功能化有序介孔材料SBA-15的控制合成及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有序介孔材料因其在催化、分离、吸附等领域具有重要的应用价值受到了世界范围内科学家们的广泛关注,但其形貌、尺寸、孔径、表面修饰物等对性能有重要的影响。因此,方便客体材料在孔道内扩散和传输的短孔道和规则形貌的介孔材料备受关注。本论文致力于制备具有规则六方片状形貌的和短孔道的介孔材料SBA-15。以其为主体材料进行修饰和组装后得到具有不同功能的介孔材料,利用多种表征技术,对其结构、形貌和性质进行了详细的研究,取得如下研究成果:
     1.采用水热合成法在酸性条件下合成出规则形貌的介孔材料SBA-15。研究了水热温度、搅拌速度等合成条件对SBA-15孔结构及形貌的影响。经表征:合成试样的孔径尺寸单一,分散性好;其孔道呈六方排列,具有良好的长程有序结构,是典型的有序介孔材料。通过优化实验方案,成功制备出具有规则形貌的新型SBA-15材料,其最大孔径为12.7nm,热稳定性好。研究结果表明:在合成SBA-15时,表面活性剂的疏水链段和亲水链段的比例对聚集体的形貌有很大的影响;水热温度和搅拌速度对非离子型表面活性剂在水溶液中形成棒状胶束的临界胶束浓度(CMC)产生影响,可以导致CMC降低,促使棒状胶束形成六方有序排列;对有序介孔氧化硅SBA-15材料的形貌有显著影响。
     2.利用后合成的方法,得到具有六方薄片状规则形貌的氨基功能化介孔材料AAPTMS-SBA-15。利用氮气吸附/脱附实验,傅立叶变换红外光谱,X射线衍射,透射电子显微镜和场发射扫描电子显微镜对样品的结构和形貌进行了表征。将氨基功能化的介孔材料SBA-15作为石英晶体微天平(QCM)质量型传感器的敏感材料构建出性能优异的甲醛传感器。实验结果表明:该甲醛传感器具有高的灵敏度和选择性,响应时间为11s,恢复时间为15s,并且该传感器的检出限可达ppm级。本研究为功能化介孔材料AAPTMS-SBA-15开辟了一种新的应用领域。
     3.以具有六方片状规则形貌的氨基功能化NH2-SBA-15为模板,制备出具有规则形貌的六方片状三氧化钨。利用氮气吸附/脱附实验,傅立叶变换红外光谱仪,X射线衍射,透射电子显微镜和场发射扫描电子显微镜对样品的结构和形貌进行了表征。所制备出的片状三氧化钨对硫化氢(H2S)气体表现出优良的气敏特性,所制得的硫化氢传感器具有灵敏度高,选择性好,响应/恢复时间短,重复性好等优点。本实验的合成方法也为模板法合成其它金属氧化物片状材料提供了参考。
     4.采用湿法浸渍的方法,成功地将贵金属Pt、Au纳米颗粒均匀的分散到介孔材料SBA-15的孔道中。Pt、Au纳米颗粒的负载量可以随着前驱体氯铂酸或氯金酸溶液的浓度的增加而增加。其颗粒大小可以通过改变SBA-15孔径大小来实现。以4-Mpy为探针分子,研究了不同结构的Au纳米颗粒负载介孔材料SBA-15的SERS效应,发现了这种纳米粒子作为SERS基底在痕量检测和生物鉴定中的应用前景。
     5.采用“接枝到表面”(graft-to)的方法成功地将羧基甜菜碱类聚合物pCBMA嫁接到介孔材料SBA-15的表面,得到了既能抗非特异性蛋白吸附又能够连接生物分子的双功能化介孔材料SBA-15,所得材料显示出很好的抗非特异性蛋白吸附性能。利用羧基甜菜碱类聚合物表面功能化,将氨基酸Cyclo-[Arg-Gly-Asp-D-Tyr-Lys](cyclic-RGD)成功地嫁接到表面,所得介孔材料SBA-15可以被牛主动脉内皮细胞(BAECs)选择性的摄取。该双功能化介孔材料SBA-15纳米粒子在药物的靶向输运和基因治疗等方面具有潜在的应用价值。
Due to the uniform pore structure and high surface areas, ordered mesoporousmaterials (e.g., MCM-41,SBA-15etc.) have been studied extensively in the fields ofcatalysis, separation, adsorption, etc. Methods to tune morphology, pore size andparticle size of the mesoporous materials, as well as how to incorporateheterogeneous atoms (e.g., Pt, Au, etc.) into the framework has become the hot issuefor the purpose of their practical applications. Particularly, mesoporous materialswith short&open channels and uniform morphology have been extensivelyinvestigated because they are more favorable to the mass transfer. The thesis putstress upon the fabrication of mesoporous materials with controllable morphologies.Mesoporous materials SBA-15with uniform hexagonal lamelliform morphology andshort channels was obtained. Several types of functionalized mesoporous materialswith different morphologies, various components and distinct properties havesuccessfully been prepared. A variety of characterization can be applied toinvestigate detailedly the properties of the functional mesoporous materials.Numbers of experimental data have revealed the effects of encapsulatingconcentration of guests on the properties of the materials and the relation betweenexperimental conditions in preparation and the morphologies of the materials. Themain research work and results are summarized as follows.
     I. Mesoporous silica SBA-15was prepared through a hydrothermal treatment inacid media. The as-synthesized samples show the uniform pore size andlong-distance ordered arrangement of hexagonal structure, which is typicallyordered mesoporous structure. Through the orthogonal experiments, SBA-15with uniform hexagonal lamelliform morphology has been obtained. The biggestpore size is mainly centered on12.7nm. The as-made SBA-15possesses ofgood thermal stability. The crystallization temperature and the stirring rate cangreatly influence the mesostructure and morphology of the ordered mesoporous silica, which has been studied in detail. It can reduce the CMC concentrationand enhance the formation of hexagonal order arrangement of the surfactantmicelles. Reasonable crystallization temperature and stirring rate can help toform the thermally stable SBA-15with the morphology of hexagonal.
     II. Amine-functionalized SBA-15with uniform morphology and well-definedmesostructure was prepared using a post-grafting route. The morphology,mesostructure and functionality of the materials were characterized by SEM,TEM, SAXS, nitrogen adsorption–desorption, FTIR, and solid-state NMRspectroscopy techniques. The results show that hexagonal lamelliform SBA-15with a uniform particle size and short vertical channels plays two significantroles in uniformly dispersing amine functionalizing groups and effectivelyadjusting the loadings of the functional groups within the mesopore channels. Inorder to confirm the potential application of the hybrids in gas sensors, usingamine-functionalized SBA-15as a sensing material and quartz crystalmicro-balances (QCMs) as a transducer, a ppb-level formaldehyde sensor withhigh sensitivity (response time about11s, the recovery time about15s) andgood chemoselectivity was achieved. This material holds great potential in thearea of rapid, sensitive, and highly convenient formaldehyde detection.
     III. Nanostructured cubic crystalline tungsten trioxide (WO3) with uniformplate-like morphology was duplicated in a solution phase using a monodispersedhexagonal lamelliform amine-functionalized SBA-15as a template. X-raydiffraction, nitrogen adsorption/desorption, Fourier transformation infraredspectroscopy, solid state NMR spectrometry, transmission electron microscopyand field emission scanning electron microscopy were employed to characterizethe products. The as-prepared crystalline WO3with optimal morphology showedexcellent gas sensing properties upon exposure to H2S gas in practicalapplication. Herein, we developed an excellent H2S sensor with high sensitivity,good selectivity, short response/recovery time and high reproducibility, and presented a novel strategy to template synthesize crystalline metal oxidenanostructures with defined plate-like morphology.
     IV. In this part, we use simply wet impregnation method to grow gold or platinumnanoparticles only inside the channels of SBA-15mesoporous silica microplates.The gold nanoparticles are closely, well-dispersed inside the channels with thesize2-5nm. The amount of gold nanoparticles inside the channels can be easilycontrolled by simply varying the concentration of gold salt solution. This newapproach could be generalized for the growth of other metallic nanoparticlessuch as Pt, Pd, and Ag inside the channels of the mesoporous materials. Theas-synthesized nanocomposite material exhibits strong SERS effect andtherefore, can be used as a robust SERS-active substrate for chemical andbiological sensing.
     V. Herein, a biomimetic conjugated polymer containing one non-foulingpoly(carboxybetaine)(pCBMA) chain and one surface-adhesive3,4-dihydroxyphenyl-L-alanine (DOPA) residue group was efficiently grafted to the outersurface of SBA-15using a convenient and robust method. Furthermore,inductively coupled plasma mass spectrometry (ICP-MS) analysis resultsshowed that after SBA-15-DOPA-pCBMAs were conjugated with a targetingCyclo-[Arg-Gly-Asp-D-Tyr-Lys](cyclic-RGD) peptide, uptake by BovineAortic Endothelial Cells (BAECs) was notably increased. Results indicated thatcyclic-RGD functionalized MSNs were able to selectively interact with cellsexpressing αvβ3integrin. Thus, MSNs with DOPA-pCBMAs are promisingstealth multi-functional bio-carriers for targeted drug delivery or diagnostics.
引文
【1】. Lee, J., Mahendra, S. and Alvarez, P. J. J., Nanomaterials in the construction industry:A Review of their applications and environmental health and safety sonsiderations [J].ACS Nano,2010,4,3580–3590.
    【2】. Yoshida, M. and Lahann, J., Smart Nanomaterials [J].ACS Nano,2008,2,1101–1107.
    【3】. Davis, M. E., Ordered porous materials for emerging applications [J]. Nature,2002,417,813-821.
    【4】.白春礼,纳米科学技术[M].昆明:云南科学出版社,1995:1-10.
    【5】.张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2001:1-19
    【6】. Wan, Y., Zhao, D. Y., On the controllable soft-templating approach to mesoporoussilicates [J]. Chem. Rev.,2007,107,2821-2860.
    【7】. Wan, Y., Shi, Y. F. and Zhao, D. Y., Supramolecular aggregates as templates: Orderedmesoporous polymers and carbons [J]. Chem. Mater.,2008,20,932–945.
    【8】. Deng, Y. H., Wei, J., Sun, Z. K. and Zhao, D. Y., Large-pore ordered mesoporousmaterials templated from non-Pluronic amphiphilic block copolymers [J]. Chem. Soc.Rev.,2013,42,4054-4070.
    【9】. Ma, T. Y., Liu, L. and Yuan, Z. Y., Direct synthesis of ordered mesoporous carbons [J].Chem. Soc. Rev.,2013,42,3977-4003.
    【10】. Wu, Z. X. and Zhao, D. Y., Ordered mesoporous materials as adsorbents [J]. Chem.Commun.,2011,47,3332-3338.
    【11】. Wagner, T., Haffer, S., Weinberger, C., Klaus, D. and Tiemann, M., Mesoporousmaterials as gas sensors [J]. Chem. Soc. Rev.,2013,42,4036-4053.
