用户名: 密码: 验证码:
无定形材料中稀土光谱性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文工作围绕无定形材料中稀土离子光谱性质研究展开,主要包含两大部分内容,第一部分集中在非晶态玻璃环境介质中,以Eu3+作为荧光探针,探索自发辐射光跃迁的局域场效应以及非晶材料中稀土离子光谱特性,具体结果将在第4章和第5章中进行理论和实验两方面的阐述与论证;第二部分工作集中于新型复合功能材料—-玻璃陶瓷(GC)体系,以Ho3+和Er3+作为探针,研究了上转换发光增强的机理及其温度荧光特性,具体内容将在第6章和第7章中进行详细论述。
     论文的第1章为绪论部分,从宏观上概述了本课题选题的背景、意义和研究现状,最后给出了本论文研究的主要内容以及成果进展。第2章为基础知识介绍部分,主要包括稀土离子的光谱理论基础和两类无定形材料基质—玻璃和GC材料的基本特征介绍。第3章主要涉及各种实验合成和性能表征方法。
     第4章首先从理论上分析了局域场效应的机理,由量子力学含时微扰理论给出了电偶极自发辐射速率对局域结构和采用模型的依赖,并从宏观电磁场角度出发,对目前人们较为普遍接受的实腔和虚腔模型下的电偶极自发辐射速率对环境介质折射率的依赖关系做了详细推导,可以基于理论推导和模型图像对比,对一个给定体系的自发辐射速率对介质依赖关系所适用的模型给出定性的判断。并分别针对几种模型的适用情况,采用文献中实验数据进行了验证,发现唯有2003年Kumar等人发表在Phys.Rev.Lett.上的一篇文章中实验数据与本文前述的理论讨论相违背。在2011年发表在Phys.Rev.B上的一篇文章中,段昌奎教授选择了跟此文章类似的实验条件,从两个独立途径出发,根据发射光谱比值和衰减寿命实验数据,做了非常严谨周全的双重验证和讨论。可靠的实验数据和周全的讨论合理验证了2003年Phys.Rev.Lett.上那篇支持实腔模型说法不符合我们的理论判据。为了进一步给理论判据提供更广泛的实验支撑,我们又研究了电偶极自发辐射速率在其他折射率在1.5以上且宽范围可调的玻璃基质材料中的情况。如采用高温熔融法制备了Eu3+掺杂的锌硼碲酸盐玻璃xB203+(79-x)TeO2+5La203+10ZnO+1/2Eu203(x=9,19,29,39和49)和铅硼硅酸盐玻璃(99-x)(2/3SiO2+1/3B203)+x PbO+1/2Eu203(x=30,40,50,60,70和80)基质材料,讨论的实验结果也完全支持我们实验组一直以来在自发辐射光跃迁的局域场效应研究方面做的工作。综上讨论,我们最后归纳出了一个比较普适的结论:固体中稀土离子等孤立离子作为发光中心时,其自发辐射速率的局域场效应更适合虚腔模型。
     第5章的工作源于第4章实验工作部分中涉及到的玻璃基质中Eu3+的发光特征。我们发现,无定形结构中发光中心离子局域环境的不确定导致光谱宽化,且以Eu3+离子作为荧光探针,对其规律进行研究时发现:当激发光子的波长改变时,5Do→7F0跃迁对应的发光峰会随着激发波长的增加有规律地红移,同时7F1的晶场分裂宽度也随激发波长的增加而逐渐变窄。为了对上述实验结果进行合理的解释和分析,第5章的工作中,我们首先从理论上,给出了更合理的计算晶场分裂宽度的公式,并通过各种近似推导出了强度比值与晶场分裂宽度的线性依赖关系,然后结合这些理论推导,对第4章中Eu3+掺杂的两类不同玻璃基质体系的实验数据都做了系统的定量分析和研究。综合结果表明:稀土发光离子在不定形物质局域结构中遵循的光谱变化规律具有一定的共性,由理论支撑拟合出来的实验结果预期也能为其它非晶基质材料的性能研究提供有效的参考依据。
     第6章报道了首次成功合成的Ho3+掺杂的含22nm左右BaYbF5纳米晶粒的透明GC样品的光谱特性。开展此工作的初衷为深入开展局域场效应(见第4章)研究,不过由于实际结果和目前仪器的限制,研究中无法避免一些不确定因素。然而,GC本身作为新型固体基质材料,通过近几十年的发展,已开始广泛渗入到我们的日生生活和科研之中,于是我们转而开始了对各种稀土离子掺杂的各类玻璃陶瓷优良性能的研究。在本工作中,我们观测到GC660绿色上转换发光相对强度比原玻璃(PG)增强了40多倍,并且有非常明显的斯塔克分裂,这些结果表明发光离子确实进入了晶体局域环境中,得到了类似与晶体的优异发光,而且这些小晶粒受氧化物玻璃基质保护,性能更稳定,应用范围将会更加广泛,预期可以实现照明、显示、传感、激光等光电学领域的应用。同时我们还特别利用Ho3+离子的5F1/5G6与5F3,2/3K8这对热耦合能级做了变温光谱测量,对其在440-460nm波长范围内的上转换发光峰做了明确的能级来源确认。
     第7章的工作主要是考虑到第6章的基质中Yb3+含量太高,导致BaYbF5有很强的激光诱导加热现象,不太适合研究温度荧光特性,所以本工作中,我们合成了另外一类上转换效率高,热效应可尽量避免的含25nm左右NaYF4晶粒的透明GC基质材料,选用研究较为普遍的Er3+作为荧光探针,研究了室温到693K范围内的温度变化荧光光谱,采用FIR技术,对实验数据做了较好的拟合,得到GC700中Er3+的这对热耦合能级(2H11/2和4S3/2)有效能级差为775cm-1,其中300K的相对灵敏度约1.24%K-1,比大部分已有文献研究的其他基质灵敏度都要稍高,预期在光纤温度传感会有较大的潜在应用前景。
     最后,对全文的研究工作和研究成果进行了总结和展望。
This thesis is focused on the spectroscopic properties of rare-earth ions in amorphous materials. The new results obtained felled into two parts:one part is the study of local-field effect on the optical transition of emitters in dielectric media, which is detected using Eu3+embedded in glass systems. The detailed theory and experimental results are presented in Chapters4and5. The other part is on the mechanism of and the temperature dependence on the greatly enhanced upconverted luminescence in glass ceramics (GC), with details in Chapters6and7.
     The outline of the thesis chapter by chapter is as follows:
     Chapter1presents the background, significance and status of the area in general. In Chapter2,1discuss some relevant fundamentals of spectroscopy and general features of glass and GC. Chapter3focuses on the preparation of glass and GC and the techniques of measurement and analysis of optical spectra used in this thesis.
