用户名: 密码: 验证码:
介孔复合金属氧化物的合成及酸催化应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油炼制过程涉及烯烃水合和聚合、芳烃烷基化、烃类裂解、重整、异构化等酸催化反应过程,可以说酸催化剂是工业的重要基础。自20世纪40年代以来,人们就在不断地寻找强酸性、低成本和环境友好的固体酸催化剂。
     工业上常用的固体酸催化剂是强酸性的HZSM-5分子筛、beta分子筛及Y型分子筛,但是小的孔径限制了他们在大分子催化反应中的应用。介孔材料的问世为大分子催化反应开辟了新的领域。介孔两相复合金属氧化物材料大量应用于酸催化领域。
     在本论文中主要介绍硅铝、钛硅、锆钨等复合金属氧化物材料的合成、酸性调节及其在傅克烷基化反应中的应用。
     第三章中,我们使用溶胶-凝胶法在非离子表面活性剂为结构导向剂的条件下合成了高度有序二维六方结构的介孔硅铝酸盐材料,提高材料在大分子催化反应中的酸催化活性。合成过程中,表面活性剂的用量、硅铝比会影响材料结构的有序性,而醋酸用量对材料结构有序性影响很小。硅铝比会影响材料在苯甲醇和苯甲醚烷基化反应的酸催化活性,当Si/Al=10时材料的酸催化活性最高,而同样条件下,HZSM-5分子筛则不具备催化活性。
     介孔硅铝材料的热稳定性、耐酸碱性较差。第四章中,我们合成了具有中强Bronsted酸位点的有序氧化钛-氧化硅复合金属氧化物。钛硅摩尔比对材料的酸性影响很大,只有当存在六配位钛原子时,材料才具有酸催化活性。在此基础上,我们首次通过高温加氢反应将材料中的Ti4+还原为Ti3+,增加材料的Bronsted酸含量,提高了其酸催化活性。此外,我们使用有机硅烷——苯基三甲氧基硅烷(PTMS)为硅前驱体,对氧化钛-氧化硅材料进行改性,改性后的材料酸催化活性得到一定提高。
     第五章中,我们使用溶胶-凝胶法合成了一系列强酸性介孔氧化锆-氧化钨酸性材料。亚纳米WOx团簇具有很强的B酸酸性,是烷基化反应的活性位点。可以通过调节W的含量、焙烧温度来调控WOx团簇的形成,对于形成WOx团簇而言,存在一个最低的W浓度和焙烧温度。更重要的是,这种亚纳米WOx团簇活性位点,可以在800℃温度下保持稳定。
     第六章中,我们在低温焙烧条件下合成了强酸性氧化锆-氧化钨材料,强酸位点可以通过改变表面活性剂的种类和浓度来调节,WOx团簇在表面活性剂的作用下可以在远低于常用焙烧温度下形成。
     第七章中,我们研究了NH3处理对材料结构和酸性的影响。材料经过NH3焙烧后催化活性下降,但是将N-H3焙烧后的材料再在空气中焙烧后材料的催化活性提高很大,材料酸性的提高可能来源于N原子掺杂形成的W-N-O键。
Acid catalysts play a vital role in the economic development of the chemical industry. Many organic reactions, for example, alkylation, unsaturated hydrocarbon isomerization, esterification, cracking, condensation and so on are accomplished by acid catalysts. Since1940s, solid acids have been widely investigated to reduce the impact on the environment and to decrease costs.
     Among all kinds of heterogeneous acid catalysts, zeolite such as HZSM-5, beta zeolite and zeolite Y which have strong acidity and large amount of active sites have been extensively applied in industrial acid catalysis since the last century. However, their microporous structure has restricted their applications in large molecule acid reaction. In the early1990s, the meso-structured silicates firstly reported opens the new application field for the heterogeneous acid catalytic system for large molecular substrates. Binary mixtures of metallic oxides were applied in acid catalysis.
     In this dissertation, we synthesized a series of mixed metal oxides, adjusted the acidity of these catalysts and applied them into Friedel-Crafts (F-C) reaction.
     In chapter3, ordered mesoporous aluminum silicates with strong acid sites were synthesized by sol-gel method. The amount of surfactant and the Si/Al mole ratio would both affect the materials'meso-structure; while, the amount of HAc has little effect on the structure. The Si/Al mole ratio played an important role in catalytic activity and the aluminum silicates with Si/Al=10showed the best acid catalytic activity. NH3-TPD and Py-FT-IR suggested that the aluminum silicates with Si/Al=10had much more Bronsted acidic sites than that of other Si/Al ratios.
     In chapter4, we have successfully synthesized mesoporous titania-silica materials with moderate strong Bronsted acid sites via a sol-gel with nonionic surfactants precursors. The Ti/Si mole ratio plays a very important role in determining the acidic property of materials, only six-coordinated Ti species can generate Bronsted acid sites. The number of the Bronsted acidic sites can be increased via a high-temperature hydrogenation process, which subsequently improves their catalytic performance in the F-C reaction of anisole and benzyl alcohol. Furthermore, TEOS partly submitted by PTMS as the silica precursor can increase the activity of materials.
     In chapter5, we synthesized mesoporous zirconia-tungsten oxide via a sol-gel process with nonionic surfactants precursors. We identified that the subnanometer WOx clusters act as the most active sites for the F-C reaction. Most importantly, we show that the formation of these subnanometer WOx clusters can be rationally controlled by adjusting W concentration and calcination temperatures, which is of great importance in the design of solid acid catalyst. It is shown that a minimum W concentration (0.07at the calcination temperature of800℃) and a minimum calcination temperature (650℃at a given W concentration of0.1) are required during the preparation of these acid catalysts for the development of highly active subnano WOx clusters.
     In chapter6, mesoporous ZrO2-WO3materials with strong acid sites were successfully synthesized by low temperature calcination that is far below the threshold temperature to develop strong acidity. The formation of these strong acid sites can be well controlled by varying the type and concentration of the added surfactants, which is of great importance for the design of the solid acids with strong acid sites.
     In chapter7, The number of the Bronsted acidic sites of mesoporous ZrO2-WO3materials can be increased via calcined in Air after NH3calcination, which subsequently improves their catalytic performance in F-C reaction of anisole and benzyl alcohol. More important, the way to increase the acid sites via air calcinations after calcined in NH3provides a rational process to regulate their acid property and corresponding catalytic performance.
引文
[1]H. Gleiter, Nanostructured materials:Basic concepts and microstructure, Acta Materialia,2000,48(1),1-29.
    [2]R. Ryoo, S. H. Joo, J. M. Kim, Energetically favored formation of MCM-48 from cationic-neutral surfactant mixtures, Journal of Physical Chemistry B, 1999,103(35),7435-7440.
    [3]M. Kang, S. H. Yi, H. I. Lee, J. E. Tie, J. M. Kim, Reversible replication between ordered mesoporous silica and mesoporous carbon, Chemical Communications,2002, (17),1944-1945.
    [4]A. Taguchi, J. H. Smatt, M. Linden, Carbon monoliths possessing a hierarchical, folly interconnected porosity, Advanced Materials,2003,15(14), 1209-1211.
    [5]B. Z. Tian, X. Y. Liu, B. Tu, C. Z. Yu, J. Fan, L. M. Wang, S. H. Xie, G. D. Stucky, D. Y. Zhao, Self-adjusted synthesis of ordered stable mesoporous minerals by acid-base pairs, Nature Materials,2003,2(3),159-163.
    [6]L. M. Wang, B. Z. Tian, J. Fan, X. Y. Liu, H. F. Yang, C. Z. Yu, B. Tu, D. Y. Zhao, Block copolymer templating syntheses of ordered large-pore stable mesoporous aluminophosphates and Fe-aluminophosphate based on an "acid-base pair" route, Microporous and Mesoporous Materials,2004,67(2-3), 123-133.
    [7]Y. F. Lu, R. Ganguli, C. A. Drewien, M. T. Anderson, C. J. Brinker, W. L. Gong, Y. X. Guo, H. Soyez, B. Dunn, M. H. Huang, J. I. Zink, Continuous formation of supported cubic and hexagonal mesoporous films by sol gel dip-coating, Nature,1997,389(6649),364-368.
    [8]H. Gerung, C. J. Brinker, S. R. J. Brueck, S. M. Han, In situ real-time monitoring of profile evolution during plasma etching of mesoporous low-dielectric-constant SiO2, Journal of Vacuum Science & Technology A, 2005,23(2),347-354.
    [9]X. Y. Liu, B. Z. Tian, C. Z. Yu, F. Gao, S. H. Xie, B. Tu, R. C. Che, L. M. Peng, D. Y. Zhao, Room-temperature synthesis in acidic media of large-pore three-dimensional bicontinuous mesoporous silica with Ia3d symmetry, Angewandte Chemie-International Edition,2002,41(20),3876-3878.
    [10]D. Zhao, P. Yang, N. Melosh, J. Feng, B. F. Chmelka, G. D. Stucky, Continuous mesoporous silica films with highly ordered large pore structures, Advanced Materials,1998,10(16),1380-1311.
    [11]J. Lee, S. Yoon, S. M. Oh, C. H. Shin, T. Hyeon, Development of a new mesoporous carbon using an HMS aluminosilicate template, Advanced Materials,2000,12(5),359-362.
    [12]J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins, J. L. Schlenker, A new family of mesoporous molecular-sieves prepared with liquid-crystal templates, Journal of the American Chemical Society,1992,114(27),10834-10843.
    [13]T. Yanagisawa, T. Shimizu, K. Kuroda, C. Kato, T he preparation of alkyltrimethylammonium-kanemite complexes and their conversion to microporous materials, Bulletin of the Chemical Society of Japan,1990,63(4), 988-992.
    [14]S. A. Bagshaw, A. R. Hayman, Super-microporous silicate molecular sieves, Advanced Materials,2001,13(12-13),1011-1014.
    [15]Q. S. Huo, D. I. Margolese, U. Ciesla, P. Y. Feng, T. E. Gier, P. Sieger, R. Leon, P. M. Petroff, F. Schuth, G. D. Stucky, Generalized synthesis of periodic surfactant inorganic composite-materials, Nature,1994,368(6469),317-321.
    [16]D. Y. Zhao, Q. S. Huo, J. L. Feng, B. F. Chmelka, G. D. Stucky, Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures, Journal of the American Chemical Society,1998,120(24),6024-6036.
    [17]F. Kleitz, S. H. Choi, R. Ryoo, Cubic Ia3d large mesoporous silica:synthesis and replication to platinum nanowires, carbon nanorods and carbon nanorubes, Chemical Communications,2003(17),2136-2137.
    [18]F. Kleitz, D. N. Liu, G. M. Anilkumar, I. S. Park, L. A. Solovyov, A. N. Shmakov, R. Ryoo, Large cage face-centered-cubic Fm3m mesoporous silica: Synthesis and structure, Journal of Physical Chemistry B,2003,107(51), 14296-14300.
    [19]T. W. Kim, F. Kleitz, B. Paul, R. Ryoo, MCM-48-like large mesoporous silicas with tailored pore structure:Facile synthesis domain in a ternary triblock copolymer-butanol-water system, Journal of the American Chemical Society, 2005,127(20),7601-7610.