    【12】. Yang, P. P., Gai, S. L. and Lin, Jun., Functionalized mesoporous silica materials forcontrolled drug delivery [J]. Chem. Soc. Rev.,2012,41,3679–3698.
    【13】. Perego, C., and Millini, R., Porous materials in catalysis: challenges for mesoporousmaterials [J]. Chem. Soc. Rev.,2013,42,3956-3976.
    【14】. Lei, J. Y., Wang, L. Z. and Zhang J. L., Ratiometric pH sensor based on mesoporoussilica nanoparticles and F rster resonance energy transfer [J]. Chem. Commun.,2010,46,8445-8447.
    【15】. Walcarius, A., and Mercier, L., Mesoporous organosilica adsorbents: nanoengineeredmaterials for removal of organic and inorganic pollutants [J]. J. Mater. Chem.,2010,20,4478-4511.
    【16】. Shi, Y. F., Wan, Y., Tu, B. and Zhao, D. Y., Nanocasting synthesis of orderedmesoporous silicon nitrides with a high nitrogen content [J]. J. Phys. Chem. C,2008,112, pp112-116
    【17】. Zheng, Y., Zhang, L., Shi, J. F., Liang, Y. P., Wang, X. L., Jiang, Z. Y.,Mussel-inspiredsurface capping and pore filling to confer mesoporous silica with highloading and enhanced stability of enzyme [J]. Micro. Meso. Mater.,2012,152,122-127.
    【18】. Pramanik, S., Zheng, C., Zhang, X., Emge, T. J. and Li, Jing., New microporousmetal organic framework demonstrating unique selectivity for detection of highexplosives and aromatic compounds [J]. J. Am. Chem. Soc.,2011,133,4153-4155.
    【19】. IUPAC Manual of Symbols and Terminology [M], Pure.Appl. Chem.1972,31,578.
    【20】. Sing, K. S. W., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol,J., Siemieniewska, T., Reporting physisorption data for gas/solid systems with specialreference to the determination of surface area and porosity [J]. Pure. Appl Chem,1985,57,603619.
    【21】. Chiola, V., Ritsko, J. E., Vanderpool, C. D., Process for producing low-bulk densitysilica [P]. US Patent,1971,3556725.
    【22】. Yanagisawa, T., Shimizu, T., Kuroda, K., The preparation ofalkyltrimethylammonium-kanemite complexes and their conversion to microporousmaterials [J]. Bull. Chem. Soc. Jpn.,1990,63,988-992.
    【23】. Inagaki, S., Fukushima, Y., Kuroda, K., Synthesis of Highly Ordered MesoporousMaterials from a layered polysilicate [J]. J. Chem. Soc. Chem. Commun.,1993,680-682.
    【24】. Yanagisawa, T., Shimizu, T., Kuroda, K., Trimethylsilyl derivatives ofalkyltrimethylammonium-kanemite complexes and their conversion to microporousSiO2materials [J]. Bull. Chem. Soc. Jpn.,1990,60,1535-1537.
    【25】. Beck. J. S., Vartuli J C, Roth W J, et al., A new family of mesoporous molecular sievesprepared with liquid crystal templates [J]. J Am Chem Soc,1992,114:10834-10843.
    【26】. Kresge, C. T., Leonowicz M E, Roth W J, et al., Ordered mesoporous molecularsievessynthesized by a liquid-crystal template mechanism [J]. Nature,1992,359:710-712.
    【27】. Zhao, D. Y., Feng J, Huo Q S, Melosb N, et al., Triblock copolymer syntheses ofmesoporous silica with periodic50to300angstrompores [J]. Science,1998,279:548-552.
    【28】. Zhao, D. Y., Huo, Q. S., Feng, J. L., Chmelka, B. F., and Stucky, G. D., Nonionictriblock and star diblock copolymer and oligomeric surfactant syntheses of highlyordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc.,1998,120,6024-6036.
    【29】. Zhao, D. Y., Yang, P. D., Melosh, N., Feng, J. L., Chmelka, B. F., Stucky, G. D.,Continuous mesoporous silica films with highly ordered large pore structures [J]. Adv.Mater,1998,10:1380-1385.
    【30】. Li, W. and Zhao, D. Y., An overview of the synthesis of ordered mesoporous materials[J]. Chem. Commun.,2013,49,943-946.
    【31】. Yang, Z. L., Lu,Y. F., and Yang, Z. Z., Mesoporous materials: tunable structure,morphology and composition [J]. Chem. Commun.,2009,2270-2277.
    【32】. Liu, G. H., Wang, J. Y., Huang, T. Z., Liang, X. H., Zhang, Y. L. and Li, H. X.,Mesoporous silica-supported iridium catalysts for asymmetric hydrogenation reactions[J]. J. Mater. Chem.,2010,20,1970-1975.
    【33】. Zhou, Z., and Hartmann, M., Progress in enzyme immobilization in orderedmesoporous materials and related applications [J]. Chem. Soc. Rev.,2013,42,3894-3912.
    【34】. Liang, Y. R., Fu, R. W., and Wu, D. C., Reactive template-induced self-assembly toordered mesoporous polymeric and carbonaceous materials [J]. ACS Nano,2013,7,1748–1754.
    【35】. Ding, S. J., Wang, Z. Y., Madhavi, S. and Lou, X. W., SBA-15derivedcarbon-supported SnO2nanowire arrays with improved lithium storage capabilities [J].J. Mater. Chem.,2011,21,13860-13864.
    【36】. Yang, Y., Zhang, Y., Hao. S., Heterogenization of functionalized Cu(II) and VO(IV)Schiff base complexes by direct immobilization onto amino-modified SBA-15: Styreneoxidation catalysts with enhanced reactivity[J]. Appl. Catal. A: Gen.,2010,381,274-281.
    【37】. Beck, A., Horvath, A., Stefler, G., Formation and structure of Au/TiO2and Au/CeO2nanostructures in mesoporous SBA-15[J]. Catal. Today.,2008,139,180-187.
    【38】. Kecht, J. and Bein, T., Functionalization of colloidal mesoporous silica bymetalorganic reagents [J]. Langmuir,2008,24,14209–14214.
    【39】. Yang, P. D., Zhao, D. Y., Margolese, D. I., Chmelka, B. F., Stucky, G. D., Generallizedsynthesis of large-pore mesoporous metal oxides with semicrytalline framework [J].Nature,1998,396,152-155.
    【40】. Ren, Y., Ma, Z. and Bruce, P. G., Ordered mesoporous metal oxides: synthesis andapplications [J]. Chem. Soc. Rev.,2012,41,4909-4927.
    【41】. Shi, Y. F., Wan, Y. and Zhao, D. Y., Ordered mesoporous non-oxide materials [J].Chem. Soc. Rev.,2011,40,3854-3878.
    【42】. Kondo, J. N., and Domen, K. Crystallization of mesoporous metal oxides [J]. Chem.Mater.,2008,20,835-847.
    【43】. Everett, D. H., Manual of symbols and terminology for physicochemicalquantitiesunits and units, appendix II: definitions, terminology and symbols in colloidand surface chemistry [M]1972,31,577638.
    【44】. Inagaki, S., Fukushina, Y., Kuroda. K., Synthesis of highly ordered mesoporousmaterials from a layered polysilicate. Chem Commun,1993,8,680-681.
    【45】. Huo, Q. S., Margolese, D. I., Stucky, G. D., Surfactant control of phase in the synthesisof mesoporous silica-based materials [J]. Chem. Mater.,1996,8,1147-1160.
    【46】. Romero, A. A., Alba, M. D., Klinowski, J., Aluminosilicate mesoporous molecularsieves MCM-48[J]. J Phys Chem B,1998,102,123-128.
    【47】. Schumacher, K., Hohenesche, du F von, Unger, K. K., Ulrich, R., Chesne, A. D,Wiesner, U., Spiess, H. W., The synthesis of spherical mesoporous molecular sievesMCM-48with heteroatoma incorporated into the silica framework [J].. Adv Mater,1999,11,1194-1198.
    【48】. Sun, J. H., Coppens, M. O., A hydrothermal post-synthesis route for the preparation ofhigh quality MCM-48silica with a tailored pore size. J Mater Chem,2002,12,301-63020.
    【49】. Kim, M. J., and Ryoo, R., Synthesis and pore size control of cubic mesoporous silicaSBA-1[J]. Chem. Mater.,1999,11,487-491
    【50】. Zapilko, C., and Anwander, R., Size-selective surface silylation of cagelikemesoporous silica SBA-2with disilazane reagents [J]. Chem. Mater.,2006,18,1479-1482.
    【51】. Koshimizu, M., Shimokita, K., Zhou, S., Honma, I., and Asai, K., Positron annihilationlifetime in ordered porous silica SBA-3[J]. J. Phys. Chem. C,2008,112,8779–8783.
    【52】. Xia, Y. D., and Mokaya, R., Generalized and facile synthesis approach to N-Dopedhighly graphitic mesoporous carbon materials [J]. Chem. Mater.,2005,17,1553-1560.
    【53】. Gobin, O. C., Wan, Y., Zhao, D. Y., Kleitz, F., and Kaliaguine, S., Mesostructured silicaSBA-16with tailored intrawall porosity part1: Synthesis and Characterization [J]. J.Phys. Chem. C,2007,111,3053–3058.
    【54】. Gallo, J. M. R., Bisio, C., Gatti, G., Marchese, L., and Pastore, H. O., Physicochemicalcharacterization and surface acid properties of mesoporous [Al]-SBA-15obtained bydirect synthesise [J]. Langmuir,2010,26,5791-5800.
    【55】. Tanev, P. T., Chibme, M., Pinnavaia, T. J., A neutral templating route to mesoporousmolecular sieves. Science,1995,267,865-867.
    【56】. Yin, A. Y., Guo, X. Y., Dai, W. L., and Fan, K. N., Effect of Si/Al ratio ofmesoporous support on the structure evolution and catalytic performance of theCu/Al-HMS catalyst [J]. J. Phys. Chem. C,2010,114,8523–8532.
    【57】. Bagshaw, S. A., Pinnavaia, T. J., Templating of mesoporous molecualr sieves bynonionic polyeth-ylene oxide surfacants. Science,1995,268,1242-1243.
    【58】. Boissière, C., Larbot, A., and Prouzet, E., Synthesis of mesoporous MSU-X materialsusing inexpensive silica sources [J]. Chem. Mater.,2000,12,1937-1940.
    【59】. Liu, L. C., Li, H. Q., and Zhang, Y., Effect of synthesis parameters on the chromiumcontent and catalytic activities of mesoporous Cr MSU-x prepared under acidicconditions [J]. J. Phys. Chem. B,2006,110,15478-15485.
    【60】. Garcia-Bennett, A. E., and Terasaki, O., Che, S. A., Tatsumi, T. StructuralInvestigations of AMS-n mesoporous materials by Transmission Electron Microscopy[J]. Chem. Mater.,2004,16,813–821.
    【61】. Che, S., Liu, Z., Ohsuna, T., Sakamoto, K., Terasaki, O., Tatsumi, T., Synthesis andcharacterization of chiral mesoporous silica. Nature,2004,429:281-284.
