钼基催化剂上的高硫合成气制甲硫醇的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
甲硫醇(CH_3SH)是一种重要的有机化工原料和常用的有机中间体。传统的工业合成甲硫醇的方法是在钨系催化剂作用下由硫化氢与甲醇气相合成。近年来,高硫合成气(CO/h_2/h_2S)一步法合成甲硫醇引起人们的兴趣,与传统的合成方法相比,由于该法原料易得,且省去了合成甲醇的中间步骤,具有很好的工业应用前景。
     本文主要对高硫合成气合成甲硫醇的钼基催化剂的制备、催化剂结构和性能之间的关联及反应历程展开研究。以Mo作为活性组份,采用浸渍法制备了一系列用于催化高硫合成气合成甲硫醇的催化剂;对助剂、载体和制备过程进行了最优化,并且对优化的催化剂进行了实验室放大试验。采用BET、XRD、LRS、XPS、TG、TPR、TPD、ESR等谱学手段对催化剂进行了表征;讨论了催化剂的构-效关联。对产物分布和工作态催化剂进行了分析和表征,提出了高硫合成气制甲硫醇的反应网络和反应机理。主要结果归纳如下:
     (1)在Mo基催化剂中,必须添加碱才具有可观的合成甲硫醇活性,在IA和IIA族元素中,K是最佳的碱促进剂,当K/Mo摩尔比为2,前驱体为K_2CO_3,采用共浸法制备的K-Mo催化剂活性最高。H_2-TPR和LRS表征显示,碱的加入导致表面八面体钼氧物种向四面体转化,催化剂的低温还原峰发生分裂,碱助剂(B)与钼之间存在强相互作用形成了B-Mo“界面相”,该物种与合成甲硫醇密切相关。
     (2)在K-Mo催化剂助剂的筛选实验中,发现Fe、Co、Ni、Te对催化剂有较明显的促进作用,首先发现非金属Te对K-Mo催化剂的促进作用,其促进作用顺序为Ni≈Co>Te>Fe。Co/K_2MoO_4的摩尔比为0.33-0.35,采用共浸法制得的K-Mo-Co催化剂活性最高。催化剂中,Te/K_2MoO_4的摩尔比为0.5时,采用“先Te后Te/K_2MoO_4/SiO_2”浸渍顺序所制的K-Mo-Te催化剂具有最高的活性。在对Te和Co促进的K-Mo催化剂的构-效关联研究中发现,Te对KMo/SiO_2催化剂的促进作用本质是碲物种的“电子助剂效应”,而Co对KMo/SiO_2合成甲硫醇催化剂的促进作用是由于Co与Mo-S物种结合生成了有利于加氢反应的“Co-Mo-S”物种。
     (3)在三组份的K-Mo-Co合成甲硫醇催化剂的制备研究中,发现当载体为SiO_2,钾钼钴以原子比为2:1:0.35时,MoO_3的负载量为25%(wt%),且在浸渍液中加入柠檬酸制得无煅烧的K_2MoCo_(0.35)O/SiO_2(CA)催化剂具有最高的合成甲硫醇活性。制备条件对催化性能的影响的研究表明,在弱酸性氧化物为载体制备的催化剂上,Mo以难于还原和硫化的四面体构型存在,硫化后主要以K_2O_xMoS_(4-x)的形式存在,这些物种与合成甲硫醇密切相关;柠檬酸的加入提高了活性组份的分散度,同时有利于形成“Co-Mo-S”物种;惰性气氛中400℃煅烧的催化剂与无煅烧的催化剂活性相当,惰性气氛中柠檬酸分解(>212℃)造成部分的Mo和Co被还原;而催化剂在空气气氛中高温(>400℃)煅烧时,柠檬酸分解,活性组份与载体相互作用增加,分散度下降并导致活性组份的流失,导致催化活性降低。
     (4)在300℃,0.2MPa,3000h~(-1)。下,在钾促进的钼基催化剂上,高硫合成气(CO/H_2/H_2S=1/1/2,v/v)反应主要生成了CH_3SH、COS、CO_2和H_2O,并生成了少量的CS_2、CH_4、C_2H_4、C_2H_6、CH_3SCH_3、CH_3SSCH_3和CH_3SSSCH_3。本文首先报道CH_3SSCH_3和CH_3SSSCH_3等产物的存在。对反应途径的研究发现,COS是一级产物,其加氢后生成CH_3SH和H_2O。水煤气换反应是CO_2的主要来源;CS_2是COS的分解产物;CH_3SH的二次反应导致碳氢化合物和硫醚的生成。本文提出了一个较为完善的反应网络图。
     (5)在对反应机理的研究中,提出碱修饰的Mo基催化剂是一种“双功能”催化剂,并提出了在K-Mo-(Co)-S和/或K-Mo-(Co)-S-O活性相的高硫合成气制甲硫醇的可能的反应机理:H2S、CO和H2在催化剂上吸附和解离;K~+结合S~(2-)和/或SH~-生成K~+-S~(2-)和/或K~+-SH~-;然后Mo(CUS)上的非解离吸附的CO迁移至K-S键形成COS_(ads)和/或HSCO_(ads)中间物种;此中间物种被Mo~(4+)-S~(2-),Co-Mo-S,S_2~(2-)和S_x等物种提供的溢流氢加氢化,或者它们迁移到这些物种上被活泼氢加氢生成CH_3S_(ads);CH_3S_(ads)继续加氢形成CH_3SH。
     (6)本文所优化的K-Mo-Co催化剂表现出较好的重复性和稳定性,放大实验表明,催化剂具有工业应用前景。
     (7)本课题为与德国Evonik Degussa GmbH公司的合作项目,现已申请欧洲、韩国、中国等多国发明专利和发表学术论文若干,双方对合作进展感到满意。
Methanethiol (CH_3SH) is an important chemical raw material and common organic intermediate. Industrially, methanethiol is synthesized in the gas phase from methanol and hydrogen sulfide over tungsten-based catalysts. Recently, there is an increasing interest in the route of one-step synthesis of methanethiol from H_2S-rich syngas (CO/H_2/H_2S). Compared to the CH_3OH-H_2S route for production of CH_3SH, this method is attractive and promising since it skips the step of the synthesis of CH_3OH from syngas, furthermore, the feedstock composition is simple and easily available.
     This dissertation focuses on the preparations of Mo-based catalysts, the analysis of structure-activity relationships and the studies of the pathway of the CH_3SH synthesis from H_2S-rich syngas. Mo-based catalysts were prepared by impregnation method and the promoters, supports and preparation conditions were investigated in detail. Thus optimized catalysts were tested in the scale-up experiments. To analyze the structure-activity relationship, we performed BET, XRD, LRS, XPS, TG, TPR, TPD and ESR characterizations for the selected catalysts. Moreover, to investigate the reaction network and the mechanism of the methanethiol formation from H_2S-rich syngas, we performed detailed analysis of the product distribution and characterizations of the sulfided catalysts. The results of the dissertation were concluded as follows:
     (1) It is essential to deposit a basic additive on the Mo-based catalysts for the synthesis of CH_3SH. The potassium-doped Mo-based catalysts exhibit the highest activity than that of the catalysts doped with the otherⅠA andⅡA group basic promoters. H_2-TPR and LRS characterizations suggest that the addition of a base leads to the transformation of octahedrally coordinated Mo to tetrahedrally coordinated Mo, thus leads to the split of low temperature reduction peaks. The interaction between the basic components (B) and Mo lead to the formation of B-Mo interface phase, which are closely correlated with the formation of CH_3SH.
     (2) It has been found that Fe, Co, Ni and Te have evident promoting effects for the K-Mo/SiO_2 catalysts. Interestingly, nonmetallic tellurium was found to have an effective promoting effect on the K_2MoO_4/SiO_2 catalyst for the CH_3SH synthesis from H_2S-rich syngas and the promoting effects of the promoters were in the order of Co (Ni) > Te > Fe. The K-Mo-Co/SiO_2 catalysts prepared by the co-impregnation method exhibited highest activity when the Co/K_2MoO_4 molar ratio was 0.33-0.35. However, the K-Mo-Te/SiO_2 catalysts prepared in the order that Te impregnated first and followed by K_2MoO_4 exhibited highest activity when the Te/K_2MoO_4 molar ratio was 0.5. The studies of structure-activity relationship for the Co- and Te-promoted K-Mo catalysts indicate that the promoting effect of Te can be interpreted in terms of "electronic effect promoter", while that of Co is explained as that Co combines with Mo-S species to form the so-called "Co-Mo-S" phase which favors the hydrogenation reactions in the formation of CH_3SH.
     (3) For the supported tri-component catalysts for CH_3SH synthesis, the preparation conditions are as follows: SiO_2 was chosen as the support, and K : Mo : Co molar ratio is 2 : 1 : 0.35, and MoO_3 loading is 25%(wt%), and citric acid is added as a chelating agent. The K_2MoCo_(0.35)O/SiO_2(CA) catalyst prepared in those cases without calcinations exhibits the highest activity. The studies of the effects of the preparation conditions on activity were conducted. The results show that Mo species in the K-Mo-Co catalyst prepared with weak acidic supports exist in the form of tetrahedrally configuration, which is hard to be reduced and sulfided, and this effect results in K_2O_xMoS_(4-x) becoming dominant species after sulfidation, which are closely related with the formation of methanethiol. The addition of citric acid is favorable to improve the dispersion of active component and to form the "Co-Mo-S" species. The catalysts calcined at 400℃in inert atmosphere exhibit similar activity as the catalysts without calcinations. The decomposition of citric acid takes place in inert atmosphere above 212℃, which gives rise to partially reduction of Mo and Co species. While the decomposition of citric acid takes place in air above 400℃, which leads to the enhancement of the interaction between the active components and supports, and affects the dispersion of the Mo and Co species, thus results in the loss of the active components, leading to the decrease of the activity.