     Chapter4focuses on the study of local-field effects on the photoluminescent spectra using Eu3+as probes in glass. First, the mechanism of the local field effect is presented. Then, according to the time-dependent perturbation theory in modern quantum mechanics and the theory of macroscopic electrodynamics, the spontaneous emission rate of an isolated electric dipole emitter depends on the local structure of the medium and the appropriate models, and both of the two most accepted models, i.e., the virtual-cavity model and the real-cavity model, for the local-field effect are functions of the refractive index of the medium. Based on the theoretical derivation and the comparison of ratios of the enhancement factors in two models, a practical criterion on which model is applicable for a given system is presented with a critical review of the available experimental and theoretical results. According to the criterion, VC model should be more appropriate for the electric dipole emission rates of Eu3+in glass, in contrary to what has been reported in Ref.[Phys. Rev. Lett.91,203903(2003)] that the decay of5D0of Eu3+in lead borate glass follows the RC model. Recently, a more scrutinized experimental study on Eu3+in the same glass system by my supervisor C. K. Duan, showed that the results actually follow the VC model, in consistency with the discussion presented in Chapter4. To further show the generality of the criterion, we also study the local-field effect on the emission spectra of Eu3+ions in two new glass systems. Since the predictions of the two models vary distinctively only when the refractive index n is big enough and varies in a range wide enough, a series of glass samples with refractive indices cover most of the1.5-2.2range are desired. Another requirement is that the local coordination structure of Eu3+is stable when the refractive index is adjusted by varying glass composition, so that the influence of the variation of the electric dipole moment of the5Do→7FJ optical transitions of Eu3+is negligible. By referring to some available data on the influence of glass composition on the optical refractive index, we eventually chose the following two glass series for the study:1)xB2O3+(79-x) TeO2+5La2O3+1/2Eu2O3+10ZnO and2)(99-x)(2/3SiO2+1/3B2O3)+x PbO+1/2Eu2O3. Detailed quantitative studies using the refractive indices, measured intensity ratios and decay lifetimes confirm that the VC model can better describe the results than the real-cavity model. We concluded that, at least for isolated positive luminescent ions in solids, the VC model should be applied to describe the local-field effect on the spontaneous emission rate.
     Chapter5is mainly focused on the understanding of Eu3+emission spectra in glass, which is an extension of the study presented in Chapter4. In both of Eu3+-doped lead-borosilicate and boro-tellurite glass system, the same changing pattern is observed, i.e., the peak energies for5D0→7F0transition are blue-shift and the widths of7F1are broadened when the excitation energies gradually increases. To justify and interpret this experimental phenomenon, firstly we proposed correction to the calculation of the width of7F1CF splitting initially presented in Ref.[Phys. Chem. Chem. Phys.12,9933(2010)] and then obtained the correlation between the intensity ratio of5D0→7F0versus5Do→7F2and the width of7F1. By using the the adapted model, quantitative analyses have been carried out and greatlly improved agreement between theory and experiments than using the original model is obtained. These results indicate that the relationship between the spectral intensity ratios and the CF splitting widths in glass should be quite general. The spectral analysis procedure could be put into test in other non-crystalline systems and expected to be useful for the local structure investigations in further studies.
     Chapter6reports the enhanced upconverted emission in novel Ho3+-doped GC containing BaYbF5nanocrystals. The origin intention of fabricating GC is to further study the local field effects on the spontaneous emission rate, but we find some new phenomena and applications of the spectroscopic properties of rare-earth ions. GC it themselves are more interesting and so in this and the following chapter I will focus on them. GCs, as a kind of the most attractive photoluminescent materials, have been designed for a wide variety of applications owing to the merging of low cut-off phonon energies of fluoride hosts for luminescent ions and the desirable mechanical and chemical characteristics of silicate based glass to encapsulate these luminescent micro/nano crystals. In this work, Ho3+-doped transparent oxyfluoride SiO2-Al2O3-Na2CO3-CaO-BaF2-YbF3GC containing BaYbF5nanocrystals of8-22nm were fabricated via melt-quenching technique with subsequent heat treatment. The formation of crystalline fluoride phase was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Compared to precursor glasses, the greatly enhanced green emission (40-fold), new emission band at ultraviolet-blue region and stark splittings of emission in GC, indicate that Ho3+enters into BaYbF5nanocrystals with low phonon energy. Besides, the origin of the previously unconfirmed emission band at440-460nm is clearly identified by measuring spectra from thermally coupled luminescent levels at various temperatures. The outstanding upconversion properties of Ho3+in GC may present potential application in all-solid-state upconversion lasers operating in the visible and ultraviolet range.
     Chapter7focuses on the study of the temperature-dependent upconverted luminescence due to their significantly potential applications in temperature sensors. Although the temperature-dependent upconverted spectra were measured in Chapter6, there exists the common heating effect caused by980nm excitation because of high concentrations of Yb3+in GC containing BaYbF5nanocrystals. In this work, we carefully selected and fabricated transparent oxyfluoride SiO2-Al2O3-Na2CO3-CaO-NaF-YF3GC containing25nm-sized NaYF4:Yb3+/Er3+crystals with high upconverted efficiency and low laser-induced temperature. The intensities of green UC emissions from2H11/2→4115/2and4S3/2→4115/2transitions enhances for about15times relative to those for the PC sample. The FIR of the two green UC emissions is characterized for optical thermometry in the range from298K to693K. A fitting of the FIR by an exponential function gives an effective energy difference of775cm-1, from which a relative temperature sensitivity of1.24%K-1around300K is obtained. The enhanced UC emissions and good temperature sensitivity indicate that the transparent GC containing nanocrystalline NaYF4:Yb3+/Er3+could be a promising candidate for optical fiber point temperature sensing.
     Finally, I sum up the results obtain in this thesis and give a perspective for further work.
引文
[1]K. Binnemans. Chem. Rev.,109,4283-4374 (2009).
    [2]L. D. Carlos, R. A. S. Ferreira, V. D. Bermudez and S. J. L. Ribeiro. Adv. Mater., 21,509-534(2009).
    [3]F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, X. G. Liu. Nat. Mater.,10,968-973 (2011).
    [4]K. A. Abel, J. C. Boyer and F. C. J. M. van Veggel. J. Am. Chem. Soc.,131, 14644-14645(2009).
    [5]J. C. Boyer, C. J. Carling, B. D. Gates and N. R. Branda. J. Am. Chem. Soc.,132, 15766-15772(2010).
    [6]N. J. J. Johnson, N. M. Sangeetha, J. C. Boyer and C. J. M. van Veggel. Nanoscale.,2,771-777 (2010).
    [7]F. Zhang, G. B. Braun, Y. F. Shi, Y C. Zhang, X. H. Sun, N. O. Reich, D. Y. Zhao and G. Stucky. J. Am. Chem. Soc.,132,2850-2851 (2010).
    [8]H. Zhang, Y. J. Li, I. A. Ivanov, Y. G. Qu, Y. Hang, X. F. Duan. Angew. Chem. Int. Ed.,49,2865-2868(2010).
    [9]J. Van. Wijngaarden, M. M. van Schooneveld, C. D. M. Donega and A. Meijerink. EPL-Europhys. Lett.,93,57005 (2011).
    [10]G. L. J. A. Rikken, and Y. A. R. R. Kessener. Phys. Rev. Lett.,74,880-883 (1995).