    【62】. Beischer, B., Doetinchem, P. V., Gast, H., Kirn, T., and Schael, S., Perspectives forindirect dark matter search with AMS-2using cosmic-ray electrons and positrons [J].New J. Phys.,2009,11,105021.
    【63】. Garcia-Bennett, A. E., Kupferschmidt, N., Sakamoto, Y., Che, S. A., Terasaki O.Synthesis of mesocage structures by kinetic control of self-assembly in anionicsurfactants. Angew Chem Int Ed,2005,44,5317-5322.0
    【64】. Atluri, R., Hedin, N., and Garcia-Bennett, A. E., Hydrothermal phase transformation ofbicontinuous cubic mesoporous material AMS-6[J]. Chem. Mater.,2008,20,3857–3866.
    【65】. Garcia-Bennett, A. E., Miyasaka, K., and Terasaki, O., Che S. A., Structural Solutionof Mesocaged Material AMS-8[J]. Chem. Mater.,2004,16,3597–3605.
    【66】. Gao, C., Sakamoto, Y., Sakamoto, K., Terasaki, O, Che, S. A., Synthesis andcharacterization of mesoporous silica AMS-10with bicontinuous cubic Pnmsymmetry[J].. Angew Chem Int Ed,2006,45,4295-4298.
    【67】. Han, L., and Che, S. A., Anionic surfactant templated mesoporous silicas (AMSs)[J].Chem. Soc. Rev.,2013,42,3740-3752.
    【68】. Pirez, C., Caderon, J., Dacquin, J. P., Lee, A. F., and Wilson, K., Tunable KIT-6mesoporous sulfonic acid catalysts for fatty acid esterification [J]. ACS Catal.,2012,2,1607-1614.
    【69】. Kleitz, F., Choi, S. H., and Ryoo, R., Cubic Ia3d large mesoporous silica: synthesis andreplication to platinum nanowires, carbon nanorods and carbon nanotubes [J]. Chem.Commun.,2003,9,2136-2137.
    【70】. Nowak, I., and Jaroniec, M., Three-dimensional cubic mesoporous molecular sieves ofFDU-1containing niobium: Dependence of niobium source on structural properties[J]. Langmuir,2005,21,755-760.
    【71】. Zhang, F. Q., Meng, Y., Yan, D. G., Yu, C. Z., Tu, B. and Zhao, D. Y., A facileaqueous route to synthesize highly ordered mesoporous polymers and carbonframeworks with Ia3d bicontinuous cubic structure [J]. J. Am. Chem. Soc.,2005,127,13508–13509.
    【72】. Li, H. X., Zhang, F, Yin, H., Wan, Y., and Lu, Y. F., Water-medium isomerization ofhomoallylic alcohol over a Ru(II) organometallic complex immobilized on FDU-12support [J]. Green Chem.,2007,9,500-505.
    【73】. Klingstedt, M., Miyasaka, K., Kimura, K., Gu, D., Wan, Y., Zhao, D. Y., and Terasaki,O., Advanced electron microscopy characterization for pore structure of mesoporousmaterials; a study of FDU-16and FDU-18[J]. J. Mater. Chem.,2011,21,13664-13671.
    【74】. Wu, Z. X., Webley, P. A., and Zhao, D. Y., Comprehensive study of pore evolution,mesostructural stability, and simultaneouss surface functionalization of orderedmesoporous carbon (FDU-15) by wet oxidation as a promising Adsorbent [J].Langmuir,2010,26,10277-10286.
    【75】. Yu, T., Zhang, H., Yan, X. W., Chen, Z. X., Zou, X. D., Oleynikov, Peter., and Zhao, D.Y., Pore structures of ordered large cage-type mesoporous silica FDU-12s [J]. J. Phys.Chem. B,2006,110,21467–21472.
    【76】. El-Safty, S. A., Hanaoka, T., Monolithic nanostructured silicate family templated bylyotropic liquid-crystalline nonionic surfactant mesophases [J]. Chem. Mater.2003,15,2892-2902.
    【77】. El-Safty, S. A., Mizukami, F., and Hanaoka, T., Transparent cubic Fd3m mesoporoussilica monoliths with highly controllable pore architectures [J]. J. Mater. Chem.,2005,15,2590-2598.
    【78】. El-Safty, S. A., Hanaoka, T., Fabrication of crystalline, highly orderedthree-dimensional silica monoliths (HOM-n) with large, morphological mesoporestructures [J]. Adv. Mater.2003,15,1893-1899.
    【79】. El-Safty, S. A., Kiyozumi, Y. Hanaoka, T., and Mizukami, F., Controlled design ofordered and disordered pore architectures, geometries, and dimensions of HOM-Typemesostructured monoliths and their hydrothermal stabilities [J]. J. Phys. Chem. C,2008,112,5476-5489.
    【80】. Hoa, N. D., and El-Safty, S. A., Highly sensitive and selective volatile organiccompound gas sensors based on mesoporous nanocomposite monolith [J]. Anal.Methods,2011,3,1948-1956.
    【81】. Liang, C. D., Li, Z. J., Dai, S., Mesoporous carbon materials: synthesis andmodification [J]. Angew Chem Int Ed,2008,47,3696-3717.
    【82】. Wang, T. W., Kaper, H., Antonietti, M., and Smarsly, B., Templating behavior of along-chain ionic liquid in the hydrothermal synthesis of mesoporous silica [J].Langmuir,2007,23,1489–1495.
    【83】. Zhai, Y. P., Dou, Y Q., Liu, X. X. Tu, B., and Zhao, D. Y., One-pot synthesis ofmagnetically separable ordered mesoporous carbon [J]. J. Mater. Chem.,2009,19,3292-3300.
    【84】. Lu, A. H., Spliethoff, B., and Schüth, F., Aqueous synthesis of ordered mesoporouscarbon via self-assembly catalyzed by amino acid [J]. Chem. Mater.,2008,20,5314–5319.
    【85】. Kim, M. J., Kang, S. H., Kim, H. S., and Sung, Y. E., Preparation of highly orderedmesoporous Al2O3/TiO2and its application in dye-sensitized solar cells [J]. Langmuir,2010,26,2864-2870.
    【86】. Liu, C. Y., Li, L. X., Song, H. H., and Chen, H., Facile synthesis of orderedmesoporous carbons from F108/resorcinol–formaldehyde composites obtained in basicmedia [J]. Chem. Commun.,2007,757-759.
    【87】. Walcarius1, A., Sibottier, E., Etienne, M., Ghanbaja, J., Electrochemically assistedself-assembly of mesoporous silica thin films [J]. Nature Materials,2007,6,602-608.
    【88】. Xue, C. F., Tu, B., and Zhao, D. Y.,Evaporation-induced coating and self-assembly ofordered mesoporous carbon-silica composite monoliths with macroporous architectureon polyurethane foam [J]. Adv. Func. Mater.,2008,18,3914-3921.
    【89】. Liu, H. J., Wang, X. M., Cui, W. J., Dou, Y. Q., and Xia, Y. Y., Highly orderedmesoporous carbon nanofiber arrays fro crab shell biological template and itsapplication in supercapacitors and fuel cells [J]. J. Mater. Chem.,2010,20,4223-4230.
    【90】. Huang, Yan., Cai, H. Q., Feng, D., Gu, D., Deng, Y. H., Tu, B., Wang, H. T., Webley, P.A., and Zhao, D. Y., One-step hydrothermal synthesis of ordered mesostructuredcarbonaceous monoliths with hierarchical porosities [J]. Chem. Commun.,2008,2641-2643.
    【91】. Wu, Z. X., Li, Q., Feng, D., Webley, P. A., and Zhao, D. Y., Ordered mesoporouscrystalline γ-Al2O3with variable architecture and porosity from a single hard template[J]. J. Am. Chem. Soc.,2010,132,12042–12050.
    【92】. Wang, K. X., Wang, Y. G., Wang, Y. R., Hosono, E., and Zhou, H. S., Mesoporouscarbon nanofibers for supercapacitor application [J]. J. Phys. Chem. C,2009,113,1093-1097.
    【93】. Tian, B. Z., Liu, X.Y.; Solovyov, L. A.; Liu, Z., Yang, H. F.; Zhang, Z. D., Xie, S. H.,Zhang, F. Q., Tu, B., Yu, C. Z., Terasaki, O., Zhao, D. Y., Facile synthesis andcharacterization of novel mesoporous and mesorelief oxides with gyroidal structures[J]. J. Am. Chem. Soc.2004,126,865-875.
    【94】. Tian, B. Z., Liu, X. Y., Yang, H. F., Xie, S. H., Yu, C. Z., Tu, B., Zhao, D. Y., Generalsynthesis of ordered crystallized metal oxide nanoarrays replicated bymicrowave-digested mesoporous silica [J]. Adv. Mater.2003,15,1370-1374.
    【95】. Wang, Y. Q., Yang, C. M., Schmidt, W., Spliethoff, B., Bill, E., Schuth, F., Weaklyferromagnetic ordered mesoporous Co3O4synthesized by nanocasting fromvinyl-functionalized cubic Ia3d mesoporous silica [J].Adv. Mater.2005,17,53-56.
    【96】. Zhu, K. K., He, H. Y., Xie, S. H., Zhang, X., Zhou, W. Z., Jin, S. L., Yue, B.,Crystalline WO3nanowires synthesized by templating method [J]. Chem. Phys. Lett.2003,377,317-321.
    【97】. Zhu, K. K., Yue, B., Zhou, W. Z., He, H. Y., Preparation of three-dimensionalchromium oxide porous single crystals templated by SBA-15[J]. Chem. Commun.,2003,98-99.
    【98】. Yue, B., Tang, H. L., Kong, Z. P., Zhu, K., Dickinson, C., Zhou, W. Z., He, H. Y.,Preparation and characterization of three-dimensional mesoporous crystals of tungstenoxide [J]. Chem.Phys. Lett.2005,407,83-86.
    【99】. Ryoo, R., Joo, S. H., Jun, S., Synthesis of highly ordered carbon molecular sieves viatemplate-mediated structural transformation [J]. J. Phys. Chem. B,1999,103,7743-7746.
    【100】. Wang, Y. M., Wu, Z. Y., Wang, H. J., Zhu, J. H., Fabrication of metal oxides occludedin ordered mesoporous hosts via a solid-state grinding route: The influence ofhost–guest interactions [J]. Adv. Funct. Mater.2006,16,2374-2386.
    【101】. Parmentier, J., Solovyov, L. A., Ehrburger-Dolle, F., Werckmann, J., Ersen, O., Bley, F.,Patarin, J., Structural peculiarities of mesostructured carbons obtained by nanocastingordered mesoporous templates via carbon chemical vapor or liquid phase infiltrationroutes [J].Chem. Mater.,2006,18,6316-6323.
    【102】. Zhang,Z. T., Dai, S., Fan, X. D., Blom, D. A., Pennycook, S. J., Wei, Y., Controlledsynthesis of CdS nanoparticles inside ordered mesoporous silica using ion-exchangereaction [J].J. Phys. Chem. B,2001,105,6755-6758..