     (4) At CO/H_2/H_2S=1/1/2 (v/v), 0.2 MPa, 3000 h~(-1) and 300℃, mainly CH_3SH, COS, CO_2 and H_2O were formed, along with small amounts of CS_2, C_(1-2) hydrocarbons (CH_4, C_2H_4 and C_2H_6) and thioethers (CH_3SCH_3, CH_3SSCH_3 and CH_3SSSCH_3) over potassium-promoted Mo-based catalysts. We firstly report that CH_3SSCH_3 and CH_3SSSCH_3 are produced from the H_2S-rich syngas under these reaction conditions. Studies of the reaction pathway show that COS is a primary product, which is then hydrogenated to CH_3SH and H_2O. The disproportionation of COS leads to the formation of CS_2. Most of CO_2 originates from water-gas shift reaction. The hydrocarbons and thioethers originate from the secondary reactions of CH_3SH. This dissertation gives a more clear illustration for the pathway of the CH_3SH synthesis from H_2S-rich syngas
     (5) The results of mechanism studies show that the base-doped Mo-based catalysts are the bifunctional catalysts. A possible mechanism for the CH_3SH synthesis over the K-Mo-(Co)-S and/or K-Mo-(Co)-S-O active phases was proposed as follows: H_2, CO and H_2S are adsorbed firstly, wherein H_2S is thought to be supply enough S~(2-) and/or SH~- groups, the function of potassium thus be suggested to furnish K-S and/or K-SH bonds, into which the non-dissociative adsorption of CO can insert. The formed carbonyl sulfide (COS_(ads)) and/or thioformate (HOCS_(ads)) can then be hydrogenated to methylthiolate (CH_3S_(ads)) by the spillover of active hydrogen atoms on the sulfided Mo or Co-Mo components (Mo~(4+)-S~(2-), Co-Mo-S, S_2~(2-), or S_x species), or they are hydrogenated after migration from the potassium component, the subsequent hydrogenation of methylthiolate (CH_3S_(ads)) produces CH_3SH.
     (6) The most optimized K-Mo-Co catalyst shows a good repeatability and stability. The results of the scale-up experiments show that the catalyst has the prospects in industrial applications.
     (7) This work is sponsored by Evonik Degussa GmbH (Germany). The related achievements have been granted by some European, Korean and Chinese patents and published in several papers. Both parties are satisfied with the progress of the cooperation.
引文
[1] 魏文德主编.有机化工原料大全(第二版,中卷)[M].北京:化学工业出版社.1999.
    [2] Jiang D., Zhao B., Xie Y., Pan G, Ran G, Min E., Structure and basicity of γ-Al_2O_3-supported MgO and its application to mercaptan oxidation [J]. Appl. Catal. A, 2001, 219(1-2): 69-78.
    [3] Wallace T.J., Schriesheim A, Hurwitz H, Glaser M.B., Base-Catalyzed Oxidation of Mercaptans in Presence of Inorganic Transition Metal Complexes [J]. Ind. Eng. Chem. Proc. Des. Dev., 1964,3(3): 237-241.
    [4] 常俊石,于海斌,姜雪丹,马月谦,成宏,赵虹.国内甲硫醇催化剂现状[J].工业催化,2005,13(6):32-36.
    [5] 李培彬.甲硫醇的生产、应用与发展[J].精细与专用化学品,2005,13(12):5-6.
    [6] 徐子成,周荣才,赵俊.农药灭多威和硫双威[J].上海化工,1994,19(1):6-8.
    [7] 孙玉泉,王亚宁.甲硫醇的应用与合成[J].天津化工,2002,3:23-24.
    [8] 薛连海,丁斌.异丙醇-水为溶剂合成扑草净[J].农药,2006,45(7):458-460.
    [9] 刑其毅,徐瑞秋,周政,裴伟伟.基础有机化学(第二版)[Z].北京:高等教育出版社,1993.
    [10] 傅同禄.中国饲料添加剂现状与市场[J].精细化工,1997,14(1):1-4.
    [11] 王佩琳,(?)泽辉国,刁春霞.国内外DL-蛋氨酸生产现状及市场分析[J].石油化工技术经济,2003,19(6):31-35.
    [12] 陈英军,张卓标,吕海龙.我国蛋氨酸生产现状及市场分析[J].精细与专用化学品,2005,13(16):22-24。
    [13] 李美同.蛋氨酸及其羟基类似物简介[J].饮料工业,1991,12(1):18-21.
    [14] 张惠中,张雨中.甲烷磺酰氯的合成与精制[J].河北化工,1995,(3):5-7.
    [15] 刘玉平,孙宝国.含硫食用香料的合成及应用[J].中国食品添加剂,2003,(6):82-84.
    [16] Stinn D.E., Swindell J.H., Kubicek D.H., Johnson M.M., Compositions comprising inorganic oxide and process for producing mercaptan [P]. US 5 898 012,1999.
    [17] Clark R.T., Elkins J.A., Selective synthesis of mercaptans and catalyst thereofor [P], US 5 283 369,1994.
    [18] Sauer J., Boeck W., Hippel von L., Burkhardt W., Rautenberg S., Arntz D., Hofen W., Catalyst, process for its preparation, and use for synthesis of methyl mercaptan [P]. US 5 582 219,1998.
    [19] Ponceblance H., Tamburro F, Process for the preparation of methyl mercaptan [P], US 5 847 223,1998.
    [20] Charles M.C., David E. A., Michael C.S., Synthesis of mercaptans from alcohols [P]. US 5 874 630,1999.
    [21] 田锡义,张怀有.二甲基硫醚及甲硫醇的制备方法[P].CN 1059 204.2000.
    [22] 薛祖源.利用硫资源发展有机硫化工产品[J].现代化工,2001,21(6):1-7.
    [23] 纪罗军.硫化氢气体制备甲硫醇的现状与前景[J].精细石油化工进展,2003,4(3):11-13.
    [24] A.H.勃拉特主编,南京大学化学系有机化学教研组译.有机合成(第二版)[M].北京:科学出版社,1964.
    [25] 钱佐国,孙明昆,周曾昊,刘升一.合成甲硫醇的一种改进方法[J].青岛海洋大学学报,1995,25(3):327-330.
    [26] 陈振锋,王修建,梁宏,卢军.含硫香料-硫代香茅醇、硫代芳樟醇的合成研究[J].广西化工,1998,27(1):11-15.
    [27] Takagi K., Synthesis of aromatic thiols from aryl iodides and thiourea by means of nickel catalyst [J]. Chem. Lett., 1985, 9: 1307-1308.
    [28] 贺子林.锌粉及硫酸还原苯磺酰氯生成硫酚方法的改进[J].甘肃高师学报(自然科学版),1999,4(2):28-29.
    [29] Clark R.T., Elkins J.A., Process for the preparation of an alumina trihydrate catalyst [P]. US 5 405 820,1995.
    [30] Agarwal P.K., Agarwal R., Linjewile T.M., Hull A.S., Chen Z., Apparatus and method for production of methanethiol [P]. US 0 249 217,2004.
    [31] 孙锦宜编.工业催化剂的失活与再生[M].北京:化学工业出版社,2006
    [32] Underwood R.P., Bell A.T., Lanthana-promoted Rh/SiO_2.Ⅱ. Studies of CO hydrogenation [J]. J.Catal, 1988,111(2): 325-335.
    [33] Nunan J.G, Bogdan C.E., Klier K., Smith K.J., Young C.-W., Herman R.G, Higher alcohol and oxygenate synthesis over cesium-doped Cu/Zno catalysts [J]. J. Catal, 1989, 116
    [34] Hindermann J.P., Hutchings GJ., Kiennemann A., Mechanistic aspects of the formation of hydrocarbons and alcohols from CO hydrogenation [J]. Catal. Rev. Sci. Eng. 1993, 35(1): 1-127.
    [35] Boz I., Sahibzada M., Metcalfel S., Kinetics of the Higher Alcohol Synthesis over a K-promoted CuO/ZnO/Al_2O_3 Catalyst [J]. Ind. Eng. Chem. Res., 1994, 33(9): 2021-2028.
    [36] Hoflund GB., Epling W.S., Minahan D.M., Reaction and surface characterization study of higher-alcohol synthesis catalysts XII: K- and Pd-promoted Zn/Cr/Mn spinel [J]. Catal. Today, 1999, 52(1): 99-109.
    [37] Herman R G, Advances in catalytic synthesis and utilization of higher alcohols [J], Catal. Today, 2000,55(3): 233-245.
    [38] Courty P., Durand D., Freund E , Sugier A., C_1-C_6 alcohols from synthesis gas on copper-cobalt catalysts [J]. J. Mol. Catal, 1982,17(2-3): 241-254.
    [39] Ellgen P.C., Bhasin M., Process for producing ethanol, acetic acid and/or acetaldehyde from synthesis gas [P]. US 4 096 164,1987.
    [40] Quarderer GJ., Cochran K.A., Catalytic process for producing mixed alcohols from hydrogen and carbon monoxide [P]. EP 0 119 609, 1984.
    [41] Duane D.B., William H.P., Lawrence D.G, Continuous process for producing alcohols [P]. EP 0 085 191,1983.
    [42] Conway M.M., Murchison C.B., Steven R.R., Method for adjusting methanol to higher alcohol ratios [P]. US 4 675 344, 1987.
    [43] Stevens R. R., Process for producing alcohols from synthesis gas [P]. US 4 752 622. 1988.