    [11]F. J. P. Schuurmans, D. T. N. de Lang, G. H. Wegdam, R. Sprik, and A. Lagendijk. Phys. Rev. Lett.,80,5077-5080 (1998).
    [12]P. de Vries, and A. Lagendijk, Phys. Rev. Lett.,81,1381-1384 (1998).
    [13]R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan. Phys. Rev. B,60, R14012-R14015(1999).
    [14]M. E. Crenshaw, and C.M. Bowden. Phys. Rev. Lett.,85,1851-1854(2000).
    [15]G. M. Kumar, D. N. Rao, and G. S. Agarwal. Phys. Rev. Lett.,91,203903 (2003).
    [16]P. R. Berman, and P.W. Milonni. Phys. Rev. Lett.,92,053601 (2004).
    [17]C. K. Duan, M. F. Reid, and Z.Q. Wang. Phys. Lett. A,343,474-480 (2005).
    [18]C. K. Duan, and M. F. Reid. Curr. Appl. Phys.,6,348-350 (2006).
    [19]M. E. Crenshaw. Phys. Rev. A,78,053827 (2008).
    [20]V. LeBihan, A. Pillonnet, D. Amans, G. Ledoux,O. Marty, C. Dujardin. Phys. Rev. B,78,113405(2008).
    [21]Y. G. Choi, and J. H. Song. Chem. Phys. Lett.,467,323-326 (2009).
    [22]C. K. Duan, H. L. Wen, and P. A. Tanner. Phys. Rev., B 83,245123 (2011).
    [23]T. Cesca, P. Calvelli, G. Battaglin, P. Mazzoldi, and G. Mattei. Opt. Express,20, 4537-4547 (2012).
    [24]J. D. Jackson. Classical Electrodynamics (Wiley, New York,1975).
    [25]C. Kittel. Introduction to Solid State Physics (Wiley, New York,1976).
    [26]R. J. Glauber and M. Lewenstein. Phys. Rev. A 43,467-491 (1991).
    [27]D. Toptygin. J. Fluoresc.13,201 (2003).
    [28]J. Lee and N. A. Kotov. Nano Today,2,48-51 (2007).
    [29]S. Sadat, A. Tan, Y. J. Chua and P. Reddy. Nano Lett.,10,2613-2617 (2010).
    [30]J. M. Yang, H. Yang and L.W. Lin. ACS Nano,6,5067-5071 (2011).
    [31]F. Vetrone, R. Naccache, A. Zamarro et al.. ACS Nano,4,3254-3258 (2010).
    [32]S. A. Wade, S. F. Collins, and G. W. Baxter. J. Appl. Phys.,94,4743-4756 (2003).
    [33]A. H. Khalid, and K. Kontis. Sensors,8,5673-5744 (2008).
    [34]B. R. Rdeey, I. Kamma, and P. Kommidi. Appl. Optics 52, B33-B39 (2013).
    [35]W. Xu, H. Zhao, Z. G. Zhang, and W. W. Cao. Sens. Actuators B Chem.,178, 520-524(2013).
    [36]V. K. Rai, and S. B. Rai. Acta A,68,1406-1409 (2007).
    [37]Z. Boruc, M. Kaczkan, B. Fetlinski, S. Turczynski, and M. Malinowski. Opt. Lett.,37,5214-5216 (2012).
    [38]W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao. Opt. Express,20, 18127-18137(2012).
    [39]S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, M. Yin. J. Alloys Comp.,588,654-657 (2014).
    [40]W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao. Sens. Actuators B Chem.,173,250-253(2012).
    [41]X. F. Wang, J. Zheng, Yan Xuan, and X. H. Yan. Opt. Express,21,21596-21606 (2013).
    [42]S. F. Leon-Luis, U. R. Rodriguez-Mendoza, E. Lalla, and V. Lavin. Sens. Actuators B Chem.,158,208-213 (2011).
    [43]N. Rakov and G S. Maciel. Sens. Actuators B Chem.,164,96-100 (2012).
    [44]P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra. Appl. Phys. Lett.73,578-580 (1998).
    [45]S. F. Leon-Luis, U. R. Rodriguez-Mendoza, P. Haro-Gonzalez, I. R. Martin, and V. Lavin. Sens. Actuators B Chem.,174,176-186 (2012).
    [46]W. Xu, Z. G. Zhang, and W. W. Cao. Opt. Lett.,37,4865-4867 (2012).
    [47]B. Dong, T. Yang, and M. K. Lei. Sens. Actuators B Chem.,123,667-670 (2007).
    [48]C. R. Li, B. Dong, S. F. Li, and C. L. Song, Chem. Phys. Lett.,443,426-429 (2007).
    [49]Carlos D. S. Brites, Patricia P. Lima, Nuno J. O. Silva et al.. New J. Chem.,35, 1177-1183(2011).
    [1]G. Blasse, B.C. Grabmaier. Luminescent Materials, Spinger Verlag, Berlin, New York,1994.
    [2]楼立人,尹民,李清庭.发光物理基础.中国科学技术大学出版社,合肥,2014.
    [3]张思远.稀土离子的光谱学一光谱性质和光谱理论,科学出版社,北京,2008.
    [4]徐叙镕,苏勉曾.发光学与发光材料,化学工业出版社,北京,2004.
    [5]孙家跃,杜海燕.固体发光材料.化学工业出版社,北京,2003.
    [6]吉林物理所,中国科学技术大学,固体发光编写组,固体发光,1976.
    [7]郑子樵,李红英.稀土功能材料,化学工业出版社,北京,2003.
    [8]贡长生,张克立.新型功能材料,化学工业出版社,北京,2001.
    [9]李建宇.稀土发光材料及其应用,化学工业出版社,北京,2003.
    [10]苏锵.稀土化学,河南科学技术出版社,郑州,1993.
    [11]E. U. Condon, G. H. Shortley. The Theory of Atomic Spectra. CamBridge University Press,1935.
    [12]J. C. Slater. Quantum Theory of Atomic Structure. New York:McGraw-Hill, Inc., 1960.
    [13]G. Racah. Phys. Rev.,62,62 (1942).
    [14]G. H. Dieke, H. M. Crosswhite. Appl. Optic.,2,675 (1963).
    [15]G. H. Dieke. Spectra and Energy Levels of Rare Earths in Crystals. New York: John-Wiley&Sons, Inc.,1986.
    [16]E. Heumann, S. Bar, H. Kletsehlnann, G. Huber. Optics Letters,27,1699 (2002).
    [17]Z. F. Shan, D. Q. Chen, Y. L. Yu, P. Huang, F. Y. Weng, H. Lin, and Y. S. Wang. Mater. Res. Bull.,45,1017 (2010).
    [18]Y. Ledemi, M. El Amraoui, J. L. Ferrari, P. L. Fortin, S. J. L. Ribeiro, and Y. Messaddeq. J. Am. Ceram. Soc.,96,825 (2013).
    [19]E. Osiac, E. Heumarin, G. Hubert, S. Kuek, E. Sani, A. Toneelli, M. Tonelli. Applied Physics Letters,82,3832 (2003).
    [20]S. L. Chen, S. L. Zhao, F. Zheng, C. Zhang, L. H. Huang, and S. Q. Xu. Ceram. Int.,39,2909 (2013).