    【103】. Shi, Y. F., Wan, Y., Zhang, R. Y., Zhao, D. Y., Synthesis of self-supported orderedmesoporous cobalt and chromium nitrides [J]. Adv. Funct. Mater.2008,18,2436-2443.
    【104】. Soler-Illia, G. J. de A. A., Sanchez, C., Lebeau, B., Patarin, J., Chemical strategies todesign textured materials: from microporous and mesoporous oxides tonanonetworks and hierarchical structures [J]. Chem. Rev2002,102,4093-4138.
    【105】. Che, S. A., Garcia-Bennett, E., Yokoi, T., Sakamoto, K., Kunieda, H., Taki, O., Tatsumi,T., A novel anionic surfactant templating route for synthesizing mesoporous silica withunique structure [J]. Nat. Mater.2003,2,801-805.
    【106】.徐如人,庞文琴,于吉红,霍启升,分子筛与多孔材料化学[M],北京:科学出版社,2004.
    【107】. Firouzi, A., Kumar, D., Bull, L. M., Besier, T., Sieger, P., Huo, Q., Walker, S. A.,Glinka, J. A., Nicol, J., Margolesse, D.,.Stuky, G.. D., Chmelka, B. F., Cooperativeorganization of inorganic-surfactant and biomimetic assemblies [J]. Science1995,267,1138-1143.
    【108】. Beck, J. S., Vartuli, J. C., Kennedy, G. J., Kresge, C. T., Roth, W. J., Schramm, S E.,Molecular or supramolecular templating: defining the role of surfactant chemistry inthe formation of microporous and mesoporous molecular sieves [J]. Chem. Mater.1994,6,1816-1821.
    【109】. Antonelli, D. M., Nakahira, A., and Ying, J. Y., Ligand-Assisted Liquid CrystalTemplating in Mesoporous Niobium Oxide Molecular Sieves [J]. Inorg. Chem.,1996,35,3126-3136.
    【110】. Trewyn, B. G., Whitman, C. M., and Lin, V. S. Y., Morphological control ofroom-Ttemperature ionic liquid templated mesoporous silica nanoparticles forcontrolled release of antibacterial agents [J]. Nano Letters,2004,4,2139–2143.
    【111】. Sun, T., Ying, J. Y., Synthesis of microporous transition-metal-oxide molecular sievesby a supramolecular templating mechanism [J]. Nature,1997,389,704-706.
    【112】. Huo, Q. S., Margolese, D. I., Stucky, G. D., Surfactant Control of Phases in theSynthesis of Mesoporous Silica-Based Materials [J].Chem. Mat.1996,8,1147-1160.
    【113】. Linton, P. and Alfredsson, V., Growth and morphology of mesoporous SBA-15particles [J]. Chem. Mat.2008,20,2878-2880.
    【114】. Fan, J., Yu, C. Z., Gao, T., Lei, J., Tian, B. Z., Wang, L. M., Luo, Q., Tu, B., Zhou, W.Z., Zhao, D. Y., Cubic mesoporous silica with large controllable entrance sizes andadvanced adsorption properties [J]. Angew Chem Int Edit,2003,42,3146-3150.
    【115】. Kim, J. M., Sakamoto, Y., Hwang, Y. K., Kwon, Y. U., Terasaki, O., Park, S. E., Stucky,G. D., Structural design of mesoporous silica by micelle-packing control using blendsof amphiphilic block copolymers [J].. J Phys Chem B,2002,106,2552-2558.
    【116】. Liu, J., Yang, Q., Zhao, X. S., Zhang, L.,Pore size control of mesoporous silicas frommixtures of sodium silicate and TEOS [J].. Micropor Mesopor Mat.,2007,106,62-67.
    【117】. Wang, Y. P., Zhu, S. M., Mai, Y. Y., Zhou, Y. F., Zhu, X. Y., Yan, D. Y., Control of poresize in mesoporous silica ternplated by a multiarm hyperbranched copolyether in waterand cosolvent [J].. Micropor Mesopor Mat.,2008,114,222-228.
    【118】. Widenmeyer, M.,Anwander, R., Pore size control of highly ordered mesoporous silicaMCM-48[J]. Chem Mater.,2002,14,1827-1831.
    【119】. Shakeri, M., Gebbink, R. J. M. K., de Jongh, P. E., de Jong, K. P., Control andassessment of plugging of mesopores in SBA-15materials [J]. Micropor Mesopor Mat.,2013,170,340-345.
    【120】. Galarneau, A. Cambon, H. Di Renzo, F. Fajula, F., True microporosity and surface areaof mesoporous SBA-15silicas as a function of synthesis temperature [J]. Langmuir2001,17(26),8328-8335.
    【121】. Schmidt-Winkel, P., Glinka, C. J., Stucky, G. D. Microemulsion Templates forMesoporous Silica [J]. Langmuir2000,16,356-361.
    【122】. Huo, Q., Feng, J., Schutch, F., Preparation of hard mesoporous silica spheres [J]. Chem.Mater.,1997,9,14-17
    【123】. Buechel, G., Unger, K.K., Matsumoto, A., A novel pathway for synthesis ofsubmicrometer-size solid core/mesoporous shell silica spheres [J]. Adv. Mater.,1998.10,1036-1038.
    【124】. Unger, K.K., Kumar D., Grun M., Synthesis of spherical porous silicas in the micronand submicron size range: challenges and opportunities for miniaturizedhigh-resolution chromatographic and electrokinetic separations [J]. J. Chromatogr. A,2000,892,47-55.
    【125】. Yu, C., Tian, B., Fan, J., Zhao, D.Y., Salt effect in the synthesis of mesoporous silicatemplated by non-ionic block copolymers [J]. Chem. Commun.,2001,24,2726-2727.
    【126】. Suzuki, K., Ikari, K., Imai, H., Synthesis of silica nanoparticles having a well-orderedmesostructure using a double surfactant system [J]. J. Am. Chem. Soc.,2004,126,462-463.
    【127】. Suzuki, K., Ikari, K., Imai, H., Grain size control of mesoporous silica and formationof bimodal pore structures [J]. Langmuir,2004,20(26):11504-11508.
    【128】. Yano, K., Fukushima, Y., Particle size control of mono-dispersed super-microporoussilica sphere [J]. J. Mater. Chem.,2003,13(10):2577-2581.
    【129】. Schacht, S., Huo, Q., VoigtMartin, I. G., Stucky, G. D., Schuth, F., Oil-water interfacetemplating of mesoporous macroscale structures [J]. Science1996,273,768-771.
    【130】. Zhu, Y. F., Shi, J. L., Chen, H. R., Shen, W. H., Dong, X. P., A facile method tosynthesize novel hollow mesoporous silica spheres and advanced storage property [J].Micropor Mesopor Mat.,2005,84,218-222.
    【131】. Ryoo, R., Joo, S. H., Kruk, M., Jaroniec, M., Ordered mesoporous carbons [J]. AdvMater2001,13,677-681.
    【132】. Wang, J. G., Li, F., Zhou, H. J., Sun, P. C., Ding, D. T., Chen, T. H., Silica hollowspheres with ordered and radially oriented amino-functionalized mesochannels [J].Chem Mater.,2009,21,612-620.
    【133】. Huo, Q. S., Zhao, D. Y., Feng, J. L., Weston, K., Buratto, S. K., Stucky, G. D., Schacht,S., Schuth, F., Room temperature growth of mesoporous silica fibers: A newhigh-surface-area optical waveguide [J]. Adv. Mater.,1997,9,974-978.
    【134】. Wang, J. F., Zhang, J. P., Asoo, B. Y., Stucky, G. D., Structure-selective synthesis ofmesostructured/mesoporous silica nanofibers [J]. J Am Chem Soc.,2003,125,13966-13967.
    【135】. Chu, Y. H., Kim, H. J., Song, K. Y., Shul, Y. G., Jung, K. T., Lee, K., Han, M. H.,Preparation of mesoporous silica fiber matrix for VOC removal [J]. Catal Today2002,74,249-256.
    【136】. Yang, P. D.; Zhao, D. Y.; Chmelka, B. F.; Stucky, G. D., Triblock-copolymer-directedsyntheses of large-pore mesoporous silica fibers [J]. Chem Mater.,1998,10,2033-2036.
    【137】. Kosuge, K., Sato, T., Kikukawa, N., Takemori, M., Morphological control of rod-andfiberlike SBA-15type mesoporous silica using water-soluble sodium silicate [J]. ChemMater2004,16,899-905.
    【138】. Jin, H. Y., Qiu, H. B., Sakamoto, Y., Shu, P., Terasaki, O., Che, S. N., Mesoporoussilicas by self-assembly of lipid molecules: Ribbon, hollow sphere, and chiral materials.Chem-Eur J,2008,14,6413-6420.
    【139】. Qiu, H. B., and Che, S. A., Chiral mesoporous silica: Chiral construction andimprinting via cooperative self-assembly of amphiphiles and silica precursors [J].Chem. Soc. Rev.,2011,40,1259-1268.
    【140】. Wu, Y. Y., Cheng, G. S., Katsov, K., Sides, S. W., Wang, J. F., Tang, J., Fredrickson, G.H., Moskovits, M., Stucky, G. D., Composite mesostructures by nano-confinement.Nat Mater.,2004,3,816-822.
    【141】. Trewyn, B. G., Whitman, C. M., Lin, V. S. Y., Morphological control ofroom-temperature ionic liquid templated mesoporous silica nanoparticles for controlledrelease of antibacterial agents [J]. Nano Lett.,2004,4,2139-2143.
    【142】. Zhang Q.H., Lu F., Li C.L., An efficient synthesis of helical mesoporous silicananorods [J]. Chem. Lett.,2006,35,190-191.
    【143】. Wang, B.; Chi, C.; Shan, W.; Zhang, Y. H.; Ren, N.; Yang, W. L.; Tang, Y., Chiralmesostructured silica nanofibers of MCM-41[J]. Angew Chem Int Edit2006,45,2088-2090.
    【144】. Kim, J. M.; Kim, S. K.; Ryoo, R., Synthesis of MCM-48single crystals [J]. ChemCommun1998,(2),259-260.
    【145】. Kaneda, M.; Tsubakiyama, T.; Carlsson, A.; Sakamoto, Y.; Ohsuna, T.; Terasaki, O.;Joo, S. H.; Ryoo, R., Structural study of mesoporous MCM-48and carbon networkssynthesized in the spaces of MCM-48by electron crystallography [J]. J Phys Chem B2002,106(6),1256-1266
    【146】. Yu, C. Z., Tian, B. Z., Fan, J,, Zaho, D. Y., Nonionic block copolymer synthesis oflarge-pore cubic mesoporous single crystals by use of inorganic salts [J]. J Am ChemSoc.,2002,124,4556-4557.
    【147】. Zhang, F. Q.; Gu, D.; Yu, T.; Zhang, F.; Xie, S. H.; Zhang, L. J.; Deng, Y. H.; Wan, Y.;Tu, B.; Zhao, D. Y., Mesoporous carbon single-crystals from organic-organicself-assembly [J]. J Am Chem Soc2007,129(25),7746-7747.