    [20]K. Mantri, K. Komura, Y. Kubota, Y. Sugi, Friedel-Crafts alkylation of aromatics with benzyl alcohols catalyzed by rare earth metal triflates supported on MCM-41 mesoporous silica, Journal of Molecular Catalysis a-Chemical,2005,236(1-2),168-175.
    [21]A. Vinu, D. P. Sawant, K. Ariga, K. Z. Hossain, S. B. Halligudi, M. Hartmann, M. Nomura, Direct synthesis of well-ordered and unusually reactive FeSBA-15 mesoporous molecular sieves, Chemistry of Materials,2005, 17(21),5339-5345.
    [22]N. Senso, B. Jongsomjit, P. Praserthdam, Effect of calcination treatment of zirconia on W/ZrO2 catalysts for transesterification, Fuel Processing Technology,2011,92(8),1537-1542.
    [23]C. Tagusagawa, A. Takagaki, K. Takanabe, K. Ebitani, S. Hayashi, K. Domen, Effects of Transition-Metal Composition of Protonated, Layered Nonstoichiometric Oxides H1-xNb1-xMo1+xO6 on Heterogeneous Acid Catalysis, Journal of Physical Chemistry C,2009,113(40),17421-17427.
    [24]A. Corma, M. Domine, J. A. Gaona, J. L. Jorda, M. T. Navarro, F. Rey, J. Perez-Pariente, J. Tsuji, B. McCulloch, L. T. Nemeth, Strategies to improve the epoxidation activity and selectivity of Ti-MCM-41, Chemical Communications,1998, (20),2211-2212.
    [25]C. A. Muller, M. Schneider, T. Mallat, A. Baiker, Titania-silica epoxidation catalysts modified by polar organic functional groups, Journal of Catalysis, 2000,189(1),221-232.
    [26]C. A. Muller, M. Schneider, A. Gisler, T. Mallat, A. Baiker, Titania-silica epoxidation catalysts modified by acetoxypropyl groups, Catalysis Letters, 2000,64(1),9-14.
    [27]M. R. Prasad, M. S. Hamdy, G. Mul, E. Bouwman, E. Drent, Efficient catalytic epoxidation of olefins with silylated Ti-TUD-1 catalysts, Journal of Catalysis,2008,260(2),288-294.
    [28]H. Takahashi, B. Li, T. Sasaki, C. Miyazaki, T. Kajino, S. Inagaki, Immobilized enzymes in ordered mesoporous silica materials and improvement of their stability and catalytic activity in an organic solvent, Microporous and Mesoporous Materials,2001,44,755-762.
    [29]J. Fan, J. Lei, L. M. Wang, C. Z. Yu, B. Tu, D. Y. Zhao, Rapid and high-capacity immobilization of enzymes based on mesoporous silicas with controlled morphologies, Chemical Communications,2003, (17),2140-2141.
    [30]J. Fan, C. Z. Yu, T. Gao, J. Lei, B. Z. Tian, L. M. Wang, Q. Luo, B. Tu, W. Z. Zhou, D. Y. Zhao, Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties, Angewandte Chemie-International Edition,2003,42(27),3146-3150.
    [31]A. S. M. Chong, X. S. Zhao, Design of large-pore mesoporous materials for immobilization of penicillin G acylase biocatalyst, Catalysis Today,2004, 93(5),293-299.
    [32]Y. J. Han, G. D. Stucky, A. Butler, Mesoporous silicate sequestration and release of proteins, Journal of the American Chemical Society,1999,121(42), 9897-9898.
    [33]B. C. Dave, B. Dunn, J. S. Valentine, J. I. Zink, Sol-gel encapsulation methods for biosensors, Analytical Chemistry,1994,66(22),1120-1127.
    [34]S. Cosnier, C. Gondran, A. Senillou, M. Gratzel, N. Vlachopoulos, Mesoporous TiO2 films:New catalytic electrode materials for fabricating amperometric biosensors based on oxidases, Electroanalysis,1997,9(18), 1387-1392.
    [35]N. K. Mal, M. Fujiwara, Y. Tanaka, Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica, Nature,2003, 421(6921),350-353.
    [36]刘庆辉,詹宏昌,汤敏擘,固体酸催化剂的分类以及研究近况,广州化工,2008,36(2),14-18.
    [37]吴宝贵,王延吉,硫化物催化剂体系载体酸强度分布及其与反应性能的关联,河北工业大学学报,2000,29(4),9-12.
    [38]S. G. Li, D. A. Dixon, Molecular and electronic structures, Bronsted basicities, and Lewis acidities of group VIB transition metal oxide clusters, Journal of Physical Chemistry A,2006,110(19),6231-6244.
    [39]M. Scheithauer, R. K. Grasselli, H. Knozinger, Genesis and structure of WOx/ZrO2 solid acid catalysts, Langmuir,1998,14(11),3019-3029.
    [40]M. A. Cortes-Jacome, C. Angeles-Chavez, E. Lopez-Salinas, J. Navarrete, P. Toribio, J. A. Toledo, Migration and oxidation of tungsten species at the origin of acidity and catalytic activity on WO3-ZrO2 catalysts, Applied Catalysis a-General,2007,318,178-189.
    [41]Z. F. Liu, J. Tabora, R. J. Davis, Relationships between microstructure and surface-acidity of Ti-Si mixed-oxide catalysts, Journal of Catalysis,1994, 149(1),117-126.
    [42]T. Y. Kim, D. S. Park, Y. Choi, J. Baek, J. R. Park, J. Yi, Preparation and characterization of mesoporous Zr-WOx/SiO2 catalysts for the esterification of 1-butanol with acetic acid, Journal of Materials Chemistry,2012,22(19), 10021-10028.
    [43]D. G. Barton, M. Shtein, R. D. Wilson, S. L. Soled, E. Iglesia, Structure and electronic properties of solid acids based on tungsten oxide nanostructures, Journal of Physical Chemistry B,1999,103(4),630-640.
    [44]黄剑峰,溶胶-凝胶原理与技术,北京:化学工业出版社,2005,1-264.
    [45]赵光,邓启刚,工业催化基础,哈尔滨:哈尔滨工程大学出版社,1999,1-346.
    [46]A. Corma, Q. B. Kan, M. T. Navarro, J. PerezPariente, F. Rey, Synthesis of MCM-41 with different pore diameters without addition of auxiliary organics, Chemistry of Materials,1997,9(10),2123-2126.
    [47]P. A. Russo, M. M. L. R. Carrott, P. J. M. Carrott, Effect of hydrothermal treatment on the structure, stability and acidity of A1 containing MCM-41 and MCM-48 synthesised at room temperature, Colloids and Surfaces a-Physicochemical and Engineering Aspects,2007,310(1-3),9-19.
    [48]B. Dragoi, E. Dumitriu, C. Guimon, A. Auroux, Acidic and adsorptive properties of SB A-15 modified by aluminum incorporation, Microporous and Mesoporous Materials,2009,121(1-3),7-17.
    [49]M. Valigi, D. Gazzoli, I. Pettiti, G. Mattei, S. Colonna, S. De Rossi, G. Ferraris, WOx/ZrO2 catalysts Part 1. Preparation, bulk and surface characterization, Applied Catalysis a-General,2002,231(1-2),159-172.
    [50]M. Gomez-Cazalilla, J. M. Merida-Robles, A. Gurbani, E. Rodriguez-Castellon, A. Jimenez-Lopez, Characterization and acidic properties of Al-SBA-15 materials prepared by post-synthesis alumination of a low-cost ordered mesoporous silica, Journal of Solid State Chemistry,2007, 180(3),1130-1140.
    [51]S. Q. Zeng, J. Blanchard, M. Breysse, Y. H. Shi, X. T. Shu, H. Nie, D. D. Li, Post-synthesis alumination of SBA-15 in aqueous solution:A versatile tool for the preparation of acidic Al-SBA-15 supports, Microporous and Mesoporous Materials,2005,85(3),297-304.
    [52]L. Gao, F. N. Gu, Y. Zhou, J. Yang, Y Wang, J. H. Zhu, Capturing 1,3-butadiene by the highly ordered Al-containing SBA-15, Journal of Hazardous Materials,2009,171(1-3),378-385.
    [53]Y. Han, F. S. Xiao, S. Wu, Y. Y. Sun, X. J. Meng, D. S. Li, S. Lin, F. Deng, X. J. Ai, A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media, Journal of Physical Chemistry B,2001,105(33),7963-7966.
    [54]S. Ramu, N. Lingaiah, B. Devi, R. B. N. Prasad, I. Suryanarayana, P. S. S. Prasad, Esterification of palmitic acid with methanol over tungsten oxide supported on zirconia solid acid catalysts:effect of method of preparation of the catalyst on its structural stability and reactivity, Applied Catalysis a-General,2004,276(1-2),163-168.
    [55]X. Y. Yang, A. Vantomme, A. Lemaire, F. S. Xiao, B. L. Su, A highly ordered mesoporous aluminosilicate, CMI-10, with a Si/Al ratio of one, Advanced Materials,2006,18(16),2117-2121.
    [56]V. V. Balasubramanian, C. Anand, R. R. Pal, T. Mori, W. Bohlmann, K. Ariga, A. K. Tyagi, A. Vinu, Characterization and the catalytic applications of mesoporous AlSBA-1, Microporous and Mesoporous Materials,2009, 121(1-3),18-25.
    [57]Q. S. Huo, R. Leon, P. M. Petroff, G. D. Stucky, Mesostructure design with gemini surfactants-supercage formation in a 3-dimensional hexagonal array, Science,1995,268(5215),1324-1327.
    [58]Q. S. Huo, D. I. Margolese, U. Ciesla, D. G. Demuth, P. Y. Feng, T. E. Gier, P. Sieger, A. Firouzi, B. F. Chmelka, F. Schuth, G. D. Stucky, Organization of organic-molecules with inorganic molecular-species into nanocomposite biphase arrays, Chemistry of Materials,1994,6(8),1176-1191.
    [59]D. E. Lopez, K. Suwannakarn, D. A. Bruce, J. G. Goodwin, Esterification and transesterification on tungstated zirconia:Effect of calcination temperature, Journal of Catalysis,2007,247(1),43-50.
    [60]F. Hatayama, T. Ohno, T. Yoshida, T. Ono, H. Miyata, FTIR investigation of the structure of vanadium-oxides on ZrO2 and oxidation of toluene on it, Reaction Kinetics and Catalysis Letters,1991,44(2),451-455.
    [61]M. Hino, K. Arata, Solid catalyst treated with anion.1. catalytic activity of iron-oxide treated with sulfate ion for dehydration of 2-propanol and ethanol and polymerization of isobutyl vinyl ether, Chemistry Letters,1979, (5), 477-480.
    [62]H. Nakabayashi, K. Nishiwaki, N. Kakuta, A. Ueno, Generation of acid sites on TiO2-SnO2 binary oxide prepared from metal alkoxides, Nippon Kagaku Kaishi,1991,(1),13-19.