    [21]E. Downing, L. Hesselink, J. Ralston, R. Macfarlane. Science 273,1185 (1996).
    [22]Y. Yu, F. Song, C. G. Ming, J. D. Liu, W. Li, Y. L. Liu, and H. Y. Zhao. Opt. Commun.,285,4739-4744 (2012).
    [23]L. N. Guo, Y. H Wang, J. Zhang, Y. Z. Wang, and P. Y Dong. Nanoscale Res. Lett.,7,1 (2012).
    [24]van de Rijke, H. Ziglmans, S. Li, T. Vail, A.K. Rap. Nat. Biotechnol,19,273 (2001).
    [25]D.K. Chatterjee, M.K. Gnanasammandhan, Y. Zhang. Small 6,2781 (2010).
    [26]W. Xu, X. Y. Gao, L. J. Zheng, Z. G Zhang, and W. W. Cao. Opt. Express,20, 18127(2012).
    [27]M. Haase, and H. Schafer. Angew. Chem. Int. Ed.,50,5808 (2011).
    [28]W. J. Zhang, Q. J. Chen, Q. Qian, and Q. Y. Zhang. J. Am. Ceram. Soc.,95663 (2012).
    [29]G. F. Wang, Q. Peng, Y.D. Li. Acc. Chem. Res,44,322 (2011).
    [30]Sha Jiang, Hai Guo, Xiantao Wei, Changkui Duan and Min Yin. Journal of luminescence,152,195 (2014).
    [31]F. Wang, X. G. Liu, Chem. Soc. Rev.,38,976 (2009).
    [32]Z. Q. Li, Y. Zhang. Nanotechnology,19,345606 (2008).
    [33]Z. W. Wei, L. N. Sun, J. L. Liu, J. Z. Zhang, H. R. Yang, Y. Yang, and L. Y. Shi. Biomaterials 35,387 (2014).
    [34]P. Zhao, Y. H. Zhu, X. L.Yang, J. H. Shen, X. Jiang, J. Zong, and C. Z. Li, Dalton Trans.43,451(2014).
    [35]P. Y. Qiu, N. Zhou, H. Y. Chen, C. L. Zhang, G. Gao, and D. X. Cui. Nanoscale,5, 11512(2013).
    [36]K. M. Guo, M. Y. Li, X. L. Fang, M. D. Luoshan, L. H. Bai, and X. Z. Zhao. J. Power sources,249,72 (2014).
    [37]G.C. Jiang, J. Pichaandi, N. J.J. Johnson, R. D. Burke and F. C. J. M. van Veggel, Langmuir,28,3239(2012).
    [38]R. Dey, and V. K. Rai. Dalton Trans.,43,111 (2014).
    [39]J. B. Zhao, D. Y. Jin, E. P. Schartner, Y. Q. Lu, Y. J. Liu, A. V. Zvyagin, L. X. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys and T. M. Monro. Nat. Nanotechnol.,8,729 (2013).
    [40]L. Aigouy, G. Tessier, M. Mortier, and B. Charlot. Appl. Phys. Lett.,87, 184105(2005).
    [41]R. Dey, A. Pandey, and V. K. Rai. Sens. Actuators B Chem.,190,512 (2014).
    [42]J.A. J. Wilder. Non-Cryst. Solids,38,879 (1980).
    [43]N.H. Ray, C.J. Lewis, J.N.C. Laycock, W.D. Robinson. Glass Technol.,14,50 (1973).
    [44]N.H. Ray, C.J. Lewis, J.N.C. Laycock, W.D. Robinson. Glass Technol.,14, 55(1973).
    [45]H. A. A. Sidek, I.T. Collier, R. N. Hampton, G. A. Saunders, B. Bridge. Mag. Phil. B,59,221 (1989).
    [46]E. Kordes, R. Nieder. Ber Glastech.,41,41 (1968).
    [47]P. P. Proulx, G. Cormier, J. A. Capobianco, B. Champagnon, M. Bettinelli. Condens J. Phys. Matter,6,275 (1994).
    [48]V. P. Gapontsev, S. M. Matitsin, A. A. Isineer, V. B. Kravchenko. Opt. Laser Technol.,14,189(1982).
    [49]J. N. Sandoe, P. H. Sarkies, S. Parke. J. Phys. D,5,1788 (1972).
    [50]D. Barbier, M. Rattay, N. Kreps, F. Saint-Andre, G. Clauss, M. Trouillon, A. Kevorkian, J. Delavaux, and E. Murphy. IEEE Photon. Technol. Lett.,9,315 (1997).
    [51]谢智莹,邓再德等,掺铒高增益磷酸盐激光玻璃的研究进展.玻璃与搪瓷,33,46(2005).
    [52]赵楠,Er/Yb共掺磷酸盐玻璃条形波导激光器研究.天津大学硕士学位论文,2006.
    [53]施旗,程红等,掺钕磷酸盐激光玻璃的光谱特性.发光学报,26,359(2005).
    [54]Y. K. Sharma, S. S. L. Surana, R. P. Dubedi, V. Joshi. Mat. Sci. Eng. B,119, 131(2005).
    [55]C. F. Zhu, Y. X. Yang, X. L. Liang, S. L. Yuan, G. R. Chen. J. Lumin.,126,707 (2007).
    [56]Y. Teng, K. Sharafudeen, S. F. Zhou, and J. R. Qiu. J. Ceram. Soc. Jpn.,120, 458 (2012). I. W. Donald, P. M. Mallinson, B. L. Metcalfe, L. A. Gerrard, and J. A. Fernie. J. Mater. Sci.,46,1975(2011).
    [57]T. Hoche. J. Mater. Sci.,45,3683 (2010).
    [58]J. R. Qiu. J. Ceram. Soc. Jpn.,116,593 (2008).
    [59]W. Holand, V. Rheinberger, and M. Schweiger. Adv. Eng. Mater.,3,768 (2001).
    [60]G. Partridge. Glass Technol.,35,116 (1994).
    [61]G. Partridge. Glass Technol.,35,171 (1994).
    [62]G Partridge, and S. V. Phillips. Glass Technol.,35,82 (1991).
    [63]V. Tikhomiron, L. Chibotaru, D. Saurel, P. Gredin, M. Mortier, V. Moshchalkov. Nano Lett.,9,721 (2009).
    [64]X. Liu, Y. Wei, H. Guo. J. Am. Ceram. Soc.,96,369 (2013).
    [65]X. Liu, Y. Wei, R. Wei, J. Yang, H. Guo. J. Am. Ceram. Soc.,96,798 (2013).
    [1]黄胜涛.非晶态材料的结构和结构分析.科学出版社,1987.
    [2]赵彦钊,殷海荣.玻璃工艺学.化学工业出版社,2006.
    [3]程金树,李宏,汤李缨,何峰.微晶玻璃.化学工业出版社,2006.
    [4]F.V. Tooley主编,刘时衡,岑超南,彭金安译.玻璃制造手册.建筑工业出版社,1983.
    [5]王连发,赵墨砚,光学玻璃工艺学.兵器工业出版社,1995.