    [44] Xu X.D., Doesburg E.B.M., Scholten J.J.F., Synthesis of higher alcohols from syngas-recently patented catalysts and tentative ideas on the mechanism [J]. Catal. Today, 1987,2(1): 125-170.
    [45] Keim W.主编,黄仲涛等译,C_1化学中的催化[M].北京:化学工业出版社,1989.
    [46] Nakamura J., Nakamura I., Uchijima T., Kanai Y., Watanabe T., Saito M., Fujitani T., Methanol synthesis over a Zn-deposited copper model catalyst [J]. Catal. Lett., 1995, 31(3-4): 325-331.
    [47] Van der Lee G, Ponec V, On Some Problems of Selectivity in Syngas Reactions on the Group Ⅷ Metals [J]. Catal. Rev. Sci. Eng., 1987, 29(2-3): 183-218.
    [48] Waugh K.C., Catalysis 2000: strategy and expectations in molecular catalysis [J]. Catal. Today, 1993,18(2): 147-162.
    [49] Waugh K.C., Methanol Synthesis [J]. Catal. Today, 1992,15(1): 51-75.
    [50] Fakley M.E., Jennings J.R., Spencer M.S., Mechanism of methanol synthesis from carbon monoxide and hydrogen on copper catalysts [J]. J. Catal, 1989,118(2): 483-486.
    [51] Ramaroson E., Kieffer R., Kiennemann A., Reaction of carbon dioxide and hydrogen on supported palladium catalysts [J].J. Chem. Soc. Chem. Commun. 1982, 12: 645-646.
    [52] Clarke D.B., Bell A.T., An Infrared Study of Methanol Synthesis from CO_2 on Clean and Potassium-Promoted Cu/SiO_2 [J]. J. Catal, 1995,154(2): 314-328.
    [53] Santiesteban J.G, Bogdan C.E., Herman R.G, Klier K., in: M.J. Phillips, M. Ternan (Eds.), Proceedings of 9~(th) ICC [C], Calgary, Ottawa, 1988.
    [54] Nunan J.G, Bogdan C.E., Klier K., Smith K.J., Young C.-W., Herman R.G, Methanol and C_2 oxygenate synthesis over cesium doped Cu/ZnO and Cu/ZnO/Al_2O_3 catalysts: A study of selectivity and ~(13)C incorporation patterns [J]. J. Catal, 1988,113(2): 410-433.
    [55] Mross W.D., Alkali doping in the heterogeneous catalysis [J]. Catal. Rev. Sci. Eng., 1983, 25(4): 591-637.
    [56] Koizumi N., Bian G, Murai K., Ozaki T., Yamada M., In situ DRIFT studies of sulfided K-Mo/γ-Al_2O_3 [J]. J. Mol. Catal. A, 2004, 207(2): 173-182.
    [57] 杨意泉,袁友珠,张鸿斌.原料气中H_2S含量对钼硫基催化剂性能的影响[J].厦门大学学报 (自然科学版) 1993,32(4):447-452.
    [58] Olin J.F., Buchholz. B., Loev B., Goshorn R.H., Process for preparation of methyl mercaptan [P]. US 3 070 632,1962.
    [59] Kodera Y, Todo N., Fukuda K., Method for manufacture of hydrogen and carbonyl sulfide from hydrogen sulfide and carbon monoxide [P]. US 3 856 925,1974.
    [60] Fukada K., Dokiya M., Kameyama T., Kotera Y, Catalytic activity of metal sulfides for the racation H_2S + CO = H_2 + COS [J]. J. Catal., 1977,49(3): 379-382.
    [61] Kubicek D.H., Preparation of carbonyl sulfide and production of methyl mercaptan thereform [P]. US 4 120 944,1978.
    [62] Buchholz B., Process for the manufacture of methanethiol from carbon oxides [P]. US 4 410 731,1983.
    [63] Haines P. G, Hill L., Preparation of Methanethiol from Carbon Oxides [P]. US 4 449 006, 1984.
    [64] Haines P. G, Hill L., Catalyst for the Preparation of Methanethiol from Carbon Oxides [P]. US 4 536 492,1985.
    [65] Ratcliffe C.T., Tromp P.J., Wachs I.E., Production of methanethiol from H_2S and CO [P]. US 4 570 020,1986.
    [66] Boulingiez M., Forquy C, Barrault J., Process for the Production of Methanethiol from Oxides of Carbon [P]. US 4 665 242,1987.
    [67] Barrault J., Boulinguiez M., Forquy C, Maurel R., Synthesis of Methanethiol from Carbon Oxides and H_2S with Tungsten-Alumina Catalysts [J]. Appl. Catal., 1987,33(2): 309-330.
    [68] Mul G, Wachs I.E., Hirschon A.S., Catalytic Synthesis of Methanethiol from Hydrogen Sulfide and Carbon Monoxide over Vanadium-based Catalysts [J]. Catal. Today, 2003, 78(1-4): 327-337.
    [69] Zhang B., Taylor S.H., Hutchings GJ., Synthesis of Methanethiol and Thiophene from CO/H_2/H_2S using α-Al_2O_3 [J]. Catal. Lett. 2003,91(3-4): 181-183.
    [70] Zhang B., Taylor S.H., Hutchings GJ., Catalytic Synthesis of Methanethiol from CO/H_2/H_2S mixtures using α-Al_2O_3 [J]. NewJ. Chem. 2004,28(4): 471-476.
    [71] 杨意泉,车长针,袁友珠,方钦和,林国栋,张鸿斌.高硫合成气制甲硫醇 K_2MoS_4/SiO_2催化剂[J].分子催化.1995,9(4):229-232.
    [72] Yang Y.Q., Yuan Y.Z., Dai S.J., Wang B., Zhang H.B., The catalytic properties of supported K_2MoS_4/SiO_2 catalyst for methanethiol synthesis from high H_2S-content synthesis gas [J]. Catal. Lett, 1998, 54(1-2): 65-68.
    [73] Dai S.J., Yang Y.Q., Yuan Y.Z., Tang D.L., Lin R.C., Zhang H.B., On methanethiol synthesis from H_2S-containing synthesis gas over K_2MoS_4/SiO_2 catalysts promoted with transition metal oxides [J]. Catal. Lett., 1999,61(3-4): 157-160.
    [74] Yang Y.Q., Dai S.J., Yuan Y.Z., Lin R.C., Tang D.L., Zhang H.B., The promoting effects of La_2O_3 and CeO_2 on K_2MoS_4/SiO_2 catalyst for methanethiol synthesis from synthesis gas blending with H_2S [J].Appl. Catal. A, 2000,192(2): 175-180.
    [75] 杨意泉,王琪,戴深峻,袁友珠,林仁存,张鸿斌.高硫合成气制甲硫醇钼硫基催化剂的制备[J].应用化学,1999,16(4):47-51.
    [76] 王琪,杨意泉,袁友珠,刘澍,张鸿斌.钴对高硫合成气制甲硫醇负载型钼酸钾催化剂的促进作用[J].厦门大学学报(自然科学版),2003,42(1):64-68.
    [77] 王琪,陈爱平,谢春芳,郑泉兴,方维平,袁友珠,张鸿斌,杨意泉.高硫化氢合成气制甲硫醇新型钼基催化剂研究[J].化学学报,2004,62(23):2297-2302.
    [78] 王琪,郝影娟,陈爱平,姚光华,杨意泉.钾修饰的MoO_3/SiO_2催化剂的XRD和TPR表征[J].应用化学,2007,24(5):561-564.
    [79] Beck D.D., White J.M., Ratcliffe C.T., Catalytic reduction of CO with hydrogen sulfide. 2. Adsorption of H_2O and H_2S on anatase and rutile [J]. J. Phys. Chem. 1986, 90(14): 3123-3131.
    [80] Beck D.D., White J.M., Ratcliffe C.T., Catalytic reduction of CO with hydrogen sulfide. 3. Study of Adsorption of O_2, CO, and CO Coadsorbed with H_2S on anatase and rutile using Auger Electron Spectroscopy and Temperature-Programmed Desorption [J]. J. Phys. Chem., 1986, 90(14): 3132-3136.
    [81] Beck D.D., White J.M., Ratcliffe C.T., Catalytic reduction of CO with hydrogen sulfide. 4. Temperature-Programmed Desorption of methanethiol on anatase, rutile, and sulflded rutile [J]. J. Phy. Chem. 1986,90(14), 3137-3140.
    [82] 林国栋,杨意泉,黄浩平,袁友珠,张鸿斌.合成气制混合醇硫化钼基催化剂的谱学表征[J] .分子催化,1992,6(5):321-327.
    [83] Madon R.J., On the growth of hydrocarbon chains in the Fischer-Tropsch synthesis [J]. J. Catal. 1979, 57(1): 183-186.
    [84] Breysse M., Furimsky E., Kasztelan S., Lacroix M., Perot G, Hydrogen activation by transition metal sulfides [J]. Catal. Rev. Sci. Eng., 2002,44 (4): 651-735.
    [85] 李玉敏.工业催化原理[M].天津:天津大学出版社,1992.
    [86] 孙福侠.负载型磷化钼(镍)和钼镍硫原子簇合物催化剂的制备、表征和深度加氢脱硫反应性能研究[D].中国科学院大连化学物理研究所,2005.
    [87] Whitehurst D. D., Isoda T., Mochida I., Present state of the art and future challenges in the hydrodesulfurization of polyaromatic sulfur compounds [M]. Adv. Catal. [M], 1998, 42: 345-471.
    [88] Daage M., Chianelli R.R., Structure-function relations in molybdenum sulfide catalysts: The "rim-edge" mode [J].J. Catal. 1994,149(2): 414-427.