    [63]H. Nakabayashi, Surface-properties and structures of binary oxides containing TiO2 prepared from metal alkoxides, Nippon Kagaku Kaishi,1992, (2), 146-152.
    [64]H. J. M. Bosman, E. C. Kruissink, J. Vanderspoel, F. Vandenbrink, Characterization of the acid strength of SiO2-ZrO2 mixed oxides, Journal of Catalysis,1994,148(2),660-672.
    [65]J. Macht, E. Iglesia, Structure and function of oxide nanostructures:catalytic consequences of size and composition, Physical Chemistry Chemical Physics, 2008,10(35),5331-5343.
    [66]C. Tagusagawa, A. Takagaki, A. Iguchi, K. Takanabe, J. N. Kondo, K. Ebitani, S. Hayashi, T. Tatsumi, K. Domen, Highly Active Mesoporous Nb-W Oxide Solid-Acid Catalyst, Angewandte Chemie-International Edition,2010,49(6), 1128-1132.
    [67]H. Izutsu, P. K. Nair, K. Maeda, Y. Kiyozumi, F. Mizukami, Structure and properties of TiO2-SiO2 prepared by sol-gel method in the presence of tartaric acid, Materials Research Bulletin,1997,32(9),1303-1311.
    [68]K. Tanabe, Sumiyosh.T, K. Shibata, T. Kiyoura, J. Kitagawa, New hypothesis regarding surface acidity of binary metal-oxides, Bulletin of the Chemical Society of Japan,1974,47(5),1064-1066.
    [69]T. Ishikawa, R. Ohashi, H. Nakabayashi, N. Kakuta, A. Ueno, A. Furuta, Thermally stabilized transitional alumina prepared by fume pyrolysis of boehmite sols, Journal of Catalysis,1992,134(1),87-97.
    [70]T. Kataoka, J. A. Dumesic, Acidity of unsupported and silica-supported vanadia, molybdena, and titania as studied by pyridine adsorption, Journal of Catalysis,1988,112(1),66-79.
    [71]X. T. Gao, I. E. Wachs, Titania-silica as catalysts:molecular structural characteristics and physico-chemical properties, Catalysis Today,1999,51(2), 233-254.
    [72]G. Bellussi, A. Carati, M. G. Clerici, G. Maddinelli, R. Millini, Reactions of titanium silicalite with protic molecules and hydrogen-peroxide, Journal of Catalysis,1992,133(1),220-230.
    [73]D. R. C. Huybrechts, P. L. Buskens, P. A. Jacobs, Physicochemical and catalytic properties of titanium silicalites, Journal of Molecular Catalysis, 1992,71(1),129-147.
    [74]A. Auroux, A. Gervasini, E. Jorda, A. Tuel, Acidic properties of Titanium-Silicalites-1, in Zeolites and Related Microporous Materials:State of the Art 1994, Amsterdam:Elsevier Science Publ B V,1994,653-659.
    [75]M. Muscas, V. Solinas, S. Gontier, A. Tuel, A. Auroux, Microcalorimetry studies of the acidic properties of titanium-silicalites-1, Studies in Surface Science and Catalysis,1995,94,101-107.
    [76]M. Di Serio, B. Apicella, G. Grieco, P. Iengo, L. Fiocca, R. Po, E. Santacesaria, Kinetic and catalytic aspects of dimethylterephthalate transesterification also through the use of model molecules, Journal of Molecular Catalysis a-Chemical,1998,130(3),233-240.
    [77]C. Blandy, J. L. Pellegatta, B. Gilot, Catalytic properties of supported titanates in transesterification, Journal of Catalysis,1994,150(1),150-154.
    [78]S. P. Wang, X. B. Ma, H. L. Guo, J. L. Gong, X. Yang, G. H. Xu, Characterization and catalytic activity of TiO2/SiO2 for trans esterification of dimethyl oxalate with phenol, Journal of Molecular Catalysis a-Chemical, 2004,214(2),273-279.
    [79]M. Cozzolino, R. Tesser, M. Di Serio, M. Ledda, G. Minutillo, E. Santacesaria, Preparation, characterization and catalytic performances of highly dispersed supported TiO2/SiO2 catalysts in biodiesel production, in Scientific Bases for the Preparation of Heterogeneous Catalysts, Proceedings of the 9th International Symposium,2006,299-306.
    [80]G. N. Vayssilov, Structural and physicochemical features of titanium silicalites, Catalysis Reviews-Science and Engineering,1997,39(3),209-251.
    [81]A. Y. Stakheev, E. S. Shpiro, J. Apijok, XPS and xaes study of TiO2-SiO2 mixed-oxide system, Journal of Physical Chemistry,1993,97(21),5668-5672.
    [82]W. H. Zhang, J. Q. Lu, B. Han, M. J. Li, J. H. Xiu, P. L. Ying, C. Li, Direct synthesis and characterization of titanium-substituted mesoporous molecular sieve SBA-15, Chemistry of Materials,2002,14(8),3413-3421.
    [83]J. B. Miller, L. J. Mathers, E. I. Ko, Preparation of titania-silica aerogels with a double metal alkoxide precursor, Journal of Materials Chemistry,1995, 5(10),1759-1760.
    [84]C. Contescu, V. T. Popa, J. B. Miller, E. I. Ko, J. A. Schwarz, Bronsted-type relationship for surface active sites on solid acid catalysts:1-butene isomerization on TiO2-SiO2, ZrO2-SiO2, and Al2O3-SiO2 mixed oxide catalysts, Chemical Engineering Journal,1996,64(2),265-272.
    [85]C. Contescu, V. T. Popa, J. B. Miller, E. I. Ko, J. A. Schwarz, Proton affinity distributions of TiO2-SiO2 and ZrO2-SiO2 mixed oxides and their relationship to catalyst activities for 1-butene isomerization, Journal of Catalysis,1995, 157(1),244-258.
    [86]B. Notari, R. J. Willey, M. Panizza, G. Busca, Which sites are the active sites in TiO2-SiO2 mixed oxides?, Catalysis Today,2006,116(2),99-110.
    [87]J. R. Sohn, H. J. Jang, M. Y. Park, E. H. Park, S. E. Park, Physicochemical properties of TiO2-SiO2 unmodified and modified with H2SO4 and activity for acid catalysis, Journal of Molecular Catalysis,1994,93(2),149-167.
    [88]P. Wu, T. Tatsumi, Extremely high trans selectivity of Ti-MWW in epoxidation of alkenes with hydrogen peroxide, Chemical Communications,2001, (10), 897-898.
    [89]J. M. Notestein, A. Solovyov, L. R. Andrini, F. G. Requejo, A. Katz, E. Iglesia, 012 The role of outer-sphere surface acidity in alkene epoxidation catalyzed by calixarene-Ti(IV) complexes, Journal of the American Chemical Society, 2007,129(50),15585-15595.
    [90]A. Corma, U. Diaz, M. E. Domine, V. Fornes, New aluminosilicate and titanosilicate delaminated materials active for acid catalysis, and oxidation reactions using H2O2, Journal of the American Chemical Society,2000, 122(12),2804-2809.
    [91]L. S. Ling, H. Hamdan, Sulfated silica-titania aerogel as a bifunctional oxidative and acidic catalyst in the synthesis of diols, Journal of Non-Crystalline Solids,2008,354(33),3939-3943.
    [92]E. I. Ross-Medgaarden, W. V. Knowles, T. Kim, M. S. Wong, W. Zhou, C. J. Kiely, I. E. Wachs, New insights into the nature of the acidic catalytic active sites present in ZrO2-supported tungsten oxide catalysts, Journal of Catalysis, 2008,256(1),108-125.
    [93]R. Kourieh, S. Bennici, M. Marzo, A. Gervasini, A. Auroux, Investigation of the WO3/ZrO2 surface acidic properties for the aqueous hydrolysis of cellobiose, Catalysis Communications,2012,19,119-126.
    [94]J. Ren, Z. Li, S. S. Liu, Y. L. Xing, K. C. Xie, Silica-titania mixed oxides: Si-O-Ti connectivity, coordination of titanium, and surface acidic properties, Catalysis Letters,2008,124(3-4),185-194.
    [95]R. Sakthivel, H. Prescott, E. Kemnitz, WO3/ZrO2:a potential catalyst for the acetylation of anisole, Journal of Molecular Catalysis A-Chemical,2004, 223(1-2),137-142.
    [96]J. G. Santiesteban, J. C. Vartuli, S. Han, R. D. Bastian, C. D. Chang, Influence of the preparative method on the activity of highly acidic WOx/ZrO2 and the relative acid activity compared with zeolites, Journal of Catalysis,1997, 168(2),431-441.
    [97]J. L. Lu, K. M. Kosuda, R. P. Van Duyne, P. C. Stair, Surface Acidity and Properties of TiO2/SiO2 Catalysts Prepared by Atomic Layer Deposition: UV-visible Diffuse Reflectance, DRIFTS, and Visible Raman Spectroscopy Studies, Journal of Physical Chemistry C,2009,113(28),12412-12418.
    [98]G. Deo, A. M. Turek, I. E. Wachs, D. R. C. Huybrechts, P. A. Jacobs, Characterization of titania silicalites, Zeolites,1993,13(5),365-373.
    [99]D. R. C. Huybrechts, L. Debruycker, P. A. Jacobs, Oxyfunctionalization of alkanes with hydrogen-peroxide on titanium silicalite, Nature,1990, 345(6272),240-242.
    [100]C. B. Khouw, C. B. Dartt, J. A. Labinger, M. E. Davis, Studies on the catalytic-oxidation of alkanes and alkenes by titanium silicates, Journal of Catalysis,1994,149(1),195-205.
    [101]T. Lopez, P. Bosch, F. Tzompantzi, R. Gomez, J. Navarrete, E. Lopez-Salinas, M. E. Llanos, Effect of sulfation methods on TiO2-SiO2 sol-gel catalyst acidity, Applied Catalysis a-General,2000,197(1),107-117.
    [102]J. Navarrete, T. Lopez, R. Gomez, F. Figueras, Surface acidity of sulfated TiO2-SiO2 sol-gels, Langmuir,1996,12(18),4385-4390.
    [103]K. M. Parida, S. K. Samantaray, H. K. Mishra, SO42-/TiO2-SiO2 mixed oxide catalyst, I:Synthesis, characterization, and acidic properties, Journal of Colloid and Interface Science,1999,216(1),127-133.
    [104]S. K. Samantaray, K. M. Parida, SO42-/TiO2-SiO2 mixed oxide catalyst 2. Effect of the fluoride ion and calcination temperature on esterification of acetic acid, Applied Catalysis a-General,2001,211(2),175-187.
    [105]S. K. Samantaray, K. Parida, Effect of phosphate ion on the textural and catalytic activity of titania-silica mixed oxide, Applied Catalysis a-General, 2001,220(1-2),9-20.
    [106]S. K. Samantaray, K. Parida, Effect of anions on the textural and catalytic activity of titania-silica mixed oxide, Journal of Materials Science,2004, 39(11),3549-3562.
