiss, The growth of uniform colloidal dispersions, J. Chem. Phys., 1951, 19: 482-487.
    [6] S.S. Botsanova, G.E. Blokhina, A.A. Deribas, Strukturnyeizme-neniya nitrida bora, Zh. Strukt. Khimii, 1965,6:227-232.
    [7] Jr.J. Thomas, N.E. Weston, T.E. O'Conner, Turbostratic Boron Nitride, Thermal Transformation to Ordered-layer-lattice Boron Nitride, J. Am. Chem. Soc. 1963, 84:4619-4622.
    [8] B.Yao, Z.X. Shen, L. Liu, W.H. Su, Strong deep-blue photoluminescence of mesographite boron nitride, J. Phys. Condens. Matter, 2004,16: 2181-2186.
    [9] J. Biscoe, B.E. Warren, An X-ray study of carbon black, J. Appl. Phys., 1942, 13: 364-371
    [10] P. Widmayer, H.G. Boyen, P. Ziemann, Electron spectroscopy on boron nitride thin films:Comparison of near-surface to bulk electronic properties ,Phys. Rev. B, 1999, 59: 5233-5241
    [11] D.H. Berns, M.A. Cappelli, Cubic boron nitride synthesis in low-density supersonic plasma flows, Appl Phys. Lett., 1996,68: 2711-2713
    [12] CD. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, "Handbook of X-ray Photoelectron Spectroscopy", Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minn. 1979, 55344.
    [13] (a) H. Edgar. Prospects for device implementation of wide band gap semiconductors, J. Mater. Res., 1992, 7(1): 235-235; (b) S.P.S. Aray, A. D'amico. Preparation, properties and applications of boron nitride thin films, Thin Solid Films, 1993,228(1-2): 276-279.
    [14] (a) G. Satta, G. Cappellini, M. Palummo. Ab initio optical properties of BN in the cubic and in the layered hexagonal phase, Comput. Mater. Sci., 2001,22: 78-80; (b) K. Watanabe, T. Taniguchi, H. Kanda, Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal, Nat Mater., 2004, 3:404-409.
    [15] (a) K. Watanable, T. Taniguchi, T. Kuroda, H. Kanada, Effects of deformation on band-edge luminescence of hexagonal boron nitride single crystals, Appl. Phys. Lett. 2006, 89: 141902-141904; (b) Y. Kubota, K. Watanabe, O. Tsuda, T. Taniguchi, Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure, Science, 2007,317: 932- 934.
    [16] T.A. Friedmann, P.B. Mirkarmi, D.L. Medlin, K.F. McCarty, E.J. Klaus, D. Boehme, H.A. Johnsen, M.J. Mills, D.K. Ottesen, Ion-assisted pulsed laser deposition of cubic boron nitride films, J.Appl. Phys., 1994,76: 3088-3101
    [17] R.M. Chrenko. Ultraviolet and infrared spectra of cubic boron nitride, Solid State Comm., 1974,14(6): 511-515
    [18] (a) J.C.S. Wu, Zh.A. Lin, J.W. Pan, M.H. Rei, A novel boron nitride suppoted Pt catalyst for VOC incineration, Appl. Catal. A, 2001, Gen. 219: 117-124; (b) C.A. Lin, J.C.S. Wu, J.W. Pan, C.T. Yeh, Characterization of boron-nitride-supported Pt catalysts for the deep oxidation of benzene, J. CataL, 2002, 210: 39-45; (c) J.A. Perdigon-Melon, A. Auroux, C. Guimon, B. Bonnetot, Micrometric BN powders used as catalyst support: influence of the precursor on the properties of the BN ceramic, J. Solid State Chem., 2004,177: 609-615
    [19] L.L. Yu, L.G. Gai, D.L. Cui and Q.L. Wang , In-situ Investigation of BBr3/Benzene Solution by Fourier Transformation Infrared Spectroscopy, Chem. Res. in Chin. University, in press
    [20] M.Y. Yu, K. Li, and Z.F. Lai, D.L. Cui, X.P. Hao, M.H. Jiang, Q.L. Wang, Phase-selective synthesis of cubic boron nitride in hydrothermal solutions, J. Cryst. Growth, 2004,269: 570-574.