    【148】. Zhao, D. Y.; Sun, J. Y.; Li, Q. Z.; Stucky, G. D., Morphological control of highlyordered mesoporous silica SBA-15[J]. Chem Mater.,2000,12(2),275-279.
    【149】. Yu, C. Z., Fan, J., Tian, B. Z., Zhao, D. Y., Stucky, G. D., High-yield synthesis ofperiodic mesoporous silica rods and their replication to mesoporous carbon rods [J]..Adv Mater2002,14(23),1742-1745.
    【150】. Sujandi, P. S. E., Han, D. S.; Han, S. C., Jin, M. J., Ohsuna, T., Amino-functionalizedSBA-15type mesoporous silica having nanostructured hexagonal platelet morphology[J]. Chem Commun2006,(39),4131-4133.
    【151】. Cui, X. G., Moon, S. W., Zin, W. C., High-yield synthesis of monodispersed SBA-15equilateral hexagonal platelet with thick wall [J]. Mater Lett2006,60(29-30),3857-3860.
    【152】. Chen, S. Y., Tang, C. Y., Chuang, W. T., Lee, J. J., Tsai, Y. L., Chan, J. C. C., Lin, C. Y.,Liu, Y. C., Cheng, S. F., A facile route to synthesizing functionalized mesoporousSBA-15materials with platelet morphology and short mesochannels [J].. Chem Mater2008,20,3906-3916.
    【153】. Wight, A. P., Davis, M. E., Design and preparation of organic inorganic hybridcatalysts [J]. Chem. Rev,2002,102:3589-3614.
    【154】. Hoffmann, F., Froba, M., Vitalising porous inorganic silica networks with organicfunctions-PMOs and related hybrid materials. Chem. Soc. Rev.,2011,40,608-620.
    【155】. Soler-Illia, G. J. A. A., Azzaroni, O., Multifunctional hybrids by combining orderedmesoporous materials and macromolecular building blocks. Chem. Soc. Rev.,2011,40,1107-1150.,
    【156】. Zhang, Z., Han, Y., Zhu, L., Strongly Acidic and high temperature hydrothermallystable mesoporous aluminosilicates with ordered hexagonal structure [J]. Angew.Chem. Int. Ed.2001,40,1258-1262.
    【157】. Cornelius, M., Hoffmann, F., Ufer, B., Behrens, P., Froba, M., Systematic extension ofthe length of the organic conjugated pi-system of mesoporous silica-basedorganic-inorganic hybrid materials [J]. J Mater Chem2008,18(22),2587-2592.
    【158】.曾蕾,胡俐萍,彭兰,等.Mo-MCM-41催化环戊烯烯丙型氧化的研究[J]。化学试剂,2010,32,727-732.
    【159】. Zhang, Z. R., Sue, J. S., Zhang, X. M., Li, S. B., Synthesis, characterization, andcatalytic testing of W-MCM-41mesoporous molecular sieves [J]. Appl Catal a-Gen.,1999,179,11-19.
    【160】. Han, P., Zhang, H. M., Qiu, X. P., Ji, X. L., Gao, L. X., Palladium within ionic liquidfunctionalized mesoporous silica SBA-15and its catalytic application inroom-temperature Suzuki coupling reaction [J]. J Mol Catal a-Chem.,2008,295,57-67.
    【161】. Sun, Y. Y., Zhu, L., Lu, H. J., Wang, R. W., Lin, S., Jiang, D. Z., Xiao, F. S., Sulfatedzirconia supported in mesoporous materials [J]. Appl Catal a-Gen,2002,237,21-31.
    【162】.牟莉,屈学俭,王春艳,新型有序介孔磺酸化酚醛树脂FDU-16-S03H的合成与酸催化性能[J]。高等学校化学学报,2010,31,1643-1646.
    【163】. Mureseanu, M., Reiss, A., Cioatera, N., Trandafir, I., Hulea, V., Mesoporous silicafunctionalized with1-furoyl thiourea urea for Hg(II) adsorption from aqueous media[J]. J Hazard Mater2010,182,197-203.
    【164】. Mureseanu, M., Reiss, A., Stefanescu, I., David, E., Parvulescu, V., Renard, G., Hulea,V., Modified SBA-15mesoporous silica for heavy metal ions remediation [J].Chemosphere,2008,73,1499-1504.
    【165】. Jiang, Y. J., Gao, Q. M., Yu, H. G., Chen, Y. R., Deng, F., Intensively competitiveadsorption for heavy metal ions by PAMAM-SBA-15and EDTA-PAMAM-SBA-15inorganic-organic hybrid materials [J]. Micropor. Mesopor. Mat.,2007,103,316-324.
    【166】. Shah, A. T., Li, B. S., Abdalla, Z. E. A., Direct synthesis of Cu-SBA-16by internalpH-modification method and its performance for adsorption of dibenzothiophene [J].Micropor. Mesopor. Mat.,2010,130,248-254.
    【167】. Huang, H. Y., Zhao, C. D., Ji, Y. S., Nie, R., Zhou, P., Zhang, H. X., Preparation,characterization and application of p-tert-butyl-calix[4]arene-SBA-15mesoporoussilica molecular sieves [J]. J Hazard Mater,2010,178,680-685.
    【168】. Tao, Q., Xu, Z. Y., Wang, J. H., Liu, F. L., Wan, H. Q., Zheng, S. R., Adsorption ofhumic acid to aminopropyl functionalized SBA-15[J]. Micropor Mesopor Mat.,2010,131,177-185.
    【169】. Potyrailo, R. A., Surman, C., Nagraj, N., and Burns, A., Materials and transducerstoward selective wireless gas sensing [J]. Chem. Rev.,2011,111,7315–7354.
    【170】. Liu, Y. X., Dong, X. C., Chen, P., Biological and chemical sensors based on graphenematerials [J]. Chem. Soc. Rev.,2012,41,2283-2307.
    【171】. Huang H H, Zhou J, Chen S Y, et al., A highly sensitive QCM sensor coated withAg+-ZSM-S film for medical diagnosis [J]. Sens Actuators B,2004,101:316-321.
    【172】. Heiland G, Kohl D, Problems and possibilities of oxidic and organic semiconductorgas sensors [J]. Sensor Actuator,1985,8:227-233.
    【173】. Waitz T, Wagner T, Salterwald T, et al., Ordered mesoporous In203: Synthesis bystructure replication and application as a methane gas sensor [J]. Adv. Funct. Mater,2009,19:653-661.
    【174】. Hyodo T, Shimizu Y, Egashira M, Design of mesoporous oxides as semiconductor gassensor materials [J]. Electrochemistry,2003,71:387-393.
    【175】. Descalzo, A. B., Jimenez, D., Marcos, M. D., Martinez-Manez, R., Soto, J., ElHaskouri, J., Guillem, C., Beltran, D., Amoros, P., Borrachero, M.V., A New Approachto chemosensors for anions using MCM-41grafted with amino groups. Adv Mater.2002,14,966-969.
    【176】. Rodman, D. L.; Pan, H.; Clavier, C. W.; Feng, X.; Xue, Z.-L. Optical metal ion sensorbased on diffusion followed by an immobilizing reaction. Quantitative Analysis by amesoporous monolith containing functional groups. Anal. Chem.2005,77,3231-3237.
    【177】. Tu, J. C., Wang, R., Geng, W. C., Zhang, T., Humidity sensitive property of Li-doped3D periodic mesoporous silica SBA-16[J]. Sens Actuators B,2009,136:392-398.
    【178】. Zhang, T., Wang, R., Geng, W. C., Study on humidity sensing properties based oncomposite materials of Li-doped mesoporous silica A-SBA-15[J]. Sens Actuators B,2008,128:482-487.
    【179】. Zheng, Q., Zhu, Y. H., Xu, J. Q., Cheng, Z. X., Li, H. M., and Li, X. X.,Fluoroalcohol and fluorinated-phenol derivatives functionalized mesoporous SBA-15hybrids: high-performance gas sensing toward nerve agent [J]. J. Mater. Chem.,2012,22,2263-2270.
    【180】. Xu, P. C., Yu, H. T., and Li, X. X., Functionalized mesoporous silica formicrogravimetric sensing of trace chemical vapors [J]. Anal. Chem.,2011,83,3448–3454.
    【181】. Vallet-Reg, M., Balas, F., and Arcos, D., Mesoporous materials for drug delivery [J].Angew. Chem. Int. Ed.,2007,46,7548–7558.
    【182】. Li, Z. X., Barnes, J. C., Bosoy, A. J., Stoddart, F., and Zink, J. I., Mesoporous silicananoparticles in biomedical applications [J]. Chem. Soc. Rev.,2012,41,2590-2605.
    【183】. Vivero-Escoto, J.L., Slowing I. I., Wu, C. W., Lin, V. S. Y., Photoinduced intracellularcontrolled release drug delivery in human cells by gold-capped mesoporous silicananosphere [J]. J. Am. Chem. Soc.,2009,131(10):3462-3463.
    【184】. Lai, C.Y., Trewyn B.G., Jeftinija, D.M., Slowing I. I., Lin, V. S. Y., A mesoporoussilica nanosphere-based carrier system with chemically removable CdS nanoparticlecaps for stimuli-responsive controlled release of neurotransmitters and drug molecules[J]. J. Am. Chem. Soc.,2003,125(15):4451-4459.
    【185】. Giri, S., Trewyn, B. G., Stellmaker, M. P., Lin, V. S. Y., Stimuli-responsivecontrolled-release delivery system based on mesoporous silica nanorods capped withmagnetic nanoparticles [J]. Angew. Chem. Int. Ed.,2005,44,5038-5044.
    【186】. Park, C., Oh, K., Lee, S. C., Kim, C., Controlled release of guest molecules frommesoporous silica particles based on a pH-responsive polypseudorotaxane motif[J].Angew. Chem. Int. Ed.,2007,46,1455-1457.
    【1】. Beck, J. S., Vartuli, J C, Roth W J, et al., Anew family of mesoporous molecular sievesprepared with liquid crystal templates [J]. J Am Chem Soc,1992,114:10834-10843.
    【2】. Zhao, D. Y., Huo, Q. S., Feng, J. L., Chmelka, B. F., and Stucky, G. D., Nonionictriblock and star diblock copolymer and oligomeric surfactant syntheses of highlyordered, hydrothermally stable, mesoporous silica structures [J]. J. Am. Chem. Soc.,1998,120,6024-6036.
    【3】. Wan, Y., Zhao, D. Y., On the controllable soft-templating approach to mesoporoussilicates [J]. Chem. Rev.,2007,107,2821-2860.
    【4】. Pirez, C., Caderon, J., Dacquin, J. P., Lee, A. F., and Wilson, K., Tunable KIT-6mesoporous sulfonic acid catalysts for fatty acid esterification [J]. ACS Catal.,2012,2,1607-1614.