    [89] Delmon B., Grange P., in Farinha Portela M.(Ed), Proc. 2~(nd) Conference on Industrial catalysis [C], Grecat, Lisbon, 1988.
    [90] Schuit GC.A., Gates B.C., Chemistry and engineering of catalytic hydrodesulfurization [J]. AICHE J. 1973,19(3): 417-438.
    [91] Voorhoeve R.J.H., Electron spin resonance study of active centers in nickel-tungsten sulfide hydrogenation catalysts [J]. J. Catal, 1971,23(2): 236-242.
    [92] Farragher A. L. Symposium on the role of solid state chemistry in catalysis [C]. New Orleans meeting, 1977.
    [93] Karroua M., Matralis H., Grange P., Delmon B., Synergy between "NiMoS" and Co_9S_8 in the Hydrogenation of Cyclohexene and Hydrodesulfurization of Thiophene [J]. J. Catal, 1993, 139(2): 371-374.
    [94] Tops(?)e N Y, Tops(?)e H. Characterization of the structures and active sites in sulfided CoMo/Al_2O_3 and NiMo/Al_2O_3 catalysts by NO chemisorption [J]. J. Catal, 1983, 84(2): 386-401.
    [95] TopS(?)e H., Clausen B.S., Candia R., Wivel C, M(?)rup S., In situ Mossbauer emission spectroscopy studies of unsupported and supported sulfided Co-Mo hydrodesulfurization catalysts: Evidence for and nature of a Co-Mo-S phase [J]. J. Catal, 1981, 68(2): 433-452.
    [96] Wivel C, Candia R., Clausen B.S., M(?)rup S., Tops(?)e H., On the catalytic significance of a C0M0S phase in CoMo/Al_2O_3 hydrodesulfurization catalysts: Combined in situ Mossbauer emission spectroscopy and activity studies [J]. J. Catal, 1981, 68(2): 453-463.
    [97] Wivel C, Clausen B. S., Candia R., M(?)rup S., Topsee H., Mossbauer emission studies of calcined CoMo/Al_2O_3 catalysts: Catalytic significance of Co precursors [J]. J. Catal, 1984, 87(2): 497-513.
    [98] Topsee H., Clausen B.S., Importance of Co-Mo-S type structures in hydrodesulfurization [J]. Catal.Rev. Sci. Eng., 1984, 26 (3-4): 395-420.
    [99] Prins R., Catalytic hydrodenitrogenation [M]. Adv. Catal, 2001,46: 399-464.
    [100] Grange P., Vanhaeren X., Hydrotreating catalysts, an old story with new challenges [J]. Catal Today, 1997, 36(4): 375-391.
    [101] Startsev A.N., The mechanism of HDS catalysis [J]. Catal.Rev.-Sci.Eng., 1995, 37 (3): 353-423.
    [102] Chianelli R.R., Daage M., Ledoux M.J., Fundamental studies of transition-metal sulfide catalytic materials [M]. Adv. Catal, 1994,40: 177-232.
    [103] Breysse M., Furimsky E., Kasztelan S., Lacroix M., Perot G, Hydrogen activation by transition metal sulfides [J]. Catal. Rev-Sci. Eng. 2002,44(4): 651-735.
    [104] 刘方.Ni-Mo/γ-Al_2O_3加氢催化剂的气相硫化和钝化研究[D].浙江大学,2005.
    [105] 朱全力,赵旭涛,赵振兴,马洪江,邓友全.加氢脱硫催化剂与反应机理的研究进展[J].分子催化,2006,20(4):372-383.
    [106] Pratt K.C., Sanders J.V., Tamp N., The role of nickel in the activity of unsupported Ni-Mo hydrodesulfurization catalysts [J].J. Catal. 1980, 66(1): 82-92.
    [107] Crajé M.W.J., de Beer V.H.J., van der Kraan A.M., On the so-called "Co-Mo-S" phase observed in carbon-supported cobalt sulfide catalysts: Temperature dependence of the in-situ Mossbauer emission spectrum [J]. Appl. Catal., 1991, 70(1): L7-L13.
    [108] Bouwens S.M.A.M., Prins R., de Beer V.H.J., Koningsberger D.C., Structure of the molybdenum sulfide phase in carbon-supported molybdenum and cobalt-molybdenum sulfide catalysts as studied by EXAFS [J]. J. Phys. Chem., 1990,94(9): 3711-3718.
    [109] Bouwens S.M.A.M., van Veen J.A.R., Koningsberger D.C., de Beer V.H.J., Prins R., EXAFS determination of the structure of cobalt in carbon-supported cobalt and cobalt-molybdenum sulfide hydrodesulfurization catalysts [J]. J. Phys. Chem., 1991, 95(1): 123-134.
    [110] Thakur D.S., Grange P., Delmon B., The role of group Ⅷ metal promoter in MoS_2 and WS_2 hydrotreating catalysts: Ⅱ. Catalytic and physicochemical properties of nickel-promoted catalysts [J]. J. Catal., 1985, 91(2): 318-326.
    [111] Harris S., Chianelli R. R., Catalysis by transition metal sulfides: A theoretical and experimental study of the relation between the synergic systems and the binary transition metal sulfides [J].J. Catal., 1986, 98(1): 17-31.
    [112] Kabe T, Qian W.H., Ishihara A., Study of Hydrodesulfurization of Dibenzothiophene on Ni-Mo/Al_2O_3, Mo/Al_2O_3, and Ni/Al_2O_3 Catalysts by the Use of Radioisotope ~(35)S Tracer [J]. J. Catal., 1994, 149(1): 171-180.
    [113] Kabe T., Qian W.H., Ogawa S., Ishihara A., Mechanism of Hydrodesulfurization of Dibenzothiophene on Co-Mo/Al_2O_3 and CO/Al_2O_3 Catalyst by the Use of Radioisotope ~(35)S Tracer [J]. J. Catal, 1993,143(1): 239-248.
    [114] Qian W., Hachiya Y., Wang D., Hirabayashi K., Ishihara A., Kabe T, Okazaki H., Adachi M., Elucidation of promotion effect of nickel on Mo/Al_2O_3 and Co-Mo/Al_2O_3 catalysts in hydrodesulfurization using a ~(35)S radioisotope tracer method [J]. Appl. Catal. A, 2002, 227(1-2): 19-28.
    [115] Byskov L.S., N(?)rskov J.K., Clausen B.S., Tops(?)e H., DFT Calculations of Unpromoted and Promoted MoS_2-Based Hydrodesulfurization Catalysts [J].J. Catal, 1999,187(1): 109-122.
    [116] Egorova M., Prins R., The role of Ni and Co promoters in the simultaneous HDS of dibenzothiophene and HDN of amines over Mo/γ-Al_2O_3 catalysts [J]. J. Catal, 2006, 241(1): 162-172.
    [117] Tatsumi T., Muramatsu A., Tominaga H., Supported molybdenum catalysts for alcohol synthesis from CO-H_2 [J]. Appl. Catal, 1987,34: 77-88.
    [118] Valyon J., Hall W.K., The chemisorption of O_2 and NO on reduced and sulfided molybdena-alumina catalysts [J].J. Catal., 1983, 84(1): 216-228.
    [119] Zaki M.I., Viehaber B., Kn(?)zinger H., Low-temperature carbon monoxide adsorption and state of molybdena supported on alumina, titania, ceria, and zirconia. An infrared spectroscopic investigation [J]. J. Phys. Chem., 1986; 90(14); 3176-3183.
    [120] Anderson A.B., Al-Saigh Z.Y., Hydrogen on MoS_2. Theory of Its Heterolytic and Homolytic Chemisorption [J]. J. Phys. Chem. 1988, 92(3): 803-809.
    [121] Startsev A.N., Zakharov I.I., Parmon V.N., An unexpected phenomenon in heterogeneouscatalysis: oxidative addition of hydrogen to the sulfide catalysts [J]. J. Mol. Catal. A, 2003, 192(1-2):113-127.
    [122] Eischens R.P., Pliskin W.A., Low M.J.D., The infrared spectrum of hydrogen chemisorbed on zinc oxide [J]. J. Catal, 1962,1(2): 180-191.
    [123] Byskov L.S., Bollinger M., N(?)rskov J.K., Clausen B.S., Tops(?)e H., Molecular aspects of the H_2 activation on MoS_2 based catalysts-the role of dynamic surface arrangements [J]. J. Mol. Catal. A, 2000,163 (1-2): 117-122.
    [124] 段连运,张欧文,马世红,李士杰,谢有畅.合成低碳醇钼系耐硫催化剂中K_2CO_3的作用及K~+的结构状态[J].分子催化,1990,4(3):208-218.
    [125] Zhang H.B., Yang Y.Q., Huang H.P., Lin GD, Tsai K.R., Proc. 10~(th) ICC [C], Budapest, Hungary, 1992.
    [126] Avila Y, Kappenstein C, Pronier S., Barrault J., Alcohol synthesis from syngas over supported molybdenum catalysts [J]. Appl. Catal. A, 1995,132(1): 97-109.
    [127] Jiang M., Bian GZ., Fu Y.L., Effect of the K-Mo interaction in K-MoO_3/γ-Al_2O_3 catalysts on the properties for alcohol synthesis from syngas [J]. J. Catal, 1994,146(1): 144-154.
    [128] Bian GZ., Fan L., Fu Y.L., Fujimoto K., High temperature calcined K-MoO_3/γ-Al_2O_3 catalysts for mixed alcohols synthesis from syngas: Effects of Mo loadings [J]. Appl. Catal. A, 1998,170 (2): 255-268.