    [6]周玉,贾德昌,温光武.陶瓷材料科学.哈尔滨工业大学出版社,1995.
    [7]H. Bach, N. Neuroth. The properties of optical glass, Berlin:Springer,1995.
    [8]K. H. Karlsson, and G Z. Liu. J. Non-Cryst. Sol.345,297-301 (2004).
    [9]R. F. Cuevas, A. M. de Paula, O. L. Alves, N. Aranha, J. A. Sanjurjo, C. L. Cesar, and L. C. Barbosa. J. Mater. Chem.6,1811-1814 (1996).
    [10]Y. M. Yang, B. J. Chen, C. Wang, G. Z. Ren, and X. J. Wang. J. Rare Earths 25, 31-35 (2007).
    [11]M. Clara Goncalves, Luis F. Santos, Rui M. Almeida. C.R.Chimie 58,45-854 (2002).
    [12]Y. Teng, K. Sharafudeen, S. F. Zhou, and J. R. Qiu. J. Ceram. Soc. Jpn.,120, 458-466 (2012).
    [13]I. W. Donald, P. M. Mallinson, B. L. Metcalfe, L. A. Gerrard, and J. A. Fernie. J. Mater. Sci.,46,1975-2000 (2011).
    [14]T. Hoche. J. Mater. Sci.,45,3683-3696 (2010).
    [15]J. R. Qiu. J. Ceram. Soc. Jpn.,116,593-599 (2008).
    [16]W. Holand, V. Rheinberger, and M. Schweiger. Adv. Eng. Mater.,3,768-774 (2001).
    [17]G Partridge, An overview of glass-ceramics.1. development and principal bulk applications, Glass Technol.,35,116-127 (1994).
    [18]G. Partridge, An overview of glass-ceramics.2. joining, minor applications and the future, Glass Technol.,35,171-182 (1994).
    [19]G Partridge, and S. V. Phillips. Glass Technol.,35,82-90 (1991).
    [1]N. Bloembergen. Nonlinear Optics, [M]. New York:Benjamin,1965.
    [2]E. M. Purcell. Phys. Rev.69,681-681 (1946).
    [3]D. Toptygin. J. Fluoresc.13,201-219 (2003).
    [4]C. K. Duan, M. F. Reid, and Z. Q. Wang. Phys. Rev. A.343,474-480 (2005).
    [5]F. Wang, R. R. Deng, J. Wang, Q. X. Wang, Y. Han, H. M. Zhu, X. Y. Chen, X. G. Liu. Nat. Mater.10,968-973 (2011).
    [6]K. A. Abel, J. C. Boyer and F. C. J. M. van Veggel. J. Am. Chem. Soc.131,14644-4645 (2009).
    [7]J. C. Boyer, C. J. Carling, B. D. Gates and N. R. Branda. J. Am. Chem. Soc.132, 15766-15772(2010).
    [8]N. J. J. Johnson, N. M. Sangeetha, J. C. Boyer and C. J. M. van Veggel. Nanoscale.2,771-777 (2010).
    [9]F. Zhang, G. B. Braun, Y. F. Shi, Y. C. Zhang, X. H. Sun, N. O. Reich, D. Y. Zhao and G. Stucky. J. Am. Chem. Soc.132,2850-2851 (2010).
    [10]H. Zhang, Y. J. Li, I. A. Ivanov, Y. G. Qu, Y. Hang, X. F. Duan. Angew. Chem. Int. Ed.49,2865-2868 (2010).
    [11]J. Van. Wijngaarden, M. M. van Schooneveld, C. D. M. Donega and A. Meijerink. EPL-Europhys. Lett.93,57005 (2011).
    [12]K. Binnemans. Chem. Rev.109(9),4283-4374 (2009).
    [13]R. H. Hadfield. Nat. Photon.3(12),696-705(2009).
    [14]B. M. van der Ende, L. Aarts, and A. Meijerink. Adv. Mater 21(30),3073-3077 (2009).
    [15]F. Wang, Y. Han, C. S. Lim, Y. H. Lu, J. Wang, J. Xu, H. Y. Chen, C. Zhang, M. H. Hong, and X. G. Liu. Nature 463(7284),1061-1064 (2010).
    [16]A. Faraon, P. E. Barclay, C. Santori, K.-M. C. Fu, R. G. Beausoleil. Nat. Photon. 5(5),301-305(2011).
    [17]A. Ridolfo, O. Di Stefano, N. Fina, R. Saija, S. Savasta. Phys. Rev. Lett.105, 263601 (2010).
    [18]T. Liu, W. Xu, X. Bai, H. Song. J. Appl. Phys. 111,64312 (2012).
    [19]Y. Zhu, W. Xu, H. Zhang, W. Wang, L. Tong, S. Xu, Z. Sun, H. Song. Appl. Phys. Lett.100,81104(2012).
    [20]A. Pillonnet, P. Fleury, A. I. Chizhik, A. M. Chizhik, D. Amans, G. Ledoux, F. Kulzer, A. J. Meixner, C. Dujardin. Opt. Express 20,3200 (2012).
    [21]M. L. Debasu, D. Ananias, A. G. Macedo, J. Rocha, L. D. Carlos, Emission-Decay Curves. J. Phys. Chem. C 115,15297 (2011).
    [22]Y. Ruan, Q. Xiao, W. Luo, R. Li, X. Chen. Nanotechnolo-gy,22,275701 (2011).
    [23]D. R. Martin, D. V. Matyushov. J. Chem. Phys.129,174508 (2008).
    [24]F. J. P. Schuurmans, D. T. N. de Lang, G. H. Wegdam, R. Sprik, and A. Lagendijk. Phys. Rev. Lett.80(23),5077-5080 (1998).
    [25]M. E. Crenshaw, and C.M. Bowden. Phys. Rev. Lett.85(9),1851-1854(2000).
    [26]P. R. Berman, and P.W. Milonni. Phys. Rev. Lett.92(5),053601 (2004).
    [27]M. E. Crenshaw. Phys. Rev. A 78,053827 (2008).
    [28]R. S. Meltzer, S. P. Feofilov, B. Tissue, and H. B. Yuan. Phys. Rev. B 60, R14012-R14015 (1999).
    [29]G. L. J. A. Rikken, and Y. A. R. R. Kessener. Phys. Rev. Lett.74(6),880-883 (1995).
    [30]G. M. Kumar, D. N. Rao, and G. S. Agarwal. Phys. Rev. Lett.91(20),203903 (2003).
    [31]C. K. Duan, and M. F. Reid. Curr. Appl. Phys.6(3),348-350 (2006).
    [32]V. Lebihan, A. Pillonnet, D. Amans, G. Ledoux, O. Marty, and C. Dujardin. Phys. Rev. B 78(11),113405 (2008).
    [33]Y. G. Choi, and J. H. Song. Chem. Phys. Lett.467(4-6),323-326 (2009).
    [34]C. K. Duan, H. L. Wen, and P. A. Tanner. Phys. Rev. B 83(24),245123 (2011).