    【5】. Li, Z. X., Barnes, J. C., Bosoy, A. J., Stoddart, F., and Zink, J. I., Mesoporous silicananoparticles in biomedical applications [J]. Chem. Soc. Rev.,2012,41,2590-2605.
    【6】. Potyrailo, R. A., Surman, C., Nagraj, N., and Burns, A., Materials and transducerstoward selective wireless gas sensing [J]. Chem. Rev.,2011,111,7315–7354.
    【7】. Suzuki, K., Ikari, K., Imai, H., Synthesis of silica nanoparticles having a well-orderedmesostructure using a double surfactant system [J]. J. Am. Chem. Soc.,2004,126,462-463.
    【8】. Wang, J. G., Li, F., Zhou, H. J., Sun, P. C., Ding, D. T., Chen, T. H., Silica hollowspheres with ordered and radially oriented amino-functionalized mesochannels [J].Chem Mater.,2009,21,612-620.
    【9】. Qiu, H. B., and Che, S. A., Chiral mesoporous silica: Chiral construction andimprinting via cooperative self-assembly of amphiphiles and silica precursors [J].Chem. Soc. Rev.,2011,40,1259-1268.
    【10】. Zhang, F. Q.; Gu, D.; Yu, T.; Zhang, F.; Xie, S. H.; Zhang, L. J.; Deng, Y. H.; Wan, Y.;Tu, B.; Zhao, D. Y., Mesoporous carbon single-crystals from organic-organicself-assembly [J]. J Am Chem Soc2007,129(25),7746-7747.
    【11】. Zhao, D. Y.; Sun, J. Y.; Li, Q. Z.; Stucky, G. D., Morphological control of highlyordered mesoporous silica SBA-15[J]. Chem Mater.,2000,12(2),275-279.
    【12】. Yu, C. Z., Fan, J., Tian, B. Z., Zhao, D. Y., Stucky, G. D., High-yield synthesis ofperiodic mesoporous silica rods and their replication to mesoporous carbon rods [J]..Adv Mater2002,14(23),1742-1745.
    【13】. Cui, X. G., Moon, S. W., Zin, W. C., High-yield synthesis of monodispersed SBA-15equilateral hexagonal platelet with thick wall [J]. Mater Lett2006,60(29-30),3857-3860.
    【14】. Chen, S. Y., Tang, C. Y., Chuang, W. T., Lee, J. J., Tsai, Y. L., Chan, J. C. C., Lin, C. Y.,Liu, Y. C., Cheng, S. F., A facile route to synthesizing functionalized mesoporousSBA-15materials with platelet morphology and short mesochannels [J].. Chem Mater2008,20,3906-3916.
    【15】. Zhu,Y. H., Li, H., Xu, J. Q., Yuan, H., Wang, J. J. Li, X. X., Monodispersedmesoporous SBA-15with novel morphologies: controllable synthesis and morphologydependence of humidity sensing[J]. CrystEngComm.2011,13,402-406.
    【16】. Zhao, D. Y., Yang, P. D., Melosh, N., Feng, J. L., Chmelka, B. F., Stucky, G. D.,Continuous mesoporous silica films with highly ordered large pore structures [J]. Adv.Mater,1998,10:1380-1385.
    【17】. Su, Y. L., Wang, J., Liu, H. Z., Formation of a hydrophobic microenvironment inaqueous PEO-PPO-PEO block copolymer solutions investigated by fourier transforminfrared spectroscop [J]. J. Phys. Chem. B2002,106,11823-11828.
    【18】. Horvat, A., Lyakhova, K. S., Sevink, C. J. A., Zvelindovsky, A. V., Magerle, R., Phasebehavior in thin films of cylinder-forming ABA block copolymers: mesoscalemodeling [J]. J. Chem. Phys.2004,120,1117-11126.
    【19】. Wang L Z, Shi J L, Tang F Q, Yu J, Ruan M L, Yan D S, Rapid synthesis ofmesoporous silica with micrometer sized hexagonal prism structure [J]. J. Mater. Chem,1999,9:643-645.
    【20】. Gobin, O. C., Wan, Y., Zhao, D. Y., Kleitz, F., and Kaliaguine, S., Mesostructured silicaSBA-16with tailored intrawall porosity part1: Synthesis and Characterization [J]. J.Phys. Chem. C,2007,111,3053–3058.
    【21】. Zhao, D. Y., Feng J, Huo Q S, Melosb N, et al., Triblock copolymer syntheses ofmesoporous silica with periodic50to300angstrompores [J]. Science,1998,279:548-552.
    【22】. Kruk, M., Jaroniec, M., Ko C. H., Characterization of the porous structure of SBA-15[J]. Chem. Mater,2000,12,1961-1968
    【1】. Moller, K., Bein, T., Fisher, R. X., Synthesis of Ordered Mesoporous MethacrylateHybrid Systems: Hosts for Molecular Polymer Composites [J]. Chem. Mater.1999,11,665-673.
    【2】. Wight, A. P., Davis, M. E., Design and Preparation of Organic-inorganic HybridCatalysts [J]. Chem. Rev.2002,102,3589-3614.
    【3】. Hartmann, M., Ordered Mesoporous Materials for Bioadsorption and Biocatalysis [J].Chem. Mater.2005,17,4577-4593.
    【4】. Wan, Y., Zhao, D. Y., On the Controllable Soft-templating Approach to MesoporousSilicates [J]. Chem. Rev.2007,107,2821-2860.
    【5】. Chen, C. S., Chen, C. C., Chen, C. T., Kao, H. M., Synthesis of Cu Nanoparticles inMesoporous Silica SBA-15Functionalized with Carboxylic Acid Groups [J]. Chem.Commun.2011,2288-2290.
    【6】. Cucinotta, F., Carniato, F., Paul, G., Bracco, S., Bisio, C., Caldarelli, S., Marchese, L.,Incorporation of a Semiconductive Polymer into Mesoporous SBA-15Platelets:Toward New Luminescent Hybrid Materials [J]. Chem. Mater.2011,23,2803-2809.
    【7】. Zhao, D. Y., Huo, Q. S., Feng, J. L., Chmelka, B. F., Stucky, G. D., Nonionic Triblockand Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered,Hydrothermally Stable [J], Mesoporous Silica Structures. J. Am. Chem. Soc.1998,120,6024-6036.
    【8】. Chen, D. H., Li, Z., Wan, Y., Tu, X. J., Shi, Y. F., Chen, Z. X., Shen, W., Yu, C. Z., Tu,B., Zhao, D. Y. Highly Ordered Mesoporous Silicon Carbide Ceramics with LargeSurface Areas and High Stability [J]. J. Mater. Chem.2006,16,1511-1519.
    【9】. Chong A. S. M.; Zhao, X. S. Functionalization of SBA-15with APTES andCharacterization of Functionalized Materials [J]. J. Phys. Chem. B.2003,107,12650-12657.
    【10】. Wang, X. G., Lin, Kyle S. K., Chan Jerry C. C., Cheng, S. F., Preparation of OrderedLarge Pore SBA-15Silica Functionalized with Aminopropyl Groups through One-potSynthesis [J]. Chem. Commun.2004,2762-2763.
    【11】. Liu, J., Feng, X., Fryxell, G. E., Wang, L. Q., Kim, A. Y., Gong, M., HybridMesoporous Materials with Functionalized Monolayers [J]. Adv. Mater.1998,10,161-165.
    【12】. Liu, N., Assink R. A., Brinker, C. J., Synthesis and Characterization of Highly OrderedMesoporous Thin Films with-COOH Terminated Pore Surfaces [J]. Chem. Commun.2003,370-371.
    【13】. Kim, Y. S., Guo, X. F., Kim, G. J., Highly Active New Chiral Co(III) Salen CatalystsImmobilized by Electrostatic Interaction with Sulfonic Acid Linkages on OrderedMesoporous SBA-16Silica [J]. Chem. Commun.2009,4296-4298.
    【14】. Wang, Y. Q., Zibrowius, B., Yang C. M., Spliethoff, B., Schüth, F., Synthesis andCharacterization of Vinyl-functionalized Mesoporous Silica SBA-15[J]. Chem.Commun.2004,46-47.
    【15】. Bruzzoniti, M. C., Sarzanini, C., Torchia, A. M., Teodoro, M., Testa, F., Virga, A.,Onida, B., MCM-41Functionalized with Ethylenediaminetriacetic Acid forIon-exchange Chromatography [J]. J. Mater. Chem.2011,21,369-376.
    【16】. Yokoi, T., Karouji, T., Ohta, S., Kondo J. N., Tatsumi, T., Synthesis of MesoporousSilica Nanospheres Promoted by Basic Amino Acids and Their Catalytic Application[J]. Chem. Mater.2010,22,3900-3908.
    【17】. Melde, B. J., Johnson, B. J., Mesoporous Materials in Sensing: Morphology andFunctionality at the Meso-interface [J]. Anal Bioanal Chem.2010,398,1565-1573.
    【18】. Rosenholm, J. M., Meinander, A., Peuhu, E., Niemi, R., Eriksson, J. E., Sahlgren, C.,Lindeén, M., Targeting of Porous Hybrid Silica Nanoparticles to Cancer Cells [J]. ACSNano.2009,3,197-206.
    【19】. Mercier L., Pinnavaia, T. J., Direct Synthesis of Hybrid Organic-inorganic NanoporousSilica by a Neutral Amine Assembly Route: Structure-function Control byStoichiometric Incorporation of Organosiloxane Molecules [J]. Chem. Mater.2000,12,188-196.
    【20】. Zhu, L. L., Zhang, C., Liu, Y. H., Wang, D. Y., Chen, J., Direct Synthesis of OrderedN-methylimidazolium Functionalized Mesoporous Silica as Highly Efficient AnionExchanger of Cr(VI)[J]. J. Mater. Chem.2010,20,1553-1559.
    【21】. Yue, M. B., Chun, Y., Cao, Y., Dong, X., Zhu, J. H., CO2Capture by As-preparedSBA-15with an Occluded Organic Template [J]. Adv. Funct. Mater.2006,16,1717-1722.
    【22】. Ma, X. L., Wang, X. X., Song, C. S.“Molecular Basket” Sorbents for Separation ofCO2and H2S from Various Gas Streams [J]. J. Am. Chem. Soc.2009,131,5777-5783.
    【23】. Mori Y., Pinnavaia, T., Optimizing Organic Functionality in Mesostructured Silica:Direct Assembly of Mercaptopropyl Groups in Wormhole Framework Structures [J]. J.Chem. Mater.2001,13,2173-2178.
    【24】. Kanan, S. M., Tze, W. T. Y., Tripp, C. P., Method to Double the Surface Concentrationand Control the Orientation of Adsorbed (3-Aminopropyl)dimethylethoxysilane onSilica Powders and Glass Slides [J]. Langmuir.2002,18,6623-6627.
    【25】. Zhu,Y. H., Li, H., Xu, J. Q., Yuan, H., Wang, J. J. Li, X. X., Monodispersedmesoporous SBA-15with novel morphologies: controllable synthesis and morphologydependence of humidity sensing [J]. CrystEngComm.2011,13,402-406.