    [129] Verbruggen N.F.D., Mestl G, von Hippel L.M.J., Lengeler B., Kn(?)ezinger H., Structure of K-Doped Molybdena-on-Alumina Catalysts As Studied by X-ray Absorption and Raman Spectroscopy [J]. Langmuir, 1994, 10(9): 3063-3072.
    [130] 朱洪法.催化剂载体制备及应用技术[M].北京:石油工业出版社,2002.
    [131] Breysse M., Afanasiev P., Geantet C, Vrinat M., Overview of support effects in hydrotreating catalysts [J]. Catal. Today, 2003, 86(1-4): 5-16.
    [132] 伏义路,姜明,卞国柱,杜月中,姜伟.不同助剂的硫化MoO_3/ZrO_2催化剂上CO加氢合成低碳混合醇的反应性能[J].燃料化学学报,1993,21(1):27-33.
    [133] 王琪.镍促进高硫合成气制甲硫醇钼基催化剂的研究[D].厦门大学,2007.
    [134] 廖代伟.催化科学导论[M].北京:化学工业出版社,2006.
    [135] Ratnasamy P., Sivasanker S., Structural Chemistry of Co-Mo-Alumnina Catalysts [J]. Rev.-Sci. Eng., 1980,22(3): 401-429.
    [136] Carrier X., Lambert, J. F, Che M., Ligand-Promoted Alumina Dissolution in the Preparation of MoO_X/γ-Al_2O_3 Catalysts: Evidence for the Formation and Deposition of an Anderson-type Alumino Heteropolymolybdate. J. Am. Chem. Soc, 1997, 119(42): 10137-10146.
    [137] Bouwens S.M.A.M., Vanzon F.B.M., Vandijk M.P., Vanderkraan A.M., Debeer V.H.J., Vanveen J.A.R., Koningsberger D.C., On the Structural Differences Between Alumina-Supported Comos Type Ⅰ and Alumina-, Silica-, and Carbon-Supported Comos TypeⅡ Phases Studied by XAFS, MES, and XPS [J]. J. Catal, 1994,46(2): 375-393.
    [138] Dean J.A.主编.尚久方,操时杰,辛无名,郑飞勇,陆晓明,林长青等译.兰氏化学手册(第十三版)[M].北京:科学出版社.1991.
    [1] Simpson H.D., Borgens P.B., Hydroprocessing hydrocarbon oils [P]. US 4 940 533,1990.
    [2] Angmorter P.K., Simpson H.D., Richardson R.L., Hydrotreating catalyst and process [P]. US 4 568 449,1985.
    [3] Cattaneo R., Shido T., Prins R., The relationship between the structure of NiMo/SiO_2 catalyst precursors prepared in the presence of chelating ligands and the hydrodesulfurization activity of the final sulfided catalysts [J].J. Catal, 1999,185(1): 199-212.
    [4] Lélias M.A., van Gestel J., Maugé F., van Veen J.A.R., Effect of NTA addition on the formation, structure and activity of the active phase of cobalt-molybdenum sulfide hydrotreating catalysts [J]. Catal. Today, 2008,130(1): 109-116.
    [5] 孙传经.气相色谱分析原理与技术[M].北京:化学工业出版社,1979.
    [6] 王琪.镍促进高硫合成气制甲硫醇钼基催化剂的研究[D].厦门大学,2007
    [7] 顾蕙祥,阎宝山.气相色谱实用手册[M].北京:化学工业出版社,1980.
    [1] Klier K., Preparation of bifunctonal catalysts [J]. Catal. Today, 1992,15(3-4): 361-382.
    [2] Kantschewa M., Delannay F, Jeziorowski H., Delgado E., Eder S., Ertl G, Kn(?)zinger H. Nature and properties of a potassium-promoted NiMo/Al_2O_3 water gas shift catalyst [J]. J. Catal, 1984, 87(2): 482-496.
    [3] Nickolov R.N., Edreva-Kardjieva R.M., Kafedjiysky V.J., Nikolova D.A., Stankova N.B., Mehandjiev D.R., Effect of the order of potassium introduction on the texture and activity of Mo/Al_2O_3 catalysts in water gas shift reaction [J]. Appl. Catal. A, 2000,190(1-2): 191-196.
    [4] Tatsumi T., Muramatsu A., Tominaga H., Supported molybdenum catalysts for alcohol synthesis from CO-H_2 [J]. Appl. Catal, 1987,34: 77-88.
    [5] Inoue M., Nakajima K., Kurusu A., Miyake T., Inui T., Alcohol synthesis from syngas on group Ⅷ metal catalysts promoted by Mo-Na_2O [J]. Appl. Catal, 1989,49(2- 3): 213-217.
    [6] Klier K., Herman R.G, Simmons GW., Lyman C.E., Direct Synthesis of Alcohol Fuels over Molybdenum-based catalysts" Final Technical Report, DOE-AC22-85PC80014,1988.
    [7] Iranmahboob J., Toghiani H., Hill D.O., Dispersion of alkali on the surface of Co-MoS_2/clay catalyst: a comparison of K. and Cs as a promoter for synthesis of alcohol [J]. Appl. Catal. A, 2003,247(2): 207-218.
    [8] Gotti A. Prins R., Effect of metal oxide additives on the CO hydrogenation to methanol over Rh/SiO_2 and Pd/SiO_2 [J]. Catal. Lett., 1996,37(3-4): 143-151.
    [9] Gotti A. Prins R., Basic metal oxides as co-catalysts in the conversion of synthesis gas to methanol on supported palladium catalysts [J]. J. Catal, 1998,175(2): 302-311.
    [10] Tatsumi T, Muramatsu A., Tominaga H., Importance of sequence of impregnation in the activity development of alkali-promoted mo catalysts for alcohol synthesis from CO-H_2 [J]. J. Catal, 1986, 101(2): 553-556.
    [11] 卞国柱,姜明,伏义路,小俣光司,藤元薰.硫化态K-Mo合成低碳醇催化剂的制备条件和载体效应研究[J].燃料化学学报,1993,21(4):350-355.
    [12] 王琪,郝影娟,陈爱平,姚光华,杨意泉.钾修饰的MoO_3/SiO_2催化剂的XRD和TPR表征[J].应用化学,2007,24(5):561-564
    [13] Zhang H.B., Yang Y.Q., Huang H.P., Lin GD, Tsai K.R., Proc. 10~(th) ICC [C], Budapest, Hungary, 1992.
    [14]王琪.镍促进高硫合成气制甲硫醇钼基催化剂的研究[D].厦门大学,2007.
    [15] Raybaud P., Understanding and predicting improved sulfide catalysts: Insights from first principles modeling [J]. Appl. Catal. A, 2007,322(1): 76-91.
    [16] Grzybowska B., Mazurkiewicz A., Sloczynski J., The Co-Mo-Te-0 Oxide System for Oxidation of Hydrocarbons: A Review [J].Appl. Catal, 1985,13(2): 223-243.
    [17] Qian W., Hachiya Y., Wang D., Hirabayashi K., Ishihara A., Kabe T., Okazaki H., Adachi M., Elucidation of promotion effect of nickel on Mo/Al_2O_3 and Co-Mo/Al2_O_3 catalysts in hydrodesulfurization using a ~(35)S radioisotope tracer method [J]. Appl. Catal. A, 2002, 227(1-2): 19-28.
    [18] Yang Y.Q., Yang H., Wang Q., Yu L.J., Wang C, Dai S.J., Yuan Y.Z., Study of the supported K_2MoO_4 catalyst for methanethiol synthesis by one step from H_2S-containing synthesis gas [J]. Catal. Lett., 2001,74(3-4): 221-225.
    [19] Chen A., Wang Q., Hao Y, Fang W, Yang Y, The promoting effect of tellurium on K_2MoO_4/SiO_2 catalyst for methanethiol synthesis from high H_2S-containing syngas [J]. Catal. Lett., 2007,118(3-4): 295-299.
    [20] Zhang B., Taylor S.H., Hutchings GJ., Catalystic synthesis of methanethiol from CO/H_2/H_2S mixtures using α-Al_2O_3 [J]. New. J.Chem., 2004,24(4): 471-476.
    [21] Léias M.A., van Gestel J., Maugé F, van Veen J.A.R., Effect of NTA addition on the formation, structure and activity of the active phase of cobalt-molybdenum sulfide hydrotreating catalysts [J]. Catal. Today, 2008,130(1): 109-116.
    [22] Cattaneo R., Shido T., Prins R., The relationship between the structure of nimo/sio_2 catalyst precursors prepared in the presence of chelating ligands and the hydrodesulfurization activity of the final sulfided catalysts [J]. J. Catal., 1999,185 (1): 199-212.
    [23] Kishan G, Coulier L., de Beer V.H.J., van Veen J.A.R., Niemantsverdriet J.W., Sulfidation and thiophene hydrodesulfurization activity of nickel tungsten sulfide model catalysts, prepared without and with chelating agents [J]. J. Catal., 2000,196 (1): 180-189.
    [24] Rana M.S., Ramirez J., Gutiérrez-Alejandre A., Ancheyta J., Cede(?)o L., Maity S.K., Support effects in CoMo hydrodesulfurization catalysts prepared with EDTA as a chelating agent [J]. J. Catal., 2007,246(1): 100-108.
    [25] Inamura K., Uchikawa K., Matsuda S., Akai Y, Preparation of active HDS catalysts by controlling the dispersion of active species [J]. Appl. Surf. Sci., 1997, 121/122: 468-475.
    [26] 赵九生,时其昌.催化剂生产原理.北京:科学出版社,1986.