    [35]Y. S. Zhu, W. Xu, H. Z. Zhang, W. Wang, L. Tong, S. Xu, Z. P. Sun, and H. W. Song. Appl. Phys. Lett.100(8),081104 (2012).
    [36]M. H. V. Werts, R. T. F. Jukes, and J. W. Verhoeven. Phys. Chem. Chem. Phys. 4(9),1542-1548 (2002).
    [37]P. de Vries, and A. Lagendijk. Phys. Rev. Lett.81,1381-1384 (1998).
    [1]V.G. Dmitriev, M.V. Osipov, V.N. Puzyrev, A.T. Sahakyan, A.N. Starodub, B.L. Vasin, J. Phys. B:At. Mol. Opt. Phys.45 (2012) 165401.
    [2]Y. Guo, G. Gao, M. Li, L. Hu, J. Zhang, Mater. Lett.80 (2012) 56-58.
    [3]J. K. R. Weber, B. Cho, P. C. Nordine, Nature 393 (1998) 769-771.
    [4]J.H. Kratzer, J. Schroeder, J. Non-Cryst. Solids 349 (2004) 299-308.
    [5]W. Li, M. Lu, Opt. Express 18 (2010) 26307-26312.
    [6]A. Morono, P. Martin, A. Gusarov, E.R. Hodgson, J. Nucl. Mater.386-388 (2009) 1030-1033.
    [7]N.F. Andreev, A.A. Babin, A.M. Kiselev, O.V. Palashov, E.A. Khazanov, T.V. Zarubina, O.S. Shchavelev, J. Opt. Technol.67 (2000) 556-558.
    [8]A.I. Rabukhin, Glass and Ceramics 37 (1995) 87-90.
    [9]Z. X. Wu, H. Zhang, H.H. Yang, X.X. Chu, L.F. Li, J. Nucl. Mater.403 (2010) 117-120.
    [10]C. Gorller-Walrand and K. Binnemans, Handbook on the Physics and Chemistry of Rare Earths, edited by K. A. Gschneidner, Jr. and L. Eyring (Elsevier Science, New York,1998), Vol.25, Chap.167.
    [11]P. Zhou, X. Wang, Y. Ma, Laser Phys.22 (2012) 1744-1751.
    [12]A. Jha, B. Richards, G. Jose, Prog. Mater. Sci.57 (2012) 1426-1491.
    [13]A. Polman, F.C.J.M. van Veggel, J. Opt. Soc. Am. B-Opt. Phys.21 (2004) 871-892.
    [14]K. Kuriki, Y. Koike, Y. Okamoto, Chem. Rev.102 (2002) 2347-2356.
    [15]J. L. Adam, Chem. Rev.102 (2002) 2461-2476.
    [16]D. Nayak, S. Lahiri, J. Radioanal. Nucl. Chem.242 (1999) 423-432.
    [17]M. J. F. Digonnet, R.W. Sadowski, H.J. Shaw, Opt. Fiber Tech.3 (1997) 44-64.
    [18]P. F. Smet, A. B. Parmentier, D. Poelman, J. Electrochem. Soc.158 (2011) R37-R54.
    [19]S. Yasuo, K. Naoto, J. Electrochem. Soc.151 (2004) H192-H197.
    [20]Z. Feng, W. Zhuang, X. Huang, X. Wen, Y. Hu, J. Rare. Earths.28 (2010) 351-355.
    [21]K. Deng, T. Gong, Y. Chen, C. Duan, M. Yin, Opt. Lett.36 (2011) 4470-4472.
    [22]J. G. Bunzil and G. Pradervand, J. Chem. Phys.,85 (1986) 2489-2497.
    [23]P. Dahlen, Anal. Biochem.,164 (1987) 78-83.
    [24]G. Nishimura and T. Kushida, Phys. Rev. B,37 (1988) 9075-9078.
    [25]L. Stefan and B. Sawomir, J. Alloys Comps.,300 (2000) 370-376.
    [26]K. Driesen, V. K. Tikhomirov and C. Gorller-walrand, J. Appl. Phys.,102 (2007) 024312-1-024312-6.
    [27]I. da Shintaro, J. Phys. Chem. C,113 (2009) 1896-1900.
    [28]P. A. Tanner, and C. K. Duan, Coord. Chem. Rev.254 (2010) 3026-3029.
    [29]S. D. Xia, and Y. M. Chen, J. Lumin.33 (1985) 228-230.
    [30]H. Wen, G. Jia, C.-K. Duan, P.A. Tanner, Phys. Chem. Chem. Phys.12 (2010) 9933-9937.
    [31]H. Wen, C.-K. Duan, G. Jia, P.A. Tanner, M.G. Brik, J. Appl. Phys.110 (2011) 033536.
    [32]G. K. Liu, Chapter 1 electronic energy level structure, in G.K. Liu, B. Jacquier (Eds.), Spectroscopic Properties of Rare Earths in Optical Materials, Tsinghua University Press and Springer-Verlag Berlin Heidelberg,2005.
    [33]D. J. Newman, B. K. C. Ng, Crystal Field Handbook, Cambridge University Press, Cambridge,2000.
    [34]C. W. Nielson, G. F. Koster, Spectroscopic Coefficients for pn, dn, and fn Configurations, M.I.T. Press, Cambridge,1964.
    [1]Y. Teng, K. Sharafudeen, S. F. Zhou, and J. R. Qiu, J. Ceram. Soc. Jpn.,120 [1407] 458-466 (2012).
    [2]I. W. Donald, P. M. Mallinson, B. L. Metcalfe, L. A. Gerrard, and J. A. Fernie, J. Mater. Sci.,46 [7] 1975-2000 (2011).
    [3]T. Hoche, J. Mater. Sci.,45 [14] 3683-3696 (2010).
    [4]J. R. Qiu, J. Ceram. Soc. Jpn.,116 [1353] 593-599 (2008).
    [5]W. Holand, V. Rheinberger, and M. Schweiger, Adv. Eng. Mater.,3 [10] 768-774 (2001).
    [6]G. Partridge, Glass Technol.,35 [3] 116-127 (1994).
    [7]G. Partridge, Glass Technol.,35 [4] 171-182 (1994).
    [8]G. Partridge, and S. V. Phillips, Glass Technol.,35 [3] 82-90 (1991).
    [9]Z. F. Shan, D. Q. Chen, Y. L. Yu, P. Huang, F. Y Weng, H. Lin, and Y. S. Wang, Mater. Res. Bull.45 [8] 1017-1020 (2010).
    [10]Y. Ledemi, M. El Amraoui, J. L. Ferrari, P. L. Fortin, S. J. L. Ribeiro, and Y. Messaddeq, J. Am. Ceram. Soc.,96 [3] 825-832 (2013).
    [11]S. L. Chen, S. L. Zhao, F. Zheng, C. Zhang, L. H. Huang, and S. Q. Xu, Ceram. Int.,39 [3] 2909-2913 (2013).
    [12]Y. Yu, F. Song, C. G. Ming, J. D. Liu, W. Li, Y L. Liu, and H.-Y. Zhao, Opt. Commun.,285 [24] 4739-4744 (2012).