    [21] S. Fahy, C.A. Taylor, R. Clarke, Islanding and strain-induced shifts in the infrared absorption peaks of cubic boron nitride thin films, Phys. Rev. B, 1997, 56: 12573-12579
    [22] (a) D.R. McKenzie, W.D. McFall, W.G. Sainty, C.A. Davis, R.E. Collins, Compressive stress-induced formation of cubic boron nitride, Diam. Relat. Mater., 1993, 2: 970-976; (b) H. S. Yang, Y. Zhang, X. B. Zhang, Influence of the compressive stress on the infrared absorption of sp~2-bonded boron nitride in cubic boron nitride thin film, Appl. Phys. Lett, 2007, 91: 061907-061909
    [23] T. Akashi, H.R. Pak, A. Sawaoka, Structural changes of wurtzite-type and zincblende-type boron nitrides by shock treatments, J. Mater. Sci., 1986, 21:4060-4066
    [24] H. Nameki, T. Sekine, T. Kobayashi, O. Fat'yanov, T. Sato, S. Tashiro, Rapid quench formation of E-BN from shocked turbostractic BN precursors, J. Mater. Sci. Lett. 1996,15:1492-1494
    [25] Y. Suwa, M. Inagaki, S. Naka, Polymorphic transformation of titanium dioxide by mechanical grinding, J. Mater. ScL, 1984,19: 1397-1405
    [26] R.C. Garvie, The occurrence of metastable tetragonal zirconia as a crystallite size effect, J. Phys. Chem., 1965(69), 1238-1243
    [27] A. Olszyna, J. Konwerska-Hrabowska, M. Lisicki, Molecular structure of E-BN, Dianu RelaL Mater., 1997,6: 617-620.
    [28] (a) A.V. Pokropivny, Structure of the boron nitride E-phase: Diamond lattice of B_(12)N_(12) fullerenes, Diam. Relat. Mater., 2006, 15: 1492-1495; (b) V.V. Pokropivny, L.I. Ovsyannikova, Electronic structure and the infrared absorption and Raman spectra of the semiconductor clusters C_(24), B_(12)N_(12), Si_(12)C_(12), Zn_(12)O_(12), and Ga_(12)N_(12), Phys. Solid State, 2007, 49 (3): 562-570; (c) V. V. Pokropivny, L. I. Ovsyannikova, and S. V. Kovrigin, Electronic structure of crystal-forming fulborenes B_nN_n, Phys. Solid State, 2007,49 (12): 2335-2341; (d) V. V. Pokropivny, A. S. Smolyar, A. V. Pokropivny, Fluid synthesis and structure of a new boron nitride polymorph-hyperdiamond fulborenite B_(12)N_(12) ( E-phase), Phys. Solid State, 2007,49(3): 591-598.
    [29] F. Jensen, H. Toflund, Structure and stability of C_(24) and B_(12)N_(12) isomers, Chem. Phys. Lett., 1993,201: 89-96.
    [30] D.V. Fedoseev, N.V. Novikov, A.S. Vishnevsky, I.G Teremetskaya, "-Diamond: A Handbook", Naukova Dumka, 1981
    [31] 邓金祥,陈浩,陈光华,立方氮化硼薄膜表面的XPS研究,功能材料,2004,35:3187-3190.
    [32] (a) R.C. DeVries, "Cubic Boron Nitride: Handbook of Properties", General Electric Company, Schenectady, New York, 1972; (b) O. Mishima, "Synthesis and Properties of Boron Nitride", Edited by J. J. Pouch and S. A. Alterovitz, 1990, 54/55, p313; (c) S.P.S. Aray, A. D'amico. Preparation, properties and applications of boron nitride thin films, Thin Solid Films, 1998, 157(2): 267-282.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700