    [107]L. F. Chen, L. E. Norena, J. Navarrete, J. A. Wang, Improvement of surface acidity and structural regularity of Zr-modified mesoporous MCM-41, Materials Chemistry and Physics,2006,97(2-3),236-242.
    [108]D. Farcasiu, A. Ghenciu, G. Marino, K. D. Rose, Strength of solid acids and acids in solution. Enhancement of acidity of centers on solid surfaces by anion stabilizing solvents and its consequence for catalysis, Journal of the American Chemical Society,1997,119(49),11826-11831.
    [109]C. P. Li, Y. W. Chen, Effect of preparation method on the acidities of Al-B-Ox mixed oxides, Catalysis Letters,1993,19(1),99-108.
    [110]Q. H. Xia, K. Hidajat, S. Kawi, Structure, acidity, and catalytic activity of mesoporous acid catalysts for the gas-phase synthesis of MTBE from MeOH and (BuOH)-O-t, Journal of Catalysis,2002,209(2),433-444.
    [111]M. Hino, K. Arata, Synthesis of solid superacid of tungsten-oxide supported on zirconia and its catalytic action for reactions of butane and pentane, Journal of the Chemical Society-Chemical Communications,1988, (18),1259-1260.
    [112]M. Hino, K. Arata, Solid catalyst treated with anion-conversion of ethanol into acetone catalyzed by iron-oxide treated with tellurate ion, Journal of the Chemical Society-Chemical Communications,1988, (17),1168-1169.
    [113]N. Soultanidis, W. Zhou, A. C. Psarras, A. J. Gonzalez, E. F. Iliopoulou, C. J. Kiely, I. E. Wachs, M. S. Wong, Relating n-Pentane Isomerization Activity to the Tungsten Surface Density of WOx/ZrO2, Journal of the American Chemical Society,2010,132(38),13462-13471.
    [114]W. J. Ji, J. Q. Hu, Y. Chen, The structure and surface acidity of zirconia-supported tungsten oxides, Catalysis Letters,1998,53(1-2),15-21.
    [115]V. Lebarbier, G. Clet, M. Houalla, A comparative study of the surface structure, acidity, and catalytic performance of tungstated zirconia prepared from crystalline zirconia or amorphous zirconium oxyhydroxide, Journal of Physical Chemistry B,2006,110(28),13905-13911.
    [116]B. M. Devassy, S. B. Halligudi, Zirconia-supported heteropoly acids: Characterization and catalytic behavior in liquid-phase veratrole benzoylation, Journal of Catalysis,2005,236(2),313-323.
    [117]F. Di Gregorio, N. Keller, V. Keller, Activation and isomerization of hydrocarbons over WO3/ZrO2 catalysts Ⅱ. Influence of tungsten loading on catalytic activity:Mechanistic studies and correlation with surface reducibility and tungsten surface species, Journal of Catalysis,2008,256(2),159-171.
    [118]S. R. Vaudagna, S. A. Canavese, R. A. Comelli, N. S. Figoli, Platinum supported WOx-ZrO2:Effect of calcination temperature and tungsten loading, Applied Catalysis a-General,1998,168(1),93-111.
    [119]R. D. Wilson, D. G. Barton, C. D. Baertsch, E. Iglesia, Reaction and deactivation pathways in xylene isomerization on zirconia modified by tungsten oxide, Journal of Catalysis,2000,194(2),175-187.
    [120]A. E. Hirschler, The measurement of catalyst acidity using indicators forming stable surface carbonium ions, Journal of Catalysis,1963,2(5),428-439.
    [121]H. Knozinger, H. Krietenbrink, P. Ratnasamy,2,6-Disubstituted pyridines as probe molecules for surface acid sites-IR spectroscopic study, Journal of Catalysis,1977,48(1-3),436-439.
    [122]L. L. Murrell, D. C. Grenoble, R. T. K. Baker, E. B. Prestridge, S. C. Fung, R. R. Chianelli, S. P. Cramer, The structure and properties of tungsten-oxide on silica and on alumina, Journal of Catalysis,1983,79(1),203-206.
    [123]L. L. Murrell, N. C. Dispenziere, A modified benesi titration procedure useful to quantify the lewis and bronsted sites of solid acids, Journal of Catalysis, 1989,117(1),275-280.
    [124]M. V. Juskelis, J. P. Slanga, T. G. Roberie, A. W. Peters, A comparison of CaO, beta, and a dealuminated by ammonia tpd and by temperature programmed 2-propylamine cracking, Journal of Catalysis,1992,138(1),391-394.
    [125]R. J. Gorte, Temperature-programmed desorption for the characterization of oxide catalysts, Catalysis Today,1996,28(4),405-414.
    [126]A. K. Ghosh, G. Curthoys, Characterization of zeolite activity-a thermal study of normal-butylamine and ammonia adsorbed on mordenites, Journal of Physical Chemistry,1984,88(6),1130-1132.
    [127]T. R. Hughes, H. M. White, A study of surface structure of decationized y zeolite by quantitative infrared spectroscopy, Journal of Physical Chemistry, 1967,71(7),2192-2198.
    [128]J. R. Sohn, D. C. Shin, Environmentally friendly solid acid catalyst prepared by modifying TiO2 with cerium sulfate for the removal of volatile organic chemicals, Applied Catalysis B-Environmental,2008,77(3-4),386-394.
    [129]V. M. Mastikhin, I. L. Mudrakovsky, A. V. Nosov,'H-NMR magic angle spinning (mas) studies of heterogeneous catalysis, Progress in Nuclear Magnetic Resonance Spectroscopy,1991,23,259-299.
    [130]J. Yang, M. J. Zhang, F. Deng, Q. Luo, D. L. Yi, C. H. Ye, Solid state NMR study of acid sites formed by adsorption of SO3 onto gamma-Al2O3, Chemical Communications,2003, (7),884-885.
    [131]S. H. Li, A. M. Zheng, Y. C. Su, H. L. Zhang, L. Chen, J. Yang, C. H. Ye, F. Deng, Bronsted/Lewis acid synergy in dealuminated HY zeolite:A combined solid-state NMR and theoretical calculation study, Journal of the American Chemical Society,2007,129(36),11161-11171.
    [132]A. Bendada, E. F. Derose, J. J. Fripiat, Motions of trimethylphosphine on the surface of acid catalysts, Journal of Physical Chemistry,1994,98(14), 3838-3842.
    [133]H. M. Kao, C. P. Grey, K. Pitchumani, P. H. Lakshminarasimhan, V. Ramamurthy, Activation conditions play a key role in the activity of zeolite CaY:NMR and product studies of Bronsted acidity, Journal of Physical Chemistry A,1998,102(28),5627-5638.
    [134]H. M. Kao, H. M. Liu, J. C. Jiang, S. H. Lin, C. P. Grey, Determining the structure of trimethylphosphine bound to the Bronsted acid site in zeolite HY: Double-resonance NMR and ab initio studies, Journal of Physical Chemistry B, 2000,104(20),4923-4933.
    [135]E. F. Rakiewicz, A. W. Peters, F. Wormsbecher, K. J. Sutovich, K. T. Mueller, Characterization of acid sites in zeolitic and other inorganic systems using solid-state 31P NMR of the probe molecule trimethylphosphine oxide, Journal of Physical Chemistry B,1998,102(16),2890-2896.
    [136]W. Zhou, I. E. Wachs, C. J. Kiely, Nanostructural and chemical characterization of supported metal oxide catalysts by aberration corrected analytical electron microscopy, Current Opinion in Solid State & Materials Science,2012,16(1),10-22.
    [137]J. F. Haw, J. B. Nicholas, T. Xu, L. W. Beck, D. B. Ferguson, Physical organic chemistry of solid acids:Lessons from in situ NMR and theoretical chemistry, Accounts of Chemical Research,1996,29(6),259-267.
    [138]T. Xu, N. Kob, R. S. Drago, J. B. Nicholas, J. F. Haw, A solid acid catalyst at the threshold of superacid strength:NMR, calorimetry, and density functional theory studies of silica-supported aluminum chloride, Journal of the American Chemical Society,1997,119(50),12231-12239.
    [139]C. R. Kumar, P. S. S. Prasad, N. Lingaiah, Heteropoly tungstate supported on tin oxide catalysts for liquid phase benzylation of anisole with benzyl alcohol, Applied Catalysis, A:General,2010,384(1-2),101-106.
    [140]M. Moraes, W. Pinto, W. A. Gonzalez, L. Carmo, N. M. R. Pastura, E. R. Lachter, Benzylation of toluene and anisole by benzyl alcohol catalyzed by niobic acid:Influence of pretreatment temperature in the catalytic activity of niobic acid, Applied Catalysis, A:General,1996,138(1),7-12.
    [141]H. Jin, M. B. Ansari, E. Y. Jeong, S. E. Park, Effect of mesoporosity on selective benzylation of aromatics with benzyl alcohol over mesoporous ZSM-5, Journal of Catalysis,2012,291,55-62.
    [142]M. Moraes, W. Pinto, W. A. Gonzalez, L. Carmo, N. M. R. Pastura, E. R. Lachter, Benzylation of toluene and anisole by benzyl alcohol catalyzed by niobic acid:Influence of pretreatment temperature in the catalytic activity of niobic acid, Applied Catalysis a-General,1996,138(1),7-12.
    [143]M. S. M. Dasilva, C. L. Dacosta, M. D. M. Pinto, E. R. Lachter, Benzylation of benzene, toluene and anisole with benzyl alcohol catalyzed by cation-exchange resins, Reactive Polymers,1995,25(1),55-61.
    [144]M. H. C. de la Cruz, M. A. Abdel-Rehim, A. S. Rocha, J. F. C. da Silva, A. D. Faro, E. R. Lachter, Liquid phase alkylation of anisole by benzyl alcohol catalyzed on alumina-supported niobia, Catalysis Communications,2007, 8(11),1650-1654.
    [145]C. R. Kumar, P. S. S. Prasad, N. Lingaiah, Heteropoly tungstate supported on tin oxide catalysts for liquid phase benzylation of anisole with benzyl alcohol, Applied Catalysis a-General,2010,384(1-2),101-106.
    [146]Y. X. Rao, M. Trudeau, D. Antonelli, Sulfated and phosphated mesoporous Nb oxide in the benzylation of anisole and toluene by benzyl alcohol, Journal of the American Chemical Society,2006,128(43),13996-13997.
    [147]K. Arata, H. Nakamura, M. Shouji, Friedel-Crafts acylation of toluene catalyzed by solid superacids, Applied Catalysis a-General,2000,197(2), 213-219.
    [148]Z. c. Wang, h. f. Shui, x. p. Gu, j. s. Gao, SO42-/Zr02固体酸催化神华煤直接液化反应性研究,Journal of Fuel Chemistry and Technology,2010,38(3), 257-263.
    [1]C. Tagusagawa, A. Takagaki, A. Iguchi, K. Takanabe, J. N. Kondo, K. Ebitani, S. Hayashi, T. Tatsumi, K. Domen, Highly Active Mesoporous Nb-W Oxide Solid-Acid Catalyst, Angewandte Chemie-International Edition,2010,49(6), 1128-1132.