    [13]L. N. Guo, Y. H Wang, J. Zhang, Y. Z. Wang, and P. Y. Dong, Nanoscale Res. Lett.,71-7 (2012).
    [14]W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, Opt. Express,20 [16] 18127-18137 (2012).
    [15]W. J. Zhang, Q. J. Chen, Q. Qian, and Q. Y. Zhang, J. Am. Ceram. Soc.,95 [2] 663-669 (2012).
    [16]M. Haase, and H. Schafer, Angew. Chem. Int. Ed.,50 [26] 5808-5829 (2011).
    [17]Z. W. Wei, L. N. Sun, J. L. Liu, J. Z. Zhang, H. R. Yang, Y. Yang, and L. Y. Shi, Biomaterials 35 (1),387-392 (2014).
    [18]P. Zhao, Y H. Zhu, X. L.Yang, J. H. Shen, X. Jiang, J. Zong, and C. Z. Li, Dalton Trans.43 (2),451-457 (2014).
    [19]P. Y. Qiu, N. Zhou, H. Y Chen, C. L. Zhang, G. Gao, and D. X. Cui, Nanoscale 5 (23),11512-11525(2013).
    [20]K. M. Guo, M. Y. Li, X. L. Fang, M. D. Luoshan, L. H. Bai, and X. Z. Zhao, J. Power sources 249,72-78 (2014).
    [21]S. Jiang, H. Guo, X. T. Wei, C. K. Duan, and M. Yin,152,195-198 (2014).
    [22]R. Dey, and V. K. Rai, Dalton Trans.43 (1),111-118 (2014).
    [23]J. B. Zhao, D. Y. Jin, E. P. Schartner, Y. Q. Lu, Y. J. Liu, A. V. Zvyagin, L. X. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys and T. M. Monro, Nat. Nanotechnol.8(10),729-734 (2013).
    [24]L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, Appl. Phys. Lett.87 (18), 184105(2005).
    [25]R. Dey, A. Pandey, and V. K. Rai, Sens. Actuators B Chem.190,512-515 (2014).
    [26]S. Ray Bullock, B. R. Reddy, P. Venkateswarlu, and S. K. Nash-Stevenson, J. Opt. Soc. Am. B 14,553-559 (1997).
    [27]C. Liu, J. Heo, Mater. Lett.61,3751-3754 (2007).
    [28]Y. Katayama, S. Tanabe, Opt. Mater.33,176-179 (2010).
    [29]J. del-Castillo, A. C. Yanes, J. Mendez-Ramos, V. K. Tikhomirov, V. V. Moshchalkov, and V. D. Rodriguez, J. Sol-Gel Sci. Technol.53(3),509-514 (2010).
    [30]Y. Kishi, and S. Tanabe, J. Alloy. Comp.408-412,842-844 (2006).
    [31]H. Lin, D. Chen, Y. Yu, A. Yang, R. Zhang, Y. Wang, Mater. Res. Bull.47, 469-472 (2012).
    [32]Y. L. Wei, J. J. Li, J. W. Yang, X. N. Chi, H. Guo, J. Lumin.137,70-72 (2013).
    [33]X. F. Wang, J. D. Chen, J. J. Li, H. Guo, J. Non-Cryst. Solids.357,2290-2293 (2011).
    [34]C. E. Secu, C. Bartha, S. Polosan, M. Secu, J. Lumin.146,539-543 (2014).
    [35]X. Y. Liu, Y. L. Wei, R. F. Wei, J. W. Yang, H. Guo, J. Am. Ceram. Soc.96, 798-800, (2013).
    [36]Y. L. Wei, X. Y. Liu, X. N. Chi, R. F. Wei, H. Guo, J. Alloys Comps.578, 385-388 (2013).
    [37]Y. L. Wei, X.N. Chi, X.Y. Liu, R.F. Wei, H. Guo, J. Am. Ceram. Soc.96, 2073-2076.
    [38]S. Singh and J. E. Geusic, Phys. Rev. Lett.,17 [16] 865-868 (1966).
    [39]M. Pollnau, D. R. Gamelin, S. R. Luthi, H. U. Gudel, and M. P. Hehlen, Phys. Rev. B,61 [5] 3337-46 (2000).
    [40]J. F. Suyver, A. Aebischer, S. Garcia-Revilla, P. Gerner, and H. U. Gudel, Phys. Rev. B,71 [12] 125123 (2005).
    [41]Y. Ledemi, M. E. Amraoui, J. L. Ferrari, P. Fortin, S. J.L. Ribeiro, and Y. Messaddeq, J. Am. Ceram. Soc.,96 [3] 825-832 (2013).
    [1]Z. F. Shan, D. Q. Chen, Y. L. Yu, P. Huang, F. Y. Weng, H. Lin, and Y. S. Wang, Mater. Res. Bull.45 [8] 1017-1020 (2010).
    [2]Y. Ledemi, M. El Amraoui, J. L. Ferrari, P. L. Fortin, S. J. L. Ribeiro, and Y. Messaddeq, J. Am. Ceram. Soc.,96 [3] 825-832 (2013).
    [3]S. L. Chen, S. L. Zhao, F. Zheng, C. Zhang, L. H. Huang, and S. Q. Xu, Ceram. Int.,39 [3] 2909-2913 (2013).
    [4]Y. Yu, F. Song, C. G. Ming, J. D. Liu, W. Li, Y. L. Liu, and H.-Y. Zhao, Opt. Commun.,285 [24] 4739-4744 (2012).
    [5]L. N. Guo, Y. H Wang, J. Zhang, Y. Z. Wang, and P. Y. Dong, Nanoscale Res. Lett.,71-7 (2012).
    [6]W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, Opt. Express,20 [16] 18127-18137(2012).
    [7]W. J. Zhang, Q. J. Chen, Q. Qian, and Q. Y. Zhang, J. Am. Ceram. Soc.,95 [2] 663-669 (2012).
    [8]M. Haase, and H. Schafer, Angew. Chem. Int. Ed.,50 [26] 5808-5829 (2011).
    [9]Z. W. Wei, L. N. Sun, J. L. Liu, J. Z. Zhang, H. R. Yang, Y. Yang, and L. Y. Shi, Biomaterials 35 (1),387-392 (2014).
    [10]P. Zhao, Y. H. Zhu, X. L.Yang, J. H. Shen, X. Jiang, J. Zong, and C. Z. Li, Dalton Trans.43 (2),451-457 (2014).
    [11]P. Y. Qiu, N. Zhou, H. Y. Chen, C. L. Zhang, G. Gao, and D. X. Cui, Nanoscale 5(23),11512-11525(2013).
    [12]K. M. Guo, M. Y. Li, X. L. Fang, M. D. Luoshan, L. H. Bai, and X. Z. Zhao, J. Power sources 249,72-78 (2014).
    [13]S. Jiang, H. Guo, X. T. Wei, C. K. Duan, and M. Yin,152,195-198 (2014).
    [14]R. Dey, and V. K. Rai, Dalton Trans.43 (1),111-118 (2014).