    【26】. Zhao, D. Y., Yang, P. D., Melosh, N., Feng, J. L., Chmelka, B. F., Stucky, G. D.,Continuous mesoporous silica films with highly ordered large pore structures [J]. Adv.Mater,1998,10:1380-1385.
    【27】. Sauerbrey, G., The Use of Quartz Oscillators for Weighing Thin Layers and forMicroweighing [J]. Z. Phys.1959,155,206-222.
    【28】. Kanan, S. M., Tze, W. T. Y., Tripp, C. P., Method to Double the Surface Concentrationand Control the Orientation of Adsorbed (3-Aminopropyl)dimethylethoxysilane onSilica Powders and Glass Slides [J]. Langmuir.2002,18,6623-6627.
    【29】. Han, L., Ruan, J. F., Li, Y. S., Terasaki, O., Che, S. A., Synthesis and Characterizationof the Amphoteric Amino Acid Bifunctional Mesoporous Silica [J]. Chem. Mater.2007,19,2860-2867.
    【30】. Moreno, J., Sherrington, D. C., Well-defined Mesostructured Organic-inorganic HybridMaterials via Atom Transfer Radical Grafting of Oligomethacrylates onto SBA-15Pore Surfaces [J]. Chem. Mater.2008,20,4468-4474.
    【31】. Tsai, C. T., Pan, Yu. C., Ting, C.C., Vetrivel, S.,Chiang, A. S. T., Fey G. T. K, and Kao,H. M., A Simple One-pot Route to Mesoporous Silicas SBA-15Functionalized withExceptionally High Loadings of Pendant Carboxylic Acid Groups [J]. Chem. Commun.2009,5018-5020.
    【32】. Mao, K., Kobayashi, T., Wiench, J. W., Chen, H. T., Tsai, C. H., Lin, V. S. Y., Pruski,M., Conformations of Silica-bound (pentafluorophenyl)propyl Groups Determined bySolid-state NMR Spectroscopy and Theoretical Calculations [J]. J. Am. Chem. Soc.2010,132,12452-12457.
    【1】. Mohan, P., Motohisa, J., and Fukui, T., Controlled Growth of Highly Uniform,Axial/radial Direction-defined, Individually Addressable InP Nanowire Arrays [J].Nanotechnology2005,16,2903-2907.
    【2】. Daniel, M. C., and Astruc, D., Gold Nanoparticles: Assembly, SupramolecularChemistry, Quantum-Size-Related Properties, and Applications toward Biology,Catalysis, and Nanotechnology [J]. Chem. Rev.2004,104,293-346.
    【3】. Lin, H. T., Wu,Y. S., Cao, X. Q., and Fu, H. B., Engineering of Interfacial ElectronTransfer from Donor–Acceptor Type Organic Semiconductor to ZnO Nanorod forVisible-Light Detection [J]. J. Phys. Chem. C2012,116,21657-21663.
    【4】. Chen, L., Gao, L., Yasumori, A., Kuroda, K., and Sugahara,Y., Size-andShape-Controlled Conversion of Tungstate-Based Inorganic–Organic Hybrid Belts toWO3Nanoplates with High Specific Surface Areas [J]. Small2008,4,1813-1822.
    【5】. Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J.-M., Schalkwijk, W., NanostructuredMaterials for Advanced Energy Conversion and Storage Devices [J]. Nat.Mater.2005,4,366-377.
    【6】. Wang, L., Teleki, A., Pratsinis, S. E., and Gouma, P. I., Ferroelectric WO3Nanoparticles for Acetone Selective Detection [J]. Chem. Mater.2008,20,4794-4796..
    【7】. J. M. Wang, E. Khoo, P. S. Lee, and J. Ma, Synthesis, Assembly, and ElectrochromicProperties of Uniform Crystalline WO3Nanorods [J]. J. Phys. Chem. C,2008,112,14306-14312.
    【8】. Phuruangrat, A., Ham, D. J., Hong, S. J., Thongtema, S., and Lee, J. S., Synthesis ofHexagonal WO3Nanowires by microwave-assisted Hydrothermal Method and TheirElectrocatalytic Activities for Hydrogen Evolution Reaction [J]. J. Mater. Chem.2010,20,1683-1690.
    【9】. Nah, Y. C., Ghicov, A., Kim, D., Berger, S., and Schmuki, P., TiO2WO3CompositeNanotubes by Alloy Anodization: Growth and Enhanced Electrochromic Properties [J].J. Am. Chem. Soc.2008,130,16154.
    【10】. Blackman, C. S., and Parkin, I. P., Atmospheric Pressure Chemical Vapor Depositionof Crystalline Monoclinic WO3and WO3-xThin Films from Reaction of WCl6withO-Containing Solvents and Their Photochromic and Electrochromic Properties [J].Chem. Mater.2005,17,1583-1590.
    【11】. Jayaraman, S., Jaramillo, T. F., Baeck, S.-H., and McFarland, E. W., Synthesis andCharacterization of Pt-WO3as Methanol Oxidation Catalysts for Fuel Cells [J]. J. Phys.Chem. B2005,109,22958-22966.
    【12】. Karuppasamy, A., and Subrahmanyam, A., Electron beam induced coloration andluminescence in layered structure of WO3thin films grown by pulsed dc magnetronsputtering [J]. J. Appl. Phys.2007,101,113522-113526.
    【13】. Wang, Z., Chumanov, G., WO3Sol–Gel Modified Ag Nanoparticle Arrays forElectrochemical Modulation of Surface Plasmon Resonance [J]. Adv. Mater.2003,15,1285-1289.
    【14】. Rossinyol, E., Arbiol, J., Peiró, F., Cornet, A., Morante, J. R., Tian, B. Z., Tu, B., andZhao, D. Y., Nanostructured Metal Oxides Synthesized by Hard Template Method forGas Sensing Applications [J]. Sens. Actuators, B2005,109,57-63.
    【15】. Ozin, G. A. Nanochemistry-Synthesis in Diminishing Dimensions. Adv. Mater.,1992,4,612-649.
    【16】. Shen, C., Wang, Y. J., X, J. H., Wang, K., and Luo, G. S., Size Control and CatalyticActivity of Highly Dispersed Pd Nanoparticles Supported on Porous Glass Beads [J].Langmuir2012,28,7519-7527.
    【17】. Aquino, R., Dupuis, V., and Perzynski, R.,"Nanocasting": Using SBA-15Silicas asHard templates to Obtain Ultrasmall Monodispersed Gamma-Fe2O3Nanoparticles [J].J. Phys. Chem. B2006,110,26001-26011.
    【18】. Kanan, S. M., Tze, W. T. Y., Tripp, C. P., Method to Double the Surface Concentrationand Control the Orientation of Adsorbed (3-Aminopropyl)dimethylethoxysilane onSilica Powders and Glass Slides [J]. Langmuir.2002,18,6623-6627.
    【19】. Han, L., Ruan, J. F., Li, Y. S., Terasaki, O., Che, S. A., Synthesis and Characterizationof the Amphoteric Amino Acid Bifunctional Mesoporous Silica [J]. Chem. Mater.2007,19,2860-2867.
    【20】. Moreno, J., Sherrington, D. C., Well-defined Mesostructured Organic-inorganic HybridMaterials via Atom Transfer Radical Grafting of Oligomethacrylates onto SBA-15Pore Surfaces [J]. Chem. Mater.2008,20,4468-4474.
    【21】. Salmaoui, S., Sediri, F., Gharbi, N., Characterization of h-WO"3NanorodsSynthesized by Hydrothermal Process [J]. Polyhedron2010,29,1771-1775.
    【22】. A. R. Sedle, T. E. Wood, M. L. Brostrom, D. C. Koskenmaki, B. Montez, and E.Oldfield, Solid-state Polymerization of Molecular Metal Oxide Clusters: Aluminum12-tungstophosphate [J]. J. Am. Chem. Soc.1989,111,1665-1669.
    【23】. Pan, Q. Y., Xu, J. Q., Dong, X. W., Zhang J. P., Gas sensitive properties ofnanometer-sized SnO2[J], Sens. Actuators B: Chem.,2000,66,237-239.
    【24】. Chen, D. L., Gao, L., Facile Synthesis of Single-crystal Tin Oxide Nanorods withTunable Dimensions via Hydrothermal Process [J], Chemical Physics Letters,2004,398,201-206
    【1】. Gu, J. L., Shi, J. L,. You, G. J., L. Xiong, M., Qian, S. X., Hua, Z. L., and Chen, H. R.,Incorporation of Highly Dispersed Gold Nanoparticles into the Pore Channels ofMesoporous Silica Thin Films and their Ultrafast Nonlinear Optical Response [J]. Adv.Mater.,2005,17,557-560.
    【2】. White, R. J., Luque, R., Budarin, V. L., Clark, J. H., and Macquarrie, D. J., Supportedmetal nanoparticles on porous materials. Methods and applications [J]Chem. Soc. Rev.,2009,38,481-494.
    【3】. Hu, M. S., Chen, H. L., Shen, C. H., Hong, L. S., Huang, B. R., Chen, K. H. and Chen,L. C., Photosensitive Gold-nanoparticle-embedded Dielectric Nanowires [J].Nat. Mater.2006,5,102-106.
    【4】. Zhu, J., Kónya, Z., Puntes, V. F., Kiricsi, I., Miao, C. X., Ager, J. W., Alivisatos, A. P.and Somorjai, G. A. Encapsulation of Metal (Au, Ag, Pt) Nanoparticles into theMesoporous SBA-15Structure [J]. Langmuir,2003,19,4396-4401.
    【5】. Wang, Z. J., Xie, Y. B., and Liu, C. J., Synthesis and Characterization of Noble Metal(Pd, Pt, Au, Ag) Nanostructured Materials Confined in the Channels of MesoporousSBA-15[J]. J. Phys. Chem. C,2008,112,19818-19824.
    【6】. Yang, C. M., Liu, P. H., Ho, Y. F., Chiu, C. Y., and Chao, K. J., Chem. Mater., HighlyDispersed Metal Nanoparticles in Functionalized SBA-15[J].2003,15,275-280.
    【7】. Xie, Y. W., Quinlivan, S., and Asefa, T., Tuning Metal Nanostructures in MesoporousSilica by a Simple Change of Metal Complexes and by Reduction with Grafted Iminesand Hemiaminals [J]J. Phys. Chem. C,2008,112,9996-10003.
    【8】. Sun, J. M., Ma, D., Zhang, H., Liu, X. M., Han, X. W., Bao, X. H., Weinberg, G.,Pf nder, N., and Su, D. H., Helical Metallohost Guest Complexes via Site-SelectiveTransmetalation of Homotrinuclear Complexes [J] J. Am. Chem. Soc.,2006,128,15756-15774.
    【9】. Fang, J. Y., Qin, S. Q., Chang S. L., and Zhang, X. A., Template synthesis ofnanoparticle arrays of gold using highly ordered functional mesoporous silica thinfilms with high amino-groups content [J]. Micro. Meso. Mater.2011,145,205-210.