    [2]C. Tagusagawa, A. Takagaki, A. Iguchi, K. Takanabe, J. N. Kondo, K. Ebitani, T. Tatsumi, K. Domen, Synthesis and Characterization of Mesoporous Ta-W Oxides as Strong Solid Acid Catalysts, Chemistry of Materials,2010,22(10), 3072-3078.
    [3]Y. Rao, M. Trudeau, D. Antonelli, Sulfated and phosphated mesoporous Nb oxide in the benzylation of anisole and toluene by benzyl alcohol, Journal of the American Chemical Society,2006,128(43),13996-13997.
    [1]D. O. de Zarate, F. Bouyer, H. Zschiedrich, P. J. Kooyman, P. Trens, J. Iapichella, R. Durand, C. Guillem, E. Prouzet, Micromesoporous monolithic Al-MSU with a widely variable content of aluminum leading to tunable acidity, Chemistry of Materials,2008,20(4),1410-1420.
    [2]X. Y. Yang, A. Vantomme, A. Lemaire, F. S. Xiao, B. L. Su, A highly ordered mesoporous aluminosilicate, CMI-10, with a Si/Al ratio of one, Advanced Materials,2006,18(16),2117-2122.
    [3]Y. Han, F. S. Xiao, S. Wu, Y. Y. Sun, X. J. Meng, D. S. Li, S. Lin, F. Deng, X. J. Ai, A novel method for incorporation of heteroatoms into the framework of ordered mesoporous silica materials synthesized in strong acidic media, Journal of Physical Chemistry B,2001,105(33),7963-7966.
    [4]M. Schmucker, H. Schneider, Structural development of single phase (Type Ⅰ) mullite gels, Journal of Sol-Gel Science and Technology,1999,15(3), 191-199.
    [5]Z. Y. Wu, H. J. Wang, T. T. Zhuang, L. B. Sun, Y. M. Wang, J. H. Zhu, Multiple functionalization of mesoporous silica in one-pot:Direct synthesis of aluminum-containing plugged SBA-15 from aqueous nitrate solutions, Advanced Functional Materials,2008,18(1),82-94.
    [6]Z. T. Zhang, Y. Han, F. S. Xiao, S. L. Qiu, L. Zhu, R. W. Wang, Y. Yu, Z. Zhang, B. S. Zou, Y. Q. Wang, H. P. Sun, D. Y. Zhao, Y. Wei, Mesoporous aluminosilicates with ordered hexagonal structure, strong acidity, and extraordinary hydrothermal stability at high temperatures, Journal of the American Chemical Society,2001,123(21),5014-5021.
    [7]H. Rahiala, I. Beurroies, T. Eklund, K. Hakala, R. Gougeon, P. Trens, J. B. Rosenholm, Preparation and characterization of MCM-41 supported metallocene catalysts for olefin polymerization, Journal of Catalysis,1999, 188(1),14-23.
    [8]J. B. Rosenholm, H. Rahiala, J. Puputti, V. Stathopoulos, P. Pomonis, I. Beurroies, K. Backfolk, Characterization of Al-and Ti-modified MCM-41 using adsorption techniques, Colloids and Surfaces a-Physicochemical and Engineering Aspects,2004,250(1-3),289-306.
    [9]A. Taguchi, F. Schuth, Ordered mesoporous materials in catalysis, Microporous and Mesoporous Materials,2005,77(1),1-45.
    [10]Y. Li, W. H. Zhang, L. Zhang, Q. H. Yang, Z. B. Wei, Z. C. Feng, C. Li, Direct synthesis of Al-SBA-15 mesoporous materials via hydrolysis-controlled approach, Journal of Physical Chemistry B,2004,108(28),9739-9744.
    [11]Q. Li, Z. X. Wu, B. Tu, S. S. Park, C. S. Ha, D. Y. Zhao, Highly hydrothermal stability of ordered mesoporous aluminosilicates Al-SBA-15 with high Si/Al ratio, Microporous and Mesoporous Materials,2010,135(1-3),95-104.
    [12]M. Gomez-Cazalilla, J. M. Merida-Robles, A. Gurbani, E. Rodriguez-Castellon, A. Jimenez-Lopez, Characterization and acidic properties of Al-SBA-15 materials prepared by post-synthesis alumination of a low-cost ordered mesoporous silica, Journal of Solid State Chemistry,2007, 180(3),1130-1140.
    [13]B. Dragoi, E. Dumitriu, C. Guimon, A. Auroux, Acidic and adsorptive properties of SB A-15 modified by aluminum incorporation, Microporous and Mesoporous Materials,2009,121(1-3),7-17.
    [14]L. Gao, F. N. Gu, Y. Zhou, J. Yang, Y. Wang, J. H. Zhu, Capturing 1,3-butadiene by the highly ordered Al-containing SBA-15, Journal of Hazardous Materials,2009,171(1-3),378-385.
    [15]S. Sklenak, J. Dedecek, C. Li, B. Wichterlova, V. Gabova, M. Sierka, J. Sauer, Aluminium siting in the ZSM-5 framework by combination of high resolution 27Al-NMR and DFT/MM calculations, Physical Chemistry Chemical Physics, 2009,11(8),1237-1247.
    [16]H. Q. Yang, Q. Liu, Z. C. Li, H. X. Gao, Z. K. Xie, Controllable synthesis of aluminosilica monoliths with hierarchical pore structure and their catalytic performance, Microporous and Mesoporous Materials,2010,127(3),213-218.
    [17]X. Y. Yang, A. Vantomme, F. S. Xiao, B. L. Su, Ordered mesoporous aluminosilicates with very low Si/Al ratio and stable tetrahedral aluminum sites for catalysis, Catalysis Today,2007,128(3-4),123-128.
    [18]X. Y. Yang, A. Vantomme, A. Lemaire, F. S. Xiao, B. L. Su, A highly ordered mesoporous aluminosilicate, CMI-10, with a Si/Al ratio of one, Advanced Materials,2006,18(16),2117-2122.
    [19]J. Fan, S. W. Boettcher, G. D. Stucky, Nanoparticle assembly of ordered multicomponent mesostructured metal oxides via a versatile sol-gel process, Chemistry of Materials,2006,18(26),6391-6396.
    [20]K. Song, J. Q. Guan, S. J. Wu, Q. B. Kan, Synthesis and characterization of strong acidic mesoporous alumino-silicates constructed of zeolite MCM-22 precursors, Catalysis Communications,2009,10(5),631-634.
    [21]L. S. Ling, H. Hamdan, Sulfated silica-titania aerogel as a bifunctional oxidative and acidic catalyst in the synthesis of diols, Journal of Non-Crystalline Solids,2008,354(33),3939-3943.
    [22]J. Ren, Z. Li, S. S. Liu, Y. L. Xing, K. C. Xie, Silica-titania mixed oxides: Si-O-Ti connectivity, coordination of titanium, and surface acidic properties, Catalysis Letters,2008,124(3-4),185-194.
    [23]C. Tagusagawa, A. Takagaki, A. Iguchi, K. Takanabe, J. N. Kondo, K. Ebitani, S. Hayashi, T. Tatsumi, K. Domen, Highly Active Mesoporous Nb-W Oxide Solid-Acid Catalyst, Angewandte Chemie-International Edition,2010,49(6), 1128-1132.
    [24]C. Tagusagawa, A. Takagaki, A. Iguchi, K. Takanabe, J. N. Kondo, K. Ebitani, T. Tatsumi, K. Domen, Synthesis and Characterization of Mesoporous Ta-W Oxides as Strong Solid Acid Catalysts, Chemistry of Materials,2010,22(10), 3072-3078.
    [25]Y. Rao, M. Trudeau, D. Antonelli, Sulfated and phosphated mesoporous Nb oxide in the benzylation of anisole and toluene by benzyl alcohol, Journal of the American Chemical Society,2006,128(43),13996-13997.
    [26]C. R. Kumar, P. S. S. Prasad, N. Lingaiah, Heteropoly tungstate supported on tin oxide catalysts for liquid phase benzylation of anisole with benzyl alcohol, Applied Catalysis A:General,2010,384(1-2),101-106.
    [27]谭亚南,韩.伟,何.霖,王.莉,ZSM-5分子筛合成及其改性研究进展,四川化工,2011,14(3),28-31.
    [28]李国平,张少敏,郑宝明,卢文婷,罗运军,柴春鹏,Pd/PAMAM(聚酰胺-胺)/SBA-15催化剂的制备及催化性能,无机化学学报,2013,29(1),75-80.
    [29]赵大庆,庞文琴,非碱性介质中合成ZSM-39型分子筛,无机化学学报,1991,7(3),357-359.
    [30]赵修松,王清遐,李宏愿,ZSM-12沸石的合成,应用化学,1993,10(6),80-82.
    [1]M. J. Gracia, E. Losada, R. Luque, J. M. Campelo, D. Luna, J. M. Marinas, A. A. Romero, Activity of Gallium and Aluminum SBA-15 materials in the Friedel-Crafts alkylation of toluene with benzyl chloride and benzyl alcohol, Applied Catalysis a-General,2008,349(1-2),148-155.
    [2]K. Mantri, K. Komura, Y. Kubota, Y. Sugi, Friedel-Crafts alkylation of aromatics with benzyl alcohols catalyzed by rare earth metal triflates supported on MCM-41 mesoporous silica, Journal of Molecular Catalysis a-Chemical,2005,236(1-2),168-175.
    [3]C. Tagusagawa, A. Takagaki, K. Takanabe, K. Ebitani, S. Hayashi, K. Domen, Effects of Transition-Metal Composition of Protonated, Layered Nonstoichiometric Oxides H1-xNb1-xMo1+xO6 on Heterogeneous Acid Catalysis, Journal of Physical Chemistry C,2009,113(40),17421-17427.
    [4]A. Vinu, D. P. Sawant, K. Ariga, K. Z. Hossain, S. B. Halligudi, M. Hartmann, M. Nomura, Direct synthesis of well-ordered and unusually reactive FeSBA-15 mesoporous molecular sieves, Chemistry of Materials,2005, 17(21),5339-5345.
    [5]H. Nakabayashi, K. Nishiwaki, N. Kakuta, A. Ueno, Generation of acid sites on TiO2-SnO2 binary oxide prepared from metal alkoxides, nippon kagaku kaishi,1991,(1),13-19.
    [6]H. Nakabayashi, Surface-properties and structures of binary oxides containing TiO2 prepared from metal alkoxides, Nippon Kagaku Kaishi,1992, (2), 146-152.
    [7]H. J. M. Bosman, E. C. Kruissink, J. Vanderspoel, F. Vandenbrink, Characterization of the acid strength of SiO2-ZrO2 mixed oxides, Journal of Catalysis,1994,148(2),660-672.
    [8]J. Macht, E. Iglesia, Structure and function of oxide nanostructures:catalytic consequences of size and composition, Physical Chemistry Chemical Physics, 2008,10(35),5331-5343.