    [15]J. B. Zhao, D. Y. Jin, E. P. Schartner, Y. Q. Lu, Y. J. Liu, A. V. Zvyagin, L. X. Zhang, J. M. Dawes, P. Xi, J. A. Piper, E. M. Goldys and T. M. Monro, Nat. Nanotechnol.8 (10),729-734 (2013).
    [16]L. Aigouy, G. Tessier, M. Mortier, and B. Charlot, Appl. Phys. Lett.87 (18), 184105(2005).
    [17]R. Dey, A. Pandey, and V. K. Rai, Sens. Actuators B Chem.190,512-515 (2014).
    [18]J. Lee and N. A. Kotov, Nano Today,2,48-51 (2007).
    [19]S. Sadat, A. Tan, Y. J. Chua and P. Reddy, Nano Lett.,10,2613-2617 (2010).
    [20]J. M. Yang, H. Yang and L.W. Lin, ACS Nano,6,5067-5071 (2011).
    [21]F. Vetrone, R. Naccache, A. Zamarro et al., ACS Nano,4,3254-3258 (2010).
    [22]S. A. Wade, S. F. Collins, and G. W. Baxter, J. Appl. Phys.94 (8),4743-4756 (2003).
    [23]A. H. Khalid, and K. Kontis, Sensors 8 (9),5673-5744 (2008).
    [24]B. R. Rdeey, I. Kamma, and P. Kommidi, Appl. Optics 52 (4), B33-B39 (2013).
    [25]B. R. Rdeey, I. Kamma, and P. Kommidi, Appl. Optics 52 (4), B33-B39 (2013).
    [26]W. Xu, H. Zhao, Z. G. Zhang, and W. W. Cao, Sens. Actuators B Chem.178, 520-524(2013).
    [27]V. K. Rai, and S. B. Rai, Spectrochim. Acta A 68 (5),1406-1409 (2007).
    [28]V. Lojpur, Z. Antic, R. Krsmanovic, M. Medic, M. G. Nikolic, and M. D. Dramicanin, J. Serb. Chem. Soc.77 (12) 1735-1746 (2012).
    [29]Z. Boruc, M. Kaczkan, B. Fetlinski, S. Turczynski, and M. Malinowski, Opt. Lett.37 (24),5214-5216 (2012).
    [30]W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, Opt. Express 20(16),18127-18137(2012).
    [31]S. S. Zhou, S. Jiang, X. T. Wei, Y. H. Chen, C. K. Duan, M. Yin, J. Alloys Comp.588,654-657(2014).
    [32]W. Xu, X. Y. Gao, L. J. Zheng, Z. G. Zhang, and W. W. Cao, Sens. Actuators B Chem.173,250-253(2012).
    [33]X. F. Wang, J. Zheng, Yan Xuan, and X. H. Yan, Opt. Express 21(18), 21596-21606(2013).
    [34]S. F. Leon-Luis, U. R. Rodriguez-Mendoza, E. Lalla, and V. Lavin, Sens. Actuators B Chem.158 (1),208-213 (2011).
    [35]N. Rakov and G. S. Maciel, Sens. Actuators B Chem.164 (1),96-100 (2012).
    [36]P. V. dos Santos, M. T. de Araujo, A. S. Gouveia-Neto, J. A. Medeiros Neto, and A. S. B. Sombra, Appl. Phys. Lett.73 (5),578-580 (1998).
    [37]S. F. Leon-Luis, U. R. Rodriguez-Mendoza, P. Haro-Gonzalez, I. R. Martin, and V. Lavin, Sens. Actuators B Chem.174,176-186 (2012).
    [38]Y. Teng, K. Sharafudeen, S. F. Zhou, and J. R. Qiu, J. Ceram. Soc. Jpn.,120 [1407] 458-466 (2012).
    [39]I. W. Donald, P. M. Mallinson, B. L. Metcalfe, L. A. Gerrard, and J. A. Fernie, J. Mater. Sci.,46 [7] 1975-2000 (2011).
    [40]T. Hoche, J. Mater. Sci.,45 [14] 3683-3696 (2010).
    [41]J. R. Qiu, J. Ceram. Soc. Jpn.,116 [1353] 593-599 (2008).
    [42]W. Holand, V. Rheinberger, and M. Schweiger, Adv. Eng. Mater.,3 [10] 768-774 (2001).
    [43]G Partridge, Glass Technol.,35 [3] 116-127 (1994).
    [44]G Partridge, Glass Technol.,35 [4] 171-182 (1994).
    [45]G. Partridge, and S. V. Phillips, Glass Technol.,35 [3] 82-90 (1991).
    [46]P. R. N. Childs, J. R. Greenwood, C. A. Long, Rev. Sci. Instrum.,71,2959 (2000).
    [47]J. Ishii J, Y. Shimizu Y, K. Shinzato et.al., Int. J. Thermophysics,2005,26, 1861.
    [48]Michael G. Tanner, Shellee D. Dyer, Burm Baek et al., Appl. Phys. Lett.,2011, 99,201110.
    [49]S. A. Wade, S. F. Collins and G. W. Baxter, J. Appl. Phys.,2003,94,4743.
    [50]Carlos D. S. Brites, Patricia P. Lima, Nuno J. O. Silva et al., Adv. Mater.,2010,22,4499.
    [51]P. W. France, in Fluoride Glass Optical Fibers, edited by P. W. France Blackie, Boca Raton, FL,1990, pp.165-167.
    [52]S. A. Wade, Ph. D. thesis, Victoria University, Melbourne, Australia,1999.
    [53]S. A. Wade, E. Maurice, B. P. Petreski, S. F. Collins, and G.W.Baxter, Proceedings of the 20th Australian Conference on Optical Fibre Technology (IREE Society, Sydney, Australia,1995), pp.331-334.
    [54]A. A. Kaminskii, Laser Crystals:Their Physics and Applications (Springer, Berlin,1981), pp.121-147.
    [55]P. Cross, Database LASERS-Energy Level Tables, NASA Langley Research Centre, Hampton, VA, http://aesd.larc.nasa.gov:8010/laserdbmain.htm.
    [56]J. L. Adam, A. D. Docq, and J. Lucas, J. Solid State Chem.75,403-412 (1988).
    [57]W. Xu, Z. G. Zhang, and W. W. Cao, Opt. Lett.37 (23),4865-4867 (2012).
    [58]Y. L. Wei, X. N. Chi, X. Y. Liu, R. F. Wei, and H. Guo, J. Am. Ceram. Soc.96 (7),2073-2076 (2013).
    [59]T. Taniguchi, K. Soga, K. Tokuzen, K. Tsujiuchi, T. Kidokoro, K. Tomita, K. Katsumata, N. Matsushita, and K. Okada, J. Mater. Sci.47(5),2241-2247 (2012).
    [60]B. Dong, T. Yang, and M. K. Lei, Sens. Actuators B Chem.123(2),667-670 (2007).
    [61]X. Wang, X. G. Kong, Y. Yu, Y. J. Sun, and H. Zhang, J. Phys. Chem. C 111(41),15119-15124(2007).
    [62]C. R. Li, B. Dong, S. F. Li, and C. L. Song, Chem. Phys. Lett.443(4-6), 426-429 (2007).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700