    【10】. Fattori, N., Maroneze, C. M., Costa, L. P., Strauss, M., Sigoli, F. A., Mazali, I. O., andGushikem, Y., Ion-Exchange Properties of Imidazolium-Grafted SBA-15towardAuCl4–Anions and Their Conversion into Supported Gold Nanoparticles [J]. Langmuir,2012,28,10281-10288.
    【11】. Silva, R., Biradar, A. V., Fabris, L., and Asefa, T., Au/SBA-15-Based Robust andConvenient-to-Use Nanopowder Material for Surface-Enhanced Raman Spectroscopy[J]. J. Phys. Chem. C,2011,115,22810-22817.
    【12】. Yang, C. M., Liu, P. H. Ho, Y., Chiu, C., Chao, K., Highly dispersed metalnanoparticles in funtionalized SBA-15[J], Chem. Mater,2003,15,275-280.
    【13】. Zhang, W. H., Shi, J. L., Wang, Z. L., Yan, D. S., Preparation and characterization ofZnO clusters inside mesopoorus silicas [J], Chem. Mater2000,12,1408-1413.
    【14】. Zhang, L. X., Shi, J. L., Yu, J., Hua, Z. L., Zhao, X. G., Ruan, M. L., A New In-SituReduction Route for the Synthesis of Pt Nanoclusters in the Channels of MesoporousSilica SBA-15[J]. Adv. Mater.2002,14.1510-1513.
    【15】. Han, L., Ruan, J. F., Li, Y. S., Terasaki, O., Che, S. A., Synthesis and Characterizationof the Amphoteric Amino Acid Bifunctional Mesoporous Silica [J]. Chem. Mater.2007,19,2860-2867.
    【16】. Kanan, S. M., Tze, W. T. Y., Tripp, C. P., Method to Double the Surface Concentrationand Control the Orientation of Adsorbed (3-Aminopropyl)dimethylethoxysilane onSilica Powders and Glass Slides [J]. Langmuir.2002,18,6623-6627.
    【17】. Silva, R., Biradar, A. V., Fabris, L., and Asefa, T., Au/SBA-15-Based Robust andConvenient-to-Use Nanopowder Material for Surface-Enhanced Raman Spectroscopy[J]. J. Phys. Chem. C2011,115,22810-22817.
    【18】. Garcia-Martinez, J. C., and Crooks, R. M., Extraction of Au Nanoparticles HavingNarrow Size Distributions from within Dendrimer Templates [J]. J. Am. Chem. Soc.,2004,126,16170-16178.
    【19】. Yu, Q. Guan, M. P., Qin, D., Golden, G., and Wallace, P. M., InvertedSize-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole andNanodisk Arrays [J]. Nano Lett.,2008,8,1923-1928.
    【1】. Hartmann, M. Ordered Mesoporous Materials for Bioadsorption and Biocatalysis [J].Chem. Mater.2005,17,4577-4593.
    【2】. Zhang, L.; Qiao, S. Z.; Jin, Y. G.; Yang, H. G.; Budihartono, S.; Stahr, F.; Yan, Z. F.;Wang, X. L.; Hao, Z. P.; Lu, G. Q. Fabrication and size-selective bioseparation ofmagnetic silica nanospheres with highly ordered periodic mesostructure [J]. Adv. Funct.Mater.2008,18,3203-3212.
    【3】. Chen, C. S.; Chen, C. C.; Chen, C. T.; Kao, H. M. Synthesis of Cu Nanoparticles inmesoporous silica SBA-15functionalized with carboxylic acid groups [J]. Chem.Commun.2011,2288-2290.
    【4】. Yang, Q.; Wang, S. H.; Fan, P. W.; Wang, L. F.; Di, Y.; Lin, K. F.; Xiao, F. S.pH-responsive carrier system based on carboxylic acid modified mesoporous silica andpolyelectrolyte for drug delivery [J]. Chem. Mater.2005,17,5999-6003.
    【5】. Trewyn, B. G.; Giri, S.; Slowing, I. I.; Lin, V. S.-Y. Mesoporous silica nanoparticlebased controlled release, drug delivery, and biosensor systems [J]. Chem. Commun.2007,3236–3245
    【6】. Doadrio, A. L.; Sousa, E. M. B.; Doadrio, J. C.; Pariente, J. P.; Izquierdo-Barba, I.;Vallet-Regi, M., Mesoporous SBA-15HPLC evaluation for controlled gentamicin drugdelivery [J]. J. Control. Release.2004,97,125-132.
    【7】. Zhu, Y. F.; Shi, J. L.; Shen, W. H.; Dong, X. P.; Feng, J. W.; Ruan, M. L.; Li, Y. S.,Stimuli-responsive controlled drug release from a hollow mesoporous silicasphere/polyelectrolyte multilayer core-shell structure [J]. Angew. Chem. Int. Edit.2005,44,5083-5087.
    【8】. Schlossbauer, A.; Warncke, S.; Gramlich, P. M. E.; Kecht, J.; Manetto, A.; Carell, T.;Bein, T. A programmable DNA-based molecular valve for colloidal mesoporous silica[J]. Angew. Chem. Int.Edit.2010,49,4734-4737.
    【9】. Slowing, I. I.; Trewyn, B. G.; Lin, V. S. Y. Mesoporous silica nanoparticles forintracellular delivery of membrane-impermeable proteins [J]. J. Am. Chem. Soc.2007,129,8845-8849.
    【10】. Lin, Y. S.; Tsai, C.P.; Huang, H.Y. Kuo, C.T.; Hung, Y.; Huang, D. M. Well-orderedmesoporous silica nanoparticles as cell markers [J]. Chem. Mater.2005,17,4570-4573.
    【11】. Rosenholm, J.; Sahlgren, C.; Linden, M. Cancer-cell targeting and cell-specificdelivery by mesoporous silica nanoparticles. J. Mater. Chem.2010,20,2707-2713.
    【12】. Ratner, B. D.; Hoffman, A. S.; Schoen, F. J.; et al., Biomaterials Science, anIntroduction to Materials in Medicine,2004,2nd ed. Elsevier: Amsterdam.
    【13】. Langer, R.; Perspectives: drug delivery一drugs on target [J], Science,200,293,58-59.
    【14】. Prime, K. L.; Whitesides, G. M.; Self-assembled organic systems formonolayers-model studying adsorption of proteins at surfaces [J]. Science,1991,252,1164-1167.
    【15】. Brash, J. L.; Exploiting the current paradigm of blood-material interactions for therational design of blood-compatible materials [J]. Journal of BiomaterialsScience-Polymer Edition,2000,11,1135-1146.
    【16】. Huang, N. P.; Michel, R.; Voros. J.; et al., Poly(L-lysine)-g-polyethylene glycol) layerson metal oxide surfaces: Surface-analytical characterization and resistance to serumand fibrinogen adsorption [J]. Langmuir,2001,17,489-498.
    【17】. Zhang, Z.; Zhang, M.; Chen, S F.; et al., Blood compatibility of surfaces with superlowprotein adsorption [J], Biomaterials,2008,29,4285-4291.
    【18】. Yoon, K. R.; Ramaraj, B.; Lee, S. M.; et al., Surface initiated-atom transferradicalpolymerization of a sugar methacrylate on gold nanoparticles, Surface andInterface Analysis,2008,40,1139-1143.
    【19】. Lee B S, Chi Y S, Lee K B, et al., Functionalization of poly(oligo(ethyleneglycol)methacrylate) films on gold and Si/Si02for immobilization of proteins andcells: SPR and QCM studies [J]. Biomacromolecules,2007,8,3922-3929.
    【20】. Ostuni, E.; Chapman, R. G.; Holmlin, R. E.; Takayama, S.; Whitesides, G. M. Asurveyof structure-property relationships of surfaces that resist the adsorption of protein [J].Langmuir.2001,17,5605–20.
    【21】. Bearinger, J. P.; Terrettaz, S.; Michel, R.; Tirelli, N.; Vogel H. Textor, M. Chemisorbedpoly(propylene sulphide)-based copolymers resist biomolecular interactions [J]. Nat.Mater.2003,2,259–264.
    【22】. Jiang, S. Y.; Cao, Z. Q. Ultralow-Fouling, Functionalizable, and hydrolyzablezwitterionic materials and their derivatives for biological applications [J]. Adv. Mater.2010,22,920-932.
    【23】. Cao, Z. Q.; Jiang, S. Y. Super-hydrophilic zwitterionic poly(carboxybetaine) andamphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles [J]. Nano. Today.2012,7,404-413.
    【24】. Cheng, G.; Mi, L.; Cao, Z. Q.; Xue, H.; Yu, Q. M.; Carr, L.; Jiang, S. Y.Functionalizable and ultrastable zwitterionic nanogels [J]. Langmuir.2010,26,6883-6886.
    【25】. Li, Y. T.; Keefe, A. J.; Giarmarco, M.; Brault, N. D.; Jiang, S. Y. Simple and robustapproach for passivating and functionalizing surfaces for use in complex media [J].Langmuir.2012,28,9707-9713.
    【26】. Chang, Y.; Chen, S. F.; Yu, Q. M.; Zhang, Z.; Bernards, M.; Jiang, S. Y. Developmentof biocompatible interpenetrating polymer networks containing a sulfobetaine-basedpolymer and a segmented polyurethane for protein resistance [J]. Biomacromolecules.2007,8,122-127.
    【27】. Lee, H.; Dellatore, S. M.; Miller, W. M.; Messersmith, P. B. Mussel-inspired surfacechemistry for multifunctional coatings [J]. Science.2007,318,426-430.
    【28】. Weers, J. G.; Rathman, J. F.; Axe, F. U.; et al., Effect of the intramolecular chargeseparation distance on the solution properties of betaines and sulfobetaines [J],Langmuir,1991,7,854-867.
    【29】. Chong A. S. M.; Zhao, X. S. Functionalization of SBA-15with APTES andcharacterization of functionalized materials [J]. J. Phys. Chem. B.2003,107,12650-12657.
    【30】. Wan, Y.; Zhao, D. Y. On the controllable soft-templating approach to mesoporoussilicates [J]. Chem. Rev.2007,107,2821-2860.
    【31】. Wang, X. G.; Lin, K. S. K.; Chan, J. C. C.; Cheng, S. Direct Synthesis and CatalyticApplications of ordered large pore aminopropyl-functionalized SBA-15mesoporousmaterials [J]. J. Phys. Chem. B.2005,109,1763-1769.
    【32】. Zhang, Z.; Chao, T.; Chen, S. F.; Jiang, S. Y., Superlow fouling sulfobetaine andcarboxybetaine polymers on glass slides [J]. Langmuir.2006,22,10072-10077.
    【33】. Haubner, R.; Wester, H. J.; Burkhart, F.; Senekowitsch-Schmidtke, R.; Weber, W.;Goodman, S. L.; Kessler, H.; Schwaiger, M. Glycosylated RGD-containing peptides,tracer for tumor targeting and angiogenesis imaging with improved biokinetics [J]. J.Nucl. Med.2001,42,326-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700