    [9]C. Tagusagawa, A. Takagaki, A. Iguchi, K. Takanabe, J. N. Kondo, K. Ebitani, S. Hayashi, T. Tatsumi, K. Domen, Highly Active Mesoporous Nb-W Oxide Solid-Acid Catalyst, Angewandte Chemie-International Edition,2010,49(6), 1128-1132.
    [10]J. B. Miller, L. J. Mathers, E. I. Ko, Preparation of titania-silica aerogels with a double metal alkoxide precursor, Journal of Materials Chemistry,1995, 5(10),1759-1760.
    [11]Z. F. Liu, J. Tabora, R. J. Davis, Relationships between microstructure and surface-acidity of Ti-Si mixed-oxide catalysts, Journal of Catalysis,1994, 149(1),117-126.
    [12]C. Contescu, V. T. Popa, J. B. Miller, E. I. Ko, J. A. Schwarz, Bronsted-type relationship for surface active sites on solid acid catalysts:1-butene isomerization on TiO2-SiO2, ZrO2-SiO2, and Al2O3-SiO2 mixed oxide catalysts, Chemical Engineering Journal,1996,64(2),265-272.
    [13]C. Contescu, V. T. Popa, J. B. Miller, E. I. Ko, J. A. Schwarz, Proton affinity distributions of TiO2-SiO2 and ZrO2-SiO2 mixed oxides and their relationship to catalyst activities for 1-butene isomerization, Journal of Catalysis,1995, 157(1),244-258.
    [14]B. Notari, R. J. Willey, M. Panizza, G. Busca, Which sites are the active sites in TiO2-Si02 mixed oxides?, Catalysis Today,2006,116(2),99-110.
    [15]J. R. Sohn, H. J. Jang, M. Y. Park, E. H. Park, S. E. Park, Physicochemical properties of TiO2-SiO2 unmodified and modified with H2SO4 and activity for acid catalysis, Journal of Molecular Catalysis,1994,93(2),149-167.
    [16]P. Wu, T. Tatsumi, Extremely high trans selectivity of Ti-MWW in epoxidation of alkenes with hydrogen peroxide, Chemical Communications,2001, (10), 897-898.
    [17]J. M. Notestein, A. Solovyov, L. R. Andrini, F. G. Requejo, A. Katz, E. Iglesia, The role of outer-sphere surface acidity in alkene epoxidation catalyzed by calixarene-Ti(IV) complexes, Journal of the American Chemical Society,2007, 129(50),15585-15595.
    [18]A. Corma, U. Diaz, M. E. Domine, V. Fornes, New aluminosilicate and titanosilicate delaminated materials active for acid catalysis, and oxidation reactions using H2O2, Journal of the American Chemical Society,2000, 122(12),2804-2809.
    [19]L. S. Ling, H. Hamdan, Sulfated silica-titania aerogel as a bifunctional oxidative and acidic catalyst in the synthesis of diols, Journal of Non-Crystalline Solids,2008,354(33),3939-3943.
    [20]M. Itoh, H. Hattori, K. Tanabe, Acidic properties of TiO2-SiO2 and its catalytic activities for amination of phenol, hydration of ethylene and isomerization of butene, Journal of Catalysis,1974,35(2),225-231.
    [21]C. U. I. Odenbrand, J. G. M. Brandin, G. Busca, Surface-acidity of silica titania mixed oxides, Journal of Catalysis,1992,135(2),505-517.
    [22]K. Shibata, T. Kiyoura, J. Kitagawa, Sumiyosh.T, K. Tanabe, Acidic properties of binary metal-oxides, Bulletin of the Chemical Society of Japan,1973, 46(10),2985-2988.
    [23]K. R. P. Sabu, K. V. C. Rao, C. G. R. Nair, A comparative-study on the acidic properties and catalytic activities of TiO2, SiO2, Al2O3, SiO2-Al2O3, SiO2-TiO2, Al2O3-TiO2, and TiO2-SiO2-Al2O3, Bulletin of the Chemical Society of Japan, 1991,64(6),1920-1925.
    [24]E. I. Ko, J. P. Chen, J. G. Weissman, A study of acidic titania silica mixed oxides and their use as supports for nickel-catalysts, Journal of Catalysis,1987, 105(2),511-520.
    [25]A. Auroux, A. Gervasini, E. Jorda, A. Tuel, A cidic properties of titanium-silicalites-1, in Zeolites and Related Microporous Materials:State of the Art 1994, Amsterdam:Elsevier Science Publ B V,1994,653-659.
    [26]X. T. Gao, I. E. Wachs, Titania-silica as catalysts:molecular structural characteristics and physico-chemical properties, Catalysis Today,1999,51(2), 233-254.
    [27]J. Fan, S. W. Boettcher, G. D. Stucky, Nanoparticle assembly of ordered multicomponent mesostructured metal oxides via a versatile sol-gel process, Chemistry of Materials,2006,18(26),6391-6396.
    [28]G. N. Vayssilov, Structural and physicochemical features of titanium silicalites, Catalysis Reviews-Science and Engineering,1997,39(3),209-251.
    [29]C. Tagusagawa, A. Takagaki, A. Iguchi, K. Takanabe, J. N. Kondo, K. Ebitani, T. Tatsumi, K. Domen, Synthesis and Characterization of Mesoporous Ta-W Oxides as Strong Solid Acid Catalysts, Chemistry of Materials,2010,22(10), 3072-3078.
    [30]J. Xu, A. M. Zheng, J. Yang, Y. C. Su, J. Q. Wang, D. L. Zeng, M. J. Zhang, C. H. Ye, F. Deng, Acidity of mesoporous MoOx/ZrO2 and WOx/ZrO2 materials: A combined solid-state NMR and theoretical calculation study, Journal of Physical Chemistry B,2006,110(22),10662-10671.
    [31]H. L. Zhang, H. G. Yu, A. M. Zheng, S. H. Li, W. L. Shen, F. Deng, Reactivity enhancement of 2-propanol photocatalysis on SO42-/TiO2:Insights from solid-state NMR spectroscopy, Environmental Science & Technology,2008, 42(14),5316-5321.
    [32]J. Yang, M. J. Zhang, F. Deng, Q. Luo, D. L. Yi, C. H. Ye, Solid state NMR study of acid sites formed by adsorption of SO3 onto gamma-Al2O3, Chemical Communications,2003, (7),884-885.
    [33]喻志开,郑安民,王强,黄信炅,邓风,刘尚斌,固体核磁共振研究因 体酸催化剂酸性进展,波谱学杂志,2010,27(4),485-515.
    [34]X. B. Chen, L. Liu, P. Y. Yu, S. S. Mao, Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals, Science,2011,331(6018),746-750.
    [35]R. H. Li, H. Kobayashi, J. F. Guo, J. Fan, Visible-light-driven surface reconstruction of mesoporous TiO2:toward visible-light absorption and enhanced photocatalytic activities, Chemical Communications,2011,47(30), 8584-8586.
    [36]R. Bal, K. Chaudhari, D. Srinivas, S. Sivasanker, P. Ratnasamy, Redox and catalytic chemistry of Ti in titanosilicate molecular sieves:an EPR investigation, Journal of Molecular Catalysis A-Chemical,2000,162(1-2), 199-207.
    [37]K. Y Jung, S. B. Park, S. K. Ihm, Local structure and photocatalytic activity of B203-SiO2/TiO2 ternary mixed oxides prepared by sol-gel method, Applied Catalysis B-Environmental,2004,51(4),239-245.
    [38]J. Ren, Z. Li, S. Liu, Y. Xing, K. Xie, Silica-titania mixed oxides:Si-O-Ti connectivity, coordination of titanium, and surface acidic properties, Catalysis Letters,2008,124(3-4),185-194.
    [39]T. Kataoka, J. A. Dumesic, Acidity of unsupported and silica-supported vanadia, molybdena, and titania as studied by pyridine adsorption, Journal of Catalysis,1988,112(1),66-79.
    [40]A. Zheng, S.-J. Huang, S.-B. Liu, F. Deng, Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules, Physical Chemistry Chemical Physics,2011, (1),14889-14901.
    [41]Q. H. Xia, K. Hidajat, S. Kawi, Structure, acidity, and catalytic activity of mesoporous acid catalysts for the gas-phase synthesis of MTBE from MeOH and (BuOH)-O-t, Journal of Catalysis,2002,209(2),433-444.
    [42]S. K. Samantaray, K. Parida, Effect of anions on the textural and catalytic activity of titania-silica mixed oxide, Journal of Materials Science,2004, 39(11),3549-3562.
    [43]D. Farcasiu, A. Ghenciu, G. Marino, K. D. Rose, Strength of solid acids and acids in solution. Enhancement of acidity of centers on solid surfaces by anion stabilizing solvents and its consequence for catalysis, Journal of the American Chemical Society,1997,119(49),11826-11831.
    [44]A. Bhaumik, T. Tatsumi, Organically modified titanium-rich Ti-MCM-41, efficient catalysts for epoxidation reactions, Journal of Catalysis,2000,189(1), 31-39.
    [45]J. W. Kriesel, T. D. Tilley, Synthesis and chemical functionalization of high surface area dendrimer-based xerogels and their use as new catalyst supports, Chemistry of Materials,2000,12(4),1171-1179.
    [46]E. Lotero, D. Vu, C. Nguyen, J. Wagner, G. Larsen, Hybrid TiO2-SiO2 organic/inorganic gels:Preparation, characterization, and temperature-programmed pyrolysis and oxidation studies, Chemistry of Materials,1998, 10(11),3756-3764.
    [47]M. P. Kapoor, A. Bhaumik, S. Inagaki, K. Kuraoka, T. Yazawa, Titanium containing inorganic organic hybrid mesoporous materials with exceptional activity in epoxidation of alkenes using hydrogen peroxide, Journal of Materials Chemistry,2002,12(10),3078-3083.
    [1]陈崇城,陈航榕,俞建长,叶争青,施剑林,多级孔WO3/ZrO2固体酸催化剂的制备与表征,催化学报,2011,32(4),647-651.
    [2]吴志鹏,周玉杰,张建安,戴玲妹,金属氧化物固体酸催化合成生物柴油研究进展,现代化工,2010,30(2),26-29.
    [3]汪颖军,张海菊,孙博,田性刚,WO3/ZrO2催化烷烃异构化反应研究进展,石油学报(石油加工),2009,25(2),283-290.
    [4]曾翎,燕青芝,氧化锆晶型对负载钨催化剂结构和表面酸性的影响,平顶山师专学报,2000,15(4),33-37.
    [5]V. Lebarbier, G. Clet, M. Houalla, A comparative study of the surface structure, acidity, and catalytic performance of tungstated zirconia prepared from crystalline zirconia or amorphous zirconium oxyhydroxide, Journal of Physical Chemistry B,2006,110(28),13905-13911.
    [6]W. J. Ji, J. Q. Hu, Y. Chen, The structure and surface acidity of zirconia-supported tungsten oxides, Catalysis Letters,1998,53(1-2),15-21.
    [7]N. Soultanidis, W. Zhou, A. C. Psarras, A. J. Gonzalez, E. F. Iliopoulou, C. J. Kiely, I. E. Wachs, M. S. Wong, Relating n-Pentane Isomerization Activity to the Tungsten Surface Density of WOx/ZrO2, Journal of the American Chemical Society,2010,132(38),13462-13471.