    [27] 王建国,张嘉郁,庞礼.浸渍法制备Pt/Al_2O_3催化剂的研究-竞争吸附剂对Pt分布的影响[J].化工学报,1982,2:151-159.
    [28] 孙锦宜编.工业催化剂的失活与再生[M].北京:化学工业出版社,2006.
    [29] Lin M.M., Complex metal oxide catalysts for selective oxidation of propane and derivatives: Ⅱ. The relationship among catalyst preparation, structure and catalytic properties [J]. Appl. Catal. A, 2003,250(2): 287-303.
    [30] Huang C, Guo W., Yi X., Weng W., Wan H., Effect of preparation condition on the performance of silica-supported MoVTeO catalysts for selective oxidation of propane to acrolein [J]. Catal. Commun., 2007,8(2): 162-166.
    [31] Derouane E.G, Parmon V., Lemos R, Ribeiro F.R., Principles and methods for accelerated catalyst design and testing [M], Dordrecht: Kluwer Academic Publishers, 2001.
    [32] Mross W.D., Alkali doping in heterogeneous catalys [J]. Catal. Rev. Sci. Eng., 1983, 25(4): 591-637.
    [33] 耿云峰,王希涛,钟顺和.MoO_3/SiO_2催化剂的异丁烷选择氧化反应性能[J].分子催化,2002,16(4):273-278.
    [34] Brito J.L., Laine J., Reducibility of Ni-Mo/Al_2O_3 catalysts: A TPR study [J]. J. Catal, 1993, 139(2): 540-550.
    [35] Feng L., Li X., Dadyburjor D.B., Kugler E.L., A temperature-programmed-reduction study on alkali-promoted, carbon-supported molybdenum catalysts [J]. J. Catal., 2000, 191(1): 1-13.
    [36] Arnoldy P., De Jonge J.C.M., Moulijn J.A., Temperature-programed reduction of molybdenum(Ⅵ) oxide and molybdenum(Ⅳ) oxide [J]. J. Phys. Chem., 1985, 89(21): 4517-4526.
    [37] DeCanio S.J., Cataldo M.C., DeCanio E.C., Storm D.A., Evidence from XPS for the stabilization of high-valent molybdenum by addition of potassium in Mo/Al_2O_3 catalysts [J]. J. Catal, 1989,119(1): 256-260.
    [38] Tatsumi T, Muramatsu A., Yokota K., Tominaga H., Mechanistic study on the alcohol synthesis over molybdenum catalysts: Addition of probe molecules to CO-H_2 [J]. J. Catal, 1989,115(2): 388-398.
    [39] Watson R.B., Ozkan U.S., Propane and propylene adsorption effects over MoO_x-based catalysts induced by low levels of alkali doping [J]. J. Mol. Catal. A, 2003, 194(1-2): 115-135.
    [40] Chen K., Xie S., Bell A.T., Iglesia E., Alkali Effects on Molybdenum Oxide Catalysts for the Oxidative Dehydrogenation of Propane [J]. J. Catal, 2000,195(2): 244-252.
    [41] Hardcastle F.D., Wachs I.E., Determination of molybdenum-oxygen bond distances and bond orders by Raman spectroscopy [J]. J. Raman Spec, 1990,21(10): 683-691.
    [42] Medema J., van Stam C, de Beer V.H.J., Konings A.J.A., Koningsberger D. C, Roman spectroscopic study of Co-Mo/γ-Al_2O_3 catalysts [J]. J. Catal., 1978, 53(3): 386-400.
    [43] Cheng C. P., Schrader G L., Characterization of supported molybdate catalysts during preparation using laser Raman spectroscopy [J]. J. Catal, 1979, 60(2): 276-294.
    [44] Williams C.C., Ekerdt J.G, Jehng J.M., Hardcastle F.D. Turek, A.M., Wachs I.E., A Raman and ultraviolet diffuse reflectance spectroscopic investigation of silica-supported molybdenum oxide [J]. J. Phys. Chem., 1991, 95(22): 8781-8791.
    [45] Jeziorowski H., Knozinger H., Raman and ultraviolet spectroscopic characterization of molybdena on alumina catalysts [J]. J. Phys. Chem., 1979, 83(9): 1166-1173.
    [46] Schrader G L., Cheng C. P., In situ laser Raman spectroscopy of the sulfiding of Mo/γ-Al_2O_3 catalysts [J].J. Catal, 1983, 80(2): 369-385.
    [47] Jiang M., Bian G-Z., Fu Y.-L., Effect of the K-Mo interaction in K-MoO_3/γ-Al_2O_3 catalysts on the properties for alcohol synthesis from syngas [J]. J. Catal, 1994,146(1): 144-154.
    [48] 段连运,张欧文,马世红,李土杰,谢有畅.合成低碳醇钼系耐硫催化剂中K_2CO_3的作用及K~+的结构状态[J].分子催化,1990,4(3):208-218.
    [49] Bian G-Z., Fan L., Fu Y.-L., Fujimoto K., High temperature calcined K-MoO_3/γ-Al_2O_3 catalysts for mixed alcohols synthesis from syngas: Effects of Mo loadings [J]. Appl Catal A, 1998, 170(2): 255-268.
    [50] Santiesteban J.G, Bogdan C.E., Herman R.G, Klier K., in: M.J. Phillips, M. Teraan (Eds.), Proceedings of 9~(th) ICC [C], Calgary, Ottawa, 1988.
    [51] Zaki M.I., Vielhaber B. Knozinger, H., Low-temperature carbon monoxide adsorption and state of molybdena supported on alumina, titania, ceria, and zirconia. An infrared spectroscopic investigation [J].J. Phys. Chem., 1986, 90(14): 3176-3183.
    [52] Daage M., Chianelli R.R., Structure-function relations in molybdenum sulfide catalysts: The "rim-edge" mode [J]. J. Catal, 1994,149(2): 414-427.
    [53] Beck D.D., White J.M., Ratcliffe C.T., Catalytic reduction of CO with hydrogen sulfide. 3. Study of Adsorption of O_2 CO, and CO Coadsorbed with H_2S on anatase and rutile using Auger Electron Spectroscopy and Temperature-Programmed Desorption [J]. J. Phys. Chem., 1986, 90(14): 3132-3136.
    [54] 王琪,杨意泉,袁友珠,刘澍,张鸿斌.钴对高硫合成气制甲硫醇负载型钼酸钾催化剂的促进作用[J].厦门大学学报(自然科学版),2003,42(1):64-68.
    [55] Dai S.J., Yang Y.Q., Yuan Y.Z., Tang D.L., Lin R.C., Zhang H.B., On methanethiol synthesis from H_2S-containing synthesis gas over K_2MoS_4/SiO_2 catalysts promoted with transition metal oxides [J]. Catal. Lett., 1999,61(3-4): 157-160.
    [56] 裘祖文,电子自旋共振波谱[M].北京:科学出版社,1980.
    [57] Konings A.J.A., van Dooren A.M., Koningsberger D.C., de Beer V.H.J., Farragher A.L., Schuit GC.A., ESR studies on hydrodesulfurization catalysts: Supported and unsupported sulfided molybdenum and tungsten catalysts [J]. J. Catal., 1978, 54(1): 1-12.
    [58] Weber Th., Muijsers, J.C., van Wolput J.H.M.C, Verhagen C.P.J., Niemantsverdriet J.W., Basic Reaction Steps in the Sulfidation of Crystalline MoO_3 to MoS_2, As Studied by X-ray Photoelectron and Infrared Emission Spectroscopy [J]. J. Phys. Chem., 1996, 100(33): 14144-14150.
    [59] Derouane E.G, E. Pedersen, Clausen B., Gabelica Z., Candia R., Hops(?)e T, J. Catal., 1986, 99(2): 253-261.
    [60] Seshadri K.S., Massoth F.E., Petrakis L., Electron spin resonance and microbalance study of sulfided molybdena-alumina catalysts [J]. J. Catal., 1970,19(2): 95-100.
    [61] Kolosov A.K., Shvets V.A., Chuvylkin N.D., Kazansky V.B., EPR study of S_2~- species on the surface of MoO_3/SiO_2 and MoO_3/γ-Al_2O_2catalysts [J]. J. Catal., 1977,47(2): 190-196.
    [62] Abart J., Delgado E., Ertl G, Jeziorowski H., Kn(?)zinger H., Thiele N., Wang X.Z.H., Taglauer E., Surface structure and reduction behaviour of NiO-MoO_3/Al_2O_3- catalysts [J]. Appl. Catal., 1982,2(3): 155-176.
    [63] Baker M.A., Gilmore R., Lenardi C, Gissler W., XPS investigation of preferential sputtering of S from MoS_2 and determination of MoS_x stoichiometry from Mo and S peak positions [J]. Appl. Surf. Sci, 1999, 150(1-4): 255-262.
    [64] Brown N.M.D., Cui N., McKinley A., An XPS study of the surface modification of natural MoS_2 following treatment in an RF-oxygen plasma [J]. Appl. Surf. Sci., 1998, 134(1-4): 11-21.
    [65] Muijsers J.C., Weber Th., Vanhardeveld R.M., Zandbergen H.W., Niemantsverdriet J.W., Sulfidation Study of Molybdenum Oxide Using MoO_3/SiO_2/Si(100) Model Catalysts and Mo_3~(Ⅳ)-Sulfur Cluster Compounds [J].J. Catal, 1995,157(2): 698-705.
    [66] Arnoldy P., van den Heijkant J.A.M., de Bok GD., Moulijn J.A., Temperature-programmed sulfiding of MoO_3/Al_2O_3 catalysts [J]. J. Catal, 1985, 92(1): 35-55.
    [67] Wagner C.D., Riggs W.M., Davis L.E., Moulder J.F., Muilenberg GE., Handbook of X-Ray Photoelectron Spectroscopy [M]. Wellesley, MA: Perkin-Elmer Corporation, 1979.
    [68] Grasselli R.K., Centi G, Trifiro' F., Selective oxidation of hydrocarbons employing tellurium containing heterogeneous catalysts [J]. Appl. Catal, 1990, 57(1): 149-166.
    [69] Lopez Nieto J.M., Botella P., Solsona B., Oliver J.M., The selective oxidation of propane on Mo-V-Te-Nb-0 catalysts: The influence of Te-precursor [J]. Catal. Today, 2003, 81(2): 87-94.
    [70] Bart J.C.J., Giordano N., Structure and activity of tellurium-molybdenum oxide acrylonitrile catalysts [J].J. Catal, 1980,64(2): 356-370.
    [71] Grasselli R.K., Brazdil J.F., Burrington J.D., Fe-Se-Tellurates as ammoxidation catalysts [J]. Appl. Catal, 1986,25(1-2): 335-344.
    [72] Muralidhar G, Massoth F.E., Shabtai J. Catalytic Functionalities of Supported Sulfides I.Effect of supported and Additives on CoMo Catalysts, J. Catal, 1984,85 (1): 44-52.
    [73] Klicpera T., Zdrazil M., High Surface area MoO_3/MgO: preparation by reaction of MoO_3 and MgO in methanol or ethanol slurry and activity in hydridesulfurization of benxothiophene, Appl Catal. A, 2001,216(1): 41-59.
    [74] Shimada H., Sato T., Yoshimura Y., Hiraishi J., Nishijima A., Support effect on the catalytic activity and properties of sulfided molybdenum catalysts [J]. J. Catal, 1988, 110(2): 275-284.
    [75] 耿云峰,李玉敏,王日杰,张继炎,张鎏.以ZrO_2-Al_2O_3为载体Co-Mo-K耐硫变换催化剂的TPR研究.燃料化学学报,2000,28(2):134-13
    [1] Mul G, Wachs I.E., Hirschon A.S., Catalytic Synthesis of Methanethiol from Hydrogen Sulfide and Carbon Monoxide over Vanadium-based Catalysts [J]. Catal. Today, 2003, 78(1-4): 327-337.
    [2] Zhang B., Taylor S.H., Hutchings GJ., Catalytic Synthesis of Methanethiol from CO/H_2/H_2S mixtures using α-Al_2O_3 [J]. New J. Chem. 2004,28(4): 471-476.
    [3] Barrault J., Boulinguiez M., Forquy C, Maurel R., Synthesis of Methanethiol from Carbon Oxides and H2S with Tungsten-Alumina Catalysts [J]. Appl. Catal, 1987, 33(2): 309-330.
    [4] Yang Y.Q., Dai S.J., Yuan Y.Z., Lin R.C., Tang D.L., Zhang H.B., The promoting effects of La_2O_3 and CeO_2 on K_2MoS_4/SiO_2 catalyst for methanethiol synthesis from synthesis gas blending with H_2S [J]. Appl. Catal. A, 1999,192(2): 175-180.
    [5] Stinn D.E., Swindell J.H., Kubicek D.H., Johnson M.M., Compositions comprising inorganic oxide and process for producing mercaptan [P]. US 5 898 012, 1999.
    [6] Beck D.D., White J.M., Ratcliffe C.T., Catalytic reduction of CO with hydrogen sulfide. 3. Study of Adsorption of O_2, CO, and CO Coadsorbed with H_2S on anatase and rutile using Auger Electron Spectroscopy and Temperature-Programmed Desorption [J]. J. Phys. Chem., 1986, 90(14): 3132-3136.
    [7] Fukada K., Dokiya M., Kameyama T., Kotera Y, Catalytic activity of metal sulfides for the racation H_2S + CO = H_2 + COS [J]. J. Catal, 1977,49(3): 379-382.
    [8] Faraji F, Safarik I., Strausz O.P., Torres M.E., Yildirim E., CO-Catalyzed Conversion of H_2S to H_2 + S. 1. Reaction between CO and H_2S [J]. Ind. Eng. Chem. Res., 1996, 35(11): 3854-3860.
    [9] Dean J.A.主编.尚久方,操时杰,辛无名,郑飞勇,陆晓明,林长青等译.兰氏化学手册(第十三版)[M].北京:科学出版社.1991.
    [10] Rhodes C, Riddel S.A., West J., Williams B.P., Hutchings GJ., The low-temperature hydrolysis of carbonyl sulfide and carbon disulfide: a review [J]. Catal. Today, 2000, 59(3-4): 443-464.
    [11] Amenomiya Y., Pleizier G, Alkali-promoted alumina catalysts: Ⅱ. Water-gas shift reaction [J]. J. Catal, 1982, 76(2): 345-353.
    [12] Newsome D.S., The water-gas shift reaction [J], Catal Rev.-Sci. Eng., 1980, 21(2): 275-318.
    [13] Beck D.D., White J.M., Ratcliffe C.T., Catalytic reduction of CO with hydrogen sulfide. 2. Adsorption of H_2O and H_2S on anatase and rutile [J]. J. Phys. Chem. 1986, 90(14): 3123-3131.
    [14] Saur O., Chevreau T, Lamotte J., Travert J., Lavalley J.-C, Comparative adsorption of H_2S, CH_3SH and (CH_3)_2S on alumina. Structure of species and adsorption sites [J]. J. Chem. Soc., Faraday Trans., 1981,77(1): 427-437.
    [15] Beck D.D., White J.M., Ratcliffe C.T., Catalytic reduction of CO with hydrogen sulfide. 4. Temperature-Programmed Desorption of methanethlol on anatase, rutile, and sulflded rutile [J]. J. Phy. Chem. 1986,90(14), 3137-3140.
    [16] Ziolek M., Czyzniewska J., Kujawa J., Travert A., Mauge F, Lavalley J.C., Reactions of alcohols with hydrogen sulphide on zeolites. Part 7: the effect of Br(?)nsted acidity of faujasite type zeolites on methanol hydrosulphurisation [J]. Micropor. Mesopor. Mat, 1998, 23(1-2): 45-54.
    [17] 陈寿椿,唐春元,于肇德编.重要无机化学反应(第三版)[M].上海:上海科学技术出版社,1994.
    [18] Xie Youchang, Naasz B.N., Somorjai G.A., Alcohol synthesis from CO and H_2 over molybdenum sulfide. The effect of pressure and promotion by potassium carbonate [J]. Appl. Catal, 1986,27(2): 233-241.
    [19] Burch R., Chappell R.J., Support and additive effects in the synthesis of methanol over copper catalysts [J]. Appl. Catal., 1988,45(1): 131-150.
    [20] Chen K., Xie S., Bell A.T., Iglesia E., Alkali effects on molybdenum oxide catalysts for the oxidtive dehydrogenation of propane [J]. J. Catal, 2000,195(2): 244-252.
    [21] Diemann E., Miiller A., Thio and seleno compounds of the transition metals with the d~(?) configuration [J]. Coord. Chem. Rev., 1973,10(1-2): 79-122.
    [22] 林国栋,杨意泉,黄浩平,袁友珠,张鸿斌.合成气制混合醇硫化钼基催化剂的谱学表征[J].分子催化,1992,6(5):321-327.
    [23] Bian G-Z., Fan L., Fu Y.-L., Fujimoto K., High temperature calcined K-MoO_3/γ-Al_2O_3 catalysts for mixed alcohols synthesis from syngas: Effects of Mo loadings [J]. Appl. Catal. A 1998,170(2): 255-268.
    [24] Arnoldy P., van den Heijkant J.A.M., de Bok GD., Moulijn J.A., Temperature-programmed sulfiding of MoO_3/Al_2O_3 catalysts [J]. J. Catal, 1985,92(1): 35-55.
    [25] Janssens J.P., van Langeveld A.D., Moulijn J.A., Characterisation of alumina- and silica-supported vanadium sulphide catalysts and their performance in hydrotreating reactions [J]. Appl Catal A, 1999, 179(1-2): 229-239.
    [26] Jiang M., Bian G-Z., Fu Y.-L., Effect of the K-Mo interaction in K-MoO_3/γ-Al_2O_3 catalysts on the properties for alcohol synthesis from syngas [J]. J. Catal, 1994,146(1): 144-154.
    [27] Valyon J., Hall W.K., The chemisorption of O_2 and NO on reduced and sulfided molybdena-alumina catalysts [J]. J. Catal, 1983, 84(1): 216-228.
    [28] Zaki M.I., Vielhaber B., Knozinger H., Low-temperature carbon monoxide adsorption and state of molybdena supported on alumina, titania, ceria, and zirconia. An infrared spectroscopic investigation [J]. J. Phys. Chem., 1986, 90(14): 3176-3183.
    [29] Rabo J.A., Risch A.P., Poutsma M.L., Reactions of carbon monoxide and hydrogen on Co, Ni, Ru, and Pd metals [J]. J. Catal, 1978,53(3): 295-311.
    [30] Praliaud H., Dalmon J.A., Mirodatos C, Martin GA., Influence of potassium salt addition on the catalytic properties of silica-supported nickel [J]. J. Catal., 1986,97(2): 344-356.
    [31] Avila Y, Kappenstein C, Pronier S., Barrault J., Alcohol synthesis from syngas over supported molybdenum catalysts [l].Appl. Catal. A, 1995,132(1): 97-109.
    [32] Compton D.B., Root T.W., ~(13)C NMR studies of CO adsorbed on supported rhodium catalysts: Effects of alkali promotion [J].J. Catal., 1992,137(1): 199-211.