    [8]M. A. Cortes-Jacome, J. A. Toledo, C. Angeles-Chavez, M. Aguilar, J. A. Wang, Influence of synthesis methods on tungsten dispersion, structural deformation, and surface acidity in binary WO3-ZrO2 system, Journal of Physical Chemistry B,2005,109(48),22730-22739.
    [9]D. E. Lopez, K. Suwannakarn, D. A. Bruce, J. G. Goodwin, Esterification and transesterification on tungstated zirconia:Effect of calcination temperature, Journal of Catalysis,2007,247(1),43-50.
    [10]M. A. Cortes-Jacome, C. Angeles-Chavez, E. Lopez-Salinas, J. Navarrete, P. Toribio, J. A. Toledo, Migration and oxidation of tungsten species at the origin of acidity and catalytic activity on WO3-ZrO2 catalysts, Applied Catalysis A: General,2007,318,178-189.
    [11]P. Afanasiev, C. Geantet, M. Breysse, G. Coudurier, J. C. Vedrine, Influence of preparation method on the acidity of MoO3(WO3)/ZrO2, catalysts, Journal of the Chemical Society, Faraday Transactions,1994,90(1),193-202.
    [12]H. Zhang, H. Yu, A. Zheng, S. Li, W. Shen, F. Deng, Reactivity enhancement of 2-propanol photocatalysis on SO42-/TiO2:Insights from solid-state NMR spectroscopy, Environmental Science & Technology,2008,42(14), 5316-5321.
    [13]B. M. Devassy, S. B. Halligudi, Effect of calcination temperature on the catalytic activity of zirconia-supported heteropoly acids, Journal of Molecular Catalysis a-Chemical,2006,253(1-2),8-15.
    [14]F. Di Gregorio, V. Keller, Activation and isomerization of hydrocarbons over WO3/ZrO2 catalysts-Ⅰ. Preparation, characterization, and X-ray photoelectron spectroscopy studies, Journal of Catalysis,2004,225(1),45-55.
    [15]C. D. Baertsch, S. L. Soled, E. Iglesia, Isotopic and chemical titration of acid sites in tungsten oxide domains supported on zirconia, Journal of Physical Chemistry B,2001,105(7),1320-1330.
    [16]D. G, Barton, M. Shtein, R. D. Wilson, S. L. Soled, E. Iglesia, Structure and electronic properties of solid acids based on tungsten oxide nanostructures, Journal of Physical Chemistry B,1999,103(4),630-640.
    [17]A. Martinez, G. Prieto, M. A. Arribas, P. Concepcion, J. F. Sanchez-Royo, Influence of the preparative route on the properties of WOx-ZrO2 catalysts:A detailed structural, spectroscopic, and catalytic study, Journal of Catalysis, 2007,248(2),288-302.
    [18]R. Kourieh, S. Bennici, M. Marzo, A. Gervasini, A. Auroux, Investigation of the WO3/ZrO2 surface acidic properties for the aqueous hydrolysis of cellobiose, Catalysis Communications,2012,19,119-126.
    [19]J. G. Santiesteban, J. C. Vartuli, S. Han, R. D. Bastian, C. D. Chang, Influence of the preparative method on the activity of highly acidic WOx/ZrO2 and the relative acid activity compared with zeolites, Journal of Catalysis,1997, 168(2),431-441.
    [20]J. Fan, S. W. Boettcher, G. D. Stucky, Nanoparticle assembly of ordered multicomponent mesostructured metal oxides via a versatile sol-gel process, Chemistry of Materials,2006,18(26),6391-6396.
    [21]K. Oka, T. Nishiguchi, H. Kanai, K. Utani, S. Imamura, Active state of tungsten oxides on WO3/ZrO2 catalyst for steam reforming of dimethyl ether combined with CuO/CeO2, Applied Catalysis A:General,2006,309(2), 187-191.
    [22]E. I. Ross-Medgaarden, W. V. Knowles, T. Kim, M. S. Wong, W. Zhou, C. J. Kiely, I. E. Wachs, New insights into the nature of the acidic catalytic active sites present in ZrO2-supported tungsten oxide catalysts, Journal of Catalysis, 2008,256(1),108-125.
    [23]M. J. Li, Z. H. Feng, G. Xiong, P. L. Ying, Q. Xin, C. Li, Phase transformation in the surface region of zirconia detected by UV Raman spectroscopy, Journal of Physical Chemistry B,2001,105(34),8107-8111.
    [24]A. Zheng, H. Zhang, X. Lu, S. B. Liu, F. Deng, Theoretical predictions of P-31 NMR chemical shift threshold of trimethylphosphine oxide absorbed on solid acid catalysts, Journal of Physical Chemistry B,2008,112(15),4496-4505.
    [25]M. L. Hernandez, J. A. Montoya, P. Del Angel, I. Hernandez, G. Espinosa, M. E. Llanos, Influence of the synthesis method on the nanostructure and reactivity of mesoporous Pt/Mn-WOx-ZrO2 catalysts, Catalysis Today,2006, 116(2),169-178.
    [26]O. Diwald, T. L. Thompson, T. Zubkov, E. G. Goralski, S. D. Walck, J. T. Yates, Photochemical activity of nitrogen-doped rutile TiO2(111) in visible light, Journal of Physical Chemistry B,2004,108(19),6004-6008.
    [27]S. Souto, F. Alvarez, The role of hydrogen in nitrogen-containing diamondlike films studied by photoelectron spectroscopy, Applied Physics Letters,1997, 70(12),1539-1541.
    [28]C. Tagusagawa, A. Takagaki, A. Iguchi, K. Takanabe, J. N. Kondo, K. Ebitani, S. Hayashi, T. Tatsumi, K. Domen, Highly Active Mesoporous Nb-W Oxide Solid-Acid Catalyst, Angewandte Chemie-International Edition,2010,49(6), 1128-1132.
    [29]C. Tagusagawa, A. Takagaki, A. Iguchi, K. Takanabe, J. N. Kondo, K. Ebitani, T. Tatsumi, K. Domen, Synthesis and Characterization of Mesoporous Ta-W Oxides as Strong Solid Acid Catalysts, Chemistry of Materials,2010,22(10), 3072-3078.
    [30]Y. Rao, M. Trudeau, D. Antonelli, Sulfated and phosphated mesoporous Nb oxide in the benzylation of anisole and toluene by benzyl alcohol, Journal of the American Chemical Society,2006,128(43),13996-13997.
    [31]A. Zheng, S.-J. Huang, S.-B. Liu, F. Deng, Acid properties of solid acid catalysts characterized by solid-state 31PNMR of adsorbed phosphorous probe molecules, Physical Chemistry Chemical Physics,2011,13(33),14889-14901.
    [32]A. Galano, G. Rodriguez-Gattorno, E. Torres-Garcia, A combined theoretical-experimental study on the acidity of WOx-ZrO2 systems, Physical Chemistry Chemical Physics,2008,10(28),4181-4188.
    [33]喻志武,郑安民,王.强,黄信炅,邓.风,刘尚斌,固体核磁共振研究固体酸催化剂酸性进展,波谱学杂志,2010,27(4),485-515.
    [34]J. Xu, A. M. Zheng, J. Yang, Y. C. Su, J. Q. Wang, D. L. Zeng, M. J. Zhang, C. H. Ye, F. Deng, Acidity of mesoporous MoOx/ZrO2 and WOx/ZrO2 materials: A combined solid-state NMR and theoretical calculation study, Journal of Physical Chemistry B,2006,110(22),10662-10671.
    [35]A. Zheng, S.-J. Huang, S.-B. Liu, F. Deng, Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules, Physical Chemistry Chemical Physics,2011,13(33),14889-14901.
    [36]T. Y Kim, D. S. Park, Y Choi, J. Baek, J. R. Park, J. Yi, Preparation and characterization of mesoporous Zr-WOx/SiO2 catalysts for the esterification of 1-butanol with acetic acid, Journal of Materials Chemistry,2012,22(19), 10021-10028.
    [37]W. Zhou, E. I. Ross-Medgaarden, W. V. Knowles, M. S. Wong, I. E. Wachs, C. J. Kiely, Identification of active Zr-WOx clusterss on a ZrO2 support for solid acid catalysts, Nature Chemistry,2009,1(9),722-728.
    [38]S. Yamazoe, Y. Hitomi, T. Shishido, T. Tanaka, XAFS study of tungsten L-1-and L-3-edges:Structural analysis of WO3 species loaded on TiO2 as a catalyst for photo-oxidation of NH3, Journal of Physical Chemistry C,2008,112(17), 6869-6879.
    [39]X. Carrier, E. Marceau, H. Carabineiro, V. Rodriguez-Gonzalez, M. Che, EXAFS spectroscopy as a tool to probe metal-support interaction and surface molecular structures in oxide-supported catalysts:application to Al2O3-supported Ni(II) complexes and ZrO2-supported tungstates, Physical Chemistry Chemical Physics,2009,11(35),7527-7539.
    [40]S. T. Wong, T. Li, S. F. Cheng, J. F. Lee, C. Y. Mou, Aluminum-promoted tungstated zirconia catalyst in n-butane isomerization reaction, Journal of Catalysis,2003,215(1),45-56.
    [41]D. A. Headspith, E. Sullivan, C. Greaves, M. G. Francesconi, Synthesis and characterisation of the quaternary nitride-fluoride Ce2MnN3F2-delta, Dalton Transactions,2009, (42),9273-9279.
    [42]D. G. Barton, S. L. Soled, G. D. Meitzner, G. A. Fuentes, E. Iglesia, Structural and catalytic characterization of solid acids based on zirconia modified by tungsten oxide, Journal of Catalysis,1999,181(1),57-72.
    [1]汪颖军,张海菊,孙博,田性刚,WO3/ZrO2催化烷烃异构化反应研究进展,石油学报(石油加工),2009,25(2),283-290.
    [2]K. Song, H. Zhang, Y. Zhang, Y. Tang, K. Tang, Preparation and characterization of WOx/ZrO2 nanosized catalysts with high WOx dispersion threshold and acidity, Journal of Catalysis,2013,299,119-128.
    [3]D. Kaucky, B. Wichterlova, J. Dedecek, Z. Sobalik, I. Jakubec, Effect of the particle size and surface area of tungstated zirconia on the WOx nuclearity and n-heptane isomerization over Pt/WO3-ZrO2, Applied Catalysis a-General,2011, 397(1-2),82-93.
    [4]M. L. Hernandez, J. A. Montoya, I. Hernandez, M. Viniegra, M. E. Llanos, V. Garibay, P. Del Angel, Effect of the surfactant on the nanostructure of mesoporous Pt/Mn/WOx/ZrOa catalysts and their catalytic activity in the hydroisomerization of n-hexane, Microporous and Mesoporous Materials, 2006,89(1-3),186-195.
    [5]W. D. Sun, L. P. Xu, Y. Chu, W. Shi, Controllable synthesis, characterization and catalytic properties of WO3/ZrO2 mixed oxides nanoparticles, Journal of Colloid and Interface Science,2003,266(1),99-106.