    [33] Tatsumi T., Muramatsu A., Yokota K., Tominaga H., Mechanistic study on the alcohol synthesis over molybdenum catalysts: Addition of probe molecules to CO-H_2 [J]. J. Catal., 1989,115(2): 388-398.
    [34] Konings A.J.A., van Dooren A.M., Koningsberger D.C., de Beer V.H.J., Farragher A.L., Schuit GC.A., ESR studies on hydrodesulfurization catalysts: Supported and unsupported sulfided molybdenum and tungsten catalysts [J]. J. Catal., 1978,54(1): 1-12.
    [35] Konings A.J.A., Brentjens W.L.J., Koningsberger D.C., de Beer V.H.J., ESR studies on hydrodesulfurization catalysts: Nickel- or cobalt-promoted sulfided tungsten- or molybdenum-containing catalysts [J].J. Catal., 1981,67(1): 145-158.
    [36] Kolosov A.K, Shvets V.A., Chuvylkin N.D., Kazansky V.B., EPR study of S_3~- anion radicals on the surface of supported MoO_3/MgO, WO_3/MgO, and CrO_3/MgO catalysts [J]. J. Catal., 1978, 55(3): 394-401.
    [37] Muijsers J.C., Weber Th., van Hardeveld R.M., Zandbergen H.W., Niemantsverdriet J.W., Sulfidation study of molybdenum oxide using Moo_3/Sio_2/Si(100) model catalysts and Mo_3~(Ⅳ)-sulfur cluster compounds [J].J. Catal., 1995, 157 (2): 698-705.
    [38] Weber Th., Muijsers J.C., van Wolput J.H.M.C, Niemantsverdriet J.W., Basic reaction steps in the sulfidation of crystalline MoO_3 to MoS_2, As studied by X-ray photoelectron and infrared emission spectroscopy [J]. J. Phys. Chem.. 1996,100 (33): 14144-14150.
    [39] Nikolova D., Edreva-Kardjieva R., Gouliev G, Grozeva T., Tzvetkov P., The state of (K)(Ni)Mo/γ-Al_2O_3 catalysts after water-gas shift reaction in the presence of sulfur in the feed: XPS and EPR study [J]. Appl. Catal. A, 2006,297 (2): 135-144.
    [40] Khulbe K.C., Mann R.S., ESR studies of SO_2 and H_2S adsorption on alumina and alumina-supported Mo and Mo-Co [J]. J. Catal, 1978, 51 (3): 364-371.
    [41] Derouane E.G, Pedersen E., Clausen B.S., Gabelica Z., Candia R., Tops(?)e H., EPR studies on unsupported and alumina-supported sulfided Co-Mo hydrodesulfurization catalysts [J]. J. Catal., 1986, 99 (2): 253-261.
    [42] Steins M., Koopman P., Nieuwenhuijse B., Mars P., The mechanism of the catalytic oxidation of hydrogen sulfide: III. An electron spin resonance study of the sulfur catalyzed oxidation of hydrogen sulfide [J]. J. Catal, 1976,42 (1): 96-106.
    [43] Silbernagel B.G, Pecoraro T.A., Chianelli R.R., Electron spin resonance of supported and unsupported molybdenum hydrotreating catalysts: I. Model system studies [J]. J. Catal, 1982, 78(2): 380-388.
    [44] Watson R.B., Ozkan U.S., Propane and propylene adsorption effects over MoO_x-based catalysts induced by low levels of alkali doping [J]. J. Mol Catal A, 2003,194(1-2):115-135.
    [45] Baker M.A., Gilmore R., Lenardi C, Gissler W., XPS investigation of preferential sputtering of S from M0S2 and determination of MoS_x stoichiometry from Mo and S peak positions [J], Appl. Surf. Sci., 1999,150(1-4): 255-262.
    [46] Brown N.M.D., Cui N., McKinley A., An XPS study of the surface modification of natural MoS_2 following treatment in an RF-oxygen plasma [J]. Appl Surf. Sci., 1998, 134(1-4): 11-21.
    [47] Abart J., Delgado E., Ertl G, Jeziorowski H., Knozinger H., Thiele N., Wang X.Z.H., Taglauer E., Surface structure and reduction behaviour of NiO-MoO_3/Al_2O_3 catalysts [J]. Appl. Catal, 1982,2(3): 155-176.
    [48] DeCanio S.J., Cataldo M.C., DeCanio E.C., Storm D.A., Evidence from XPS for the stabilization of high-valent molybdenum by addition of potassium in Mo/Al_2O_3 catalysts [J]. J. Catal, 1989,119(1): 256-260.
    [49] Feng L., Li X., Dadyburjor D.B., Kugler EX., A temperature-programmed-reduction study on alkali-promoted, carbon-supported molybdenum catalysts [J]. J. Catal, 2000, 191(1): 1-13.
    [50] Kantschewa M., Delannay F., Jeziorowski H., Delgado E., Eder S., Ertl G, Knozinger H. Nature and properties of a potassium-promoted NiMo/Al_2O_3 water gas shift catalyst [J]. J. Catal, 1984, 87(2): 482-496.
    [51] Spevack P.A., McIntyre S., Reactivity and stability of sulphided thin films of molybdenum to dry air [J]. Appl. Catal., 1990,64: 191-207.
    [52] Wagner C.D., Taylor J.A., Contributions to screening in the solid state by electron systems of remote atoms: Effects to photoelectron and Auger transitions [J]. J. Electron Spectrosc. Relat. Phenom., 1982, 28(2): 211-217.
    [53] Gajardo P., Mathieux A., Grange P., Delmon B., Structure and catalytic activity of CoMo/γ-Al_2O_3 and CoMo/SiO_2 hydrodesulphurization catalysts: an XPS and ESR characterization of sulfided used catalysts [J]. Appl. Catal, 1982,3(4): 347-376.
    [54] Spirko J.A., Neiman M.L., Oelker A.M., Klier K., Electronic structure and reactivity of defect MoS_2 Ⅱ. Bonding and activation of hydrogen on surface defect sites and clusters [J]. Surf. Sci., 2004,572 (2-3): 191-205.
    [55] Startsev A.N., Zakharov I.I., Parmon V.N., An unexpected phenomenon in heterogeneous catalysis: oxidative addition of hydrogen to the sulfide catalysts [J]. J. Mol. Catal. A, 2003, 192(1-2): 113-127.
    [56] Byskov L.S., Bollinger M. N(?)rskov, J.K., Clausen B.S., Tops(?)e H., Molecular aspects of the H_2 activation on M0S2 based catalysts — the role of dynamic surface arrangements [J]. J. Mol. Catal. A, 2000,163 (1-2): 117-122.
    [57] Bian GZ., Fu Y.L., Yamada M., Reaction stability and structure studies of sulfided K-MoO_3/γ-Al_2O_3 catalyst for the synthesis of mixed alcohols [J]. Appl. Catal. A, 1996, 144(1-2): 79-91.
    [58] Gotti A., Prins R., Effect of metal oxide additives on the CO hydrogenation to methanol over Rh/SiO_2 and PdSiO_2 [J]. Catal. Lett., 1996, 37(3-4): 143-151.
    [59] Gotti A., Prins R., Basic Metal Oxides as Cocatalysts for Cu/SiO_2Catalysts in the Conversion of Synthesis Gas to Methanol [J]. J. Catal., 1998,178(2): 511-519.
    [60] Gotti A. Prins R., Basic metal oxides as co-catalysts in the conversion of synthesis gas to methanol on supported palladium catalysts [J]. J. Catal, 1998, 175(2): 302-311.
    [61] Jerdev D.I., Prins R., Koel B.E., Alloy Formation and CO Adsorption on Bimetallic Ca/Pd(111) Surfaces [J]. J. Phys. Chem. B, 2004,108(38): 14417-14427.
    [62] Iranmahboob J., Hill D.O., Toghiani H., K_2CO_3/Co-MoS_2/clay catalyst for synthesis of alcohol: influence of potassium and cobalt [J]. Appl. Catal. A, 2002,231(1-2): 99-108.
    [63] Ledoux M.J., Michaux O., Agostini G, Panissod P., CoMo sulfide catalysts studies by metal solid NMR: The question of the existence of the chemical synergy [J]. J. Catal, 1985, 96(1): 189-201.
    [64] Harris S., Chianelli R.R., Catalysis by transition metal sulfides: A theoretical and experimental study of the relation between the synergic systems and the binary transition metal sulfides [J]. J. Catal, 1986, 98(1): 17-31.
    [65] Klier K., Modeling of syngas reactions and hydrogen generation over sulfides [Z]. Final Technical Progress Report, DE-FG26-01NT41276,2004.
    [66] Hou P., Meeker D., Wise H., Kinetic studies with a sulfur-tolerant water gas shift catalyst [J]. J. Catal, 1983, 80(2): 280-285.
    [1] 廖代伟.催化科学导论[M].北京:化学工业出版社,2006.
    [2] 曹声春,胡艾希,尹笃林.催化原理及其工业应用技术[M].长沙:湖南大学出版社,2001.
    [3] 孙锦宜.工业催化剂的失活与再生[M].北京:化学工业出版社,2006.
    [4] 刘方.Ni-Mo/γ-Al_2O_3加氢催化剂的气相硫化和钝化研究[D].浙江大学,2005.
    [5] Serafin I., Kotarba A., Grzywa M., Sojka Z., Bi(?)czycka H., Kustrowski P., Quenching of potassium loss from styrene catalyst: Effect of Cr doping on stabilization of the K_2Fe_(22)O(34) active phase [J]. J. Catal, 2006,239(1): 137-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700