    [6]M. L. Hernandez-Pichardo, J. A. Montoya, P. del Angel, A. Vargas, J. Navarrete, A comparative study of the WOx dispersion on Mn-promoted tungstated zirconia catalysts prepared by conventional and high-throughput experimentation, Applied Catalysis a-General,2008,345(2),233-240.
    [7]E. I. Ross-Medgaarden, W. V. Knowles, T. Kim, M. S. Wong, W. Zhou, C. J. Kiely, I. E. Wachs, New insights into the nature of the acidic catalytic active sites present in ZrO2-supported tungsten oxide catalysts, Journal of Catalysis, 2008,256(1),108-125.
    [8]M. J. Li, Z. H. Feng, G. Xiong, P. L. Ying, Q. Xin, C. Li, Phase transformation in the surface region of zirconia detected by UV Raman spectroscopy, Journal of Physical Chemistry B,2001,105(34),8107-8111.
    [9]M. L. Hernandez, J. A. Montoya, P. Del Angel, I. Hernandez, G. Espinosa, M. E. Llanos, Influence of the synthesis method on the nanostructure and reactivity of mesoporous Pt/Mn-WOx-ZrO2 catalysts, Catalysis Today,2006, 116(2),169-178.
    [10]I. E. Wachs, Raman and IR studies of surface metal oxide species on oxide supports:Supported metal oxide catalysts, Catalysis Today,1996,27(3-4), 437-455.
    [11]D. Gazzoli, M. Valigi, R. Dragone, A. Marucci, G. Mattei, Characterization of the zirconia-supported tungsten oxide system by laser Raman and diffuse reflectance spectroscopies, Journal of Physical Chemistry B,1997,101(51), 11129-11135.
    [12]R. B. Quincy, M. Houalla, D. M. Hercules, Quantitative raman and esca characterization of titania-supported tungsten catalysts, Fresenius Journal of Analytical Chemistry,1993,346(6-9),676-682.
    [13]H. L. Zhang, H. G. Yu, A. M. Zheng, S. H. Li, W. L. Shen, F. Deng, Reactivity enhancement of 2-propanol photocatalysis on SO42-/TiO2:Insights from solid-state NMR spectroscopy, Environmental Science & Technology,2008, 42(14),5316-5321.
    [14]J. Yang, M. J. Zhang, F. Deng, Q. Luo, D. L. Yi, C. H. Ye, Solid state NMR study of acid sites formed by adsorption of SO3 onto gamma-Al2O3, Chemical Communications,2003, (7),884-885.
    [15]A. Zheng, S.-J. Huang, S.-B. Liu, F. Deng, Acid properties of solid acid catalysts characterized by solid-state 31P NMR of adsorbed phosphorous probe molecules, Physical Chemistry Chemical Physics,2011,13(33),14889-14901.
    [16]J. Xu, A. M. Zheng, J. Yang, Y. C. Su, J. Q. Wang, D. L. Zeng, M. J. Zhang, C. H. Ye, F. Deng, Acidity of mesoporous MoOx/ZrO2 and WOx/ZrO2 materials: A combined solid-state NMR and theoretical calculation study, Journal of Physical Chemistry B,2006,110(22),10662-10671.
    [17]W. D. Sun, Z. B. Zhao, C. Guo, X. K. Ye, Y. Wu, Study of the alkylation of isobutane with n-butene over WO3/ZrO2 strong solid acid.1. Effect of the preparation method, WO3 loading, and calcination temperature, Industrial & Engineering Chemistry Research,2000,39(10),3717-3725.
    [18]J. Yang, M. J. Janik, D. Ma, A. M. Zheng, M. J. Zhang, M. Neurock, R. J. Davis, C. H. Ye, F. Deng, Location, acid strength, and mobility of the acidic protons in Keggin1I2-H3PW12O40:A combined solid-state NMR spectroscopy and DFT quantum chemical calculation study, Journal of the American Chemical Society,2005,127(51),18274-18280.
    [19]S. Li, A. Zheng, Y. Su, H. Zhang, L. Chen, J. Yang, C. Ye, F. Deng, Bronsted/Lewis acid synergy in dealuminated HY zeolite:A combined solid-state NMR and theoretical calculation study, Journal of the American Chemical Society,2007,129(36),11161-11171.
    [20]L. S. Ling, H. Hamdan, Sulfated silica-titania aerogel as a bifunctional oxidative and acidic catalyst in the synthesis of diols, Journal of Non-Crystalline Solids,2008,354(33),3939-3943.
    [21]J. Ren, Z. Li, S. Liu, Y. Xing, K. Xie, Silica-titania mixed oxides:Si-O-Ti connectivity, coordination of titanium, and surface acidic properties, Catalysis Letters,2008,124(3-4),185-194.
    [22]M. A. Cortes-Jacome, C. Angeles-Chavez, E. Lopez-Salinas, J. Navarrete, P. Toribio, J. A. Toledo, Migration and oxidation of tungsten species at the origin of acidity and catalytic activity on WO3-ZrO2 catalysts, Applied Catalysis a-General,2007,318,178-189.
    [23]T. Y. Kim, D. S. Park, Y. Choi, J. Baek, J. R. Park, J. Yi, Preparation and characterization of mesoporous Zr-WOx/SiO2 catalysts for the esterification of 1-butanol with acetic acid, Journal of Materials Chemistry,2012,22(19), 10021-10028.
    [24]A. Martinez, G. Prieto, M. A. Arribas, P. Concepcion, J. F. Sanchez-Royo, Influence of the preparative route on the properties of WOx-ZrO2 catalysts:A detailed structural, spectroscopic, and catalytic study, Journal of Catalysis, 2007,248(2),288-302.
    [25]S. De Rossi, G. Ferraris, M. Valigi, D. Gazzoli, WOx/ZrO2 catalysts Part 2. Isomerization of n-butane, Applied Catalysis A-General,2002,231(1-2), 173-184.
    [26]J. Macht, C. D. Baertsch, M. May-Lozano, S. L. Soled, Y. Wang, E. Iglesia, Support effects on Bronsted acid site densities and alcohol dehydration turnover rates on tungsten oxide domains, Journal of Catalysis,2004,227(2), 479-491.
    [27]A. Galano, G. Rodriguez-Gattorno, E. Torres-Garcia, A combined theoretical-experimental study on the acidity of WOx-ZrO2 systems, Physical Chemistry Chemical Physics,2008,10(28),4181-4188.
    [28]N. Soultanidis, W. Zhou, A. C. Psarras, A. J. Gonzalez, E. F. Iliopoulou, C. J. Kiely, I. E. Wachs, M. S. Wong, Relating n-Pentane Isomerization Activity to the Tungsten Surface Density of WOx/ZrO2, Journal of the American Chemical Society,2010,132(38),13462-13471.
    [29]N. Senso, B. Jongsomjit, P. Praserthdam, Effect of calcination treatment of zirconia on W/ZrO2 catalysts for transesterification, Fuel Processing Technology,2011,92(8),1537-1542.
    [30]S. Yamazoe, Y. Hitomi, T. Shishido, T. Tanaka, XAFS study of tungsten L-1-and L-3-edges:Structural analysis of WO3 species loaded on TiOs a catalyst for photo-oxidation of NH3, Journal of Physical Chemistry C,2008,112(17), 6869-6879.
    [31]X. Carrier, E. Marceau, H. Carabineiro, V. Rodriguez-Gonzalez, M. Che, EXAFS spectroscopy as a tool to probe metal-support interaction and surface molecular structures in oxide-supported catalysts:application to Al2O3-supported Ni(Ⅱ) complexes and ZrO2-supported tungstates, Physical Chemistry Chemical Physics,2009,11(35),7527-7539.
    [32]D. G. Barton, S. L. Soled, G. D. Meitzner, G. A. Fuentes, E. Iglesia, Structural and catalytic characterization of solid acids based on zirconia modified by tungsten oxide, Journal of Catalysis,1999,181(1),57-72.
    [1]G. Carlos Torres, D. Laura Manuale, V. Monica Benitez, C. Roman Vera, J. Carlos Yori, Modification of the performance of WO3-ZrO2 catalysts by metal addition in hydrocarbon reactions, Quimica Nova,2012,35(4),748-754.
    [2]D. Choi, P. N. Kumta, Synthesis, structure, and electrochemical characterization of nanocrystalline tantalum and tungsten nitrides, Journal of the American Ceramic Society,2007,90(10),3113-3120.
    [3]S. Wang, X. Yu, Z. Lin, R. Zhang, D. He, J. Qin, J. Zhu, J. Han, L. Wang, H.-k. Mao, J. Zhang, Y. Zhao, Synthesis, Crystal Structure, and Elastic Properties of Novel Tungsten Nitrides, Chemistry of Materials,2012,24(15),3023-3028.
    [4]H. Wiame, C. Cellier, P. Grange, Identification of the basic site on the aluminovanadate oxynitride catalysts, Journal of Catalysis,2000,190(2), 406-418.
    [5]H. M. Wiame, C. M. Cellier, P. Grange, Aluminovanadate oxynitride catalyst: Proposition for the basic site, Journal of Physical Chemistry B,2000,104(3), 591-596.
    [6]Y. Shi, Y. Wan, R. Zhang, D. Zhao, Synthesis of self-supported ordered mesoporous cobalt and chromium nitrides, Advanced Functional Materials, 2008,18(16),2436-2443.
    [7]C. L. Bianchi, G. Cappelletti, S. Ardizzone, S. Gialanella, A. Naldoni, C. Oliva, C. Pirola, N-doped TiO2 from TiCl3 for photodegradation of air pollutants, Catalysis Today,2009,144(1-2),31-36.
    [8]S. K. Pandey, Nitrogen- and fluorine-doped ZrO2:a promising p-n junction for an ultraviolet light-emitting diode, Journal of Physics-Condensed Matter,2012, 24(33),1-5.
    [9]X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, J. Z. Zhang, Y. Li, Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting, Nano Letters,2009,9(6),2331-2336.
    [10]A. V. Vorontsov, A. A. Altynnikov, E. N. Savinov, E. N. Kurkin, Correlation of TiO2 photocatalytic activity and diffuse reflectance spectra, Journal of Photochemistry and Photobiology a-Chemistry,2001,144(2-3),193-196.
    [11]E. G. Ismailov, N. G. Maksimov, V. F. Anufrienko, Use of ESR method to investigate nitrogen-oxides stabilized in TiO2, Bulletin of the Academy of Sciences of the Ussr Division of Chemical Science,1976,25(2),257-260.
    [12]F. Figueras, J. Palomeque, S. Loridant, C. Feche, N. Essayem, G. Gelbard, Influence of the coordination on the catalytic properties of supported W catalysts, Journal of Catalysis,2004,226(1),25-31.
    [13]Y. Y. Liu, Y. Li, W. Z. Li, S. Han, C. J. Liu, Photoelectrochemical properties and photocatalytic activity of nitrogen-doped nanoporous WO3 photoelectrodes under visible light, Applied Surface Science,2012,258(12), 5038-5045.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700