海洋低温碱性蛋白酶的化学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对碱性蛋白酶在国内外的研究与进展及目前海洋低温酶的研究状况进行了综述,阐明了海洋低温碱性蛋白酶的研究对国民经济的发展所起的重大作用,并指出了现有研究工作的不足之处和今后的发展方向。
     论文首次对一种应用我国海洋嗜极微生物代谢产物并通过现代生物工程手段开发出的一类新型酶——海洋低温碱性蛋白酶(YS-80-122)的化学特性展开研究,通过对其分离纯化与制备工艺的探讨,理化性质和催化动力学的研究,及利用计算机模建方式对该酶的结构进行预测,获得了该碱性蛋白酶的各项性能参数和许多有关于结构与活性中心的有价值信息,为今后进一步开展该酶的研究与改造、生产与应用奠定理论基础。本文主要开展了以下几个方面的工作:
     海洋低温碱性蛋白酶的分离纯化与制备工艺研究:①将该酶的发酵液分别经过高速冷冻离心机离心(6000转/分,4℃)去除菌体和其它有机粘性物质,错流超滤系统(截留分子量10,000Dal)去除小分子量杂质,并经冷冻干燥获得可供工业使用的粗酶;②将上一步经超滤获得的澄清发酵液分别经过盐析(30%-65%),等电聚焦制备电泳(12W),SephacryI S-200凝胶过滤,最后冷冻干燥,获得试剂酶,经反相C8 HPLC和SDS-PAGE聚丙烯酰胺凝胶电泳图谱,该酶纯度已达色谱纯及电泳纯。
     海洋低温碱性蛋白酶的化学性质研究:①该酶经SDS-PAGE聚丙烯酰胺凝胶电泳和HPLC凝胶过滤测得其分子量为49300±1000Dal,经薄层聚丙烯酰胺凝胶等电聚焦测定酶的等电点为pH8.5,与已知碱性蛋白酶不同,由于其来自于海洋,属于一种新型碱性蛋白酶。②讨论了pH和温度对酶活性和稳定性的影响。通过采取两维实验数据结果和三维数据模拟相结合的手段,计算出酶活方程,r~2>0.9,求得其反应最适pH为9.5,最适温度为30℃。在对该酶的pH和温度稳定性研究中发现,该酶在低温条件下(t≤30℃)具有较好的稳定性,保持相对低pH(pH≤8)有利于保持酶的稳定,且酶活性随pH和温度的升高而下降。⑧研究了常见金属离子,增稠剂、表面活性剂和氧化剂H_2O_2对酶活的影响。研究发现多数的金属离子对该酶不具有抑制作用,Pb~(2+)、Ag~+、Cu~(2+)对该酶有较强的抑制作用。该酶与常见
    
    海洋低沮碱性蛋白醉的化学特性研究
    的增稠剂、表面活性剂、氧化剂H八有良好的配伍性,其性质十分有利于今后该酶
    在洗涤行业的进一步开发。但实验也发现,金属鳌合剂如EDTA能严重引起该酶失
    活,这一性质与以往发现的碱性蛋白酶有很大的不同,这与其独特的活性中心有
    关。
     海洋低温碱性蛋白酶的催化动力学研究:①在以酪蛋白为底物的催化反应体
    系中研究了PH和温度对酶催化反应动力学参数的影响。求得其反应活化能
    Ea=33.ZkJ/mol;反应的温度系数Q:0=10,,‘33f“‘’,、习;pKa=9.3、p介10.7、最适p除10.0,
    并根据所测的PK值可以推断出该低温碱性蛋白酶的活性部位可能会存在酪氨酸
    酚轻基或疏基等结构,而不包含a一梭基、a一氨基、门冬氨酸p一梭基、以及
    谷氨酸丫一竣基等常见氨基酸侧链基团。②EDTA对酶的抑制作用研究,通过动力
    学参数凡的变化,经过计算得到EDTA种酶主要产生“竞争性”抑制,所以该酶应
    该具有某些金属蛋白酶的性质,其活性中心应该包含M扩+,znz十,c尹,Fe2+,cu2+
    等金属元素,EDTA的加入将金属原子从酶蛋白剥离而引起失活,在实验中发现,
    加入乙萨+后,失活的酶活性又逐渐恢复,因此根据动力学数据推断,ZnZ+是该酶活
    性中心所包含的金属元素。
     海洋低温碱性蛋白酶的同源模建与结构预测:①用DNASTAR分析此酶得出其
    分子量为49903.92Dal,等电点PI为8.52,与前面实验基本吻合。此酶含有459
    个氨基酸。疏水性氨基酸148个,极性氨基酸153个。BLAST同源性分析其与碱性
    蛋白酶的相似性很高,同源性可达76%,应该具有的碱性蛋白酶性质。②进行结构
    模建获得结构比较合理的模建结果,显示了锌离子的三个组氨酸残基结合位点,
    也是其催化位点。与前述实验推断其活性中心应有金属离子ZnZ+存在的结果吻合,
    表明该模建具有较高的理论价值和实际意义。
Alkaline proteases constitute one of the most important groups of industrial enzymes, and have established roles in the detergent, food, pharmaceutical, leather and silk industries. And the low-temperature alkaline proteases producing by some kinds of marine bacterium are attracting more and more concerns all over the world for their special characters nowadays. We summarize the studies about the respects of the marine low-temperature alkaline protease all over the world and point out the developing direction for later research.
    Marine Low-temperature Alkaline Protease(MLAP) is a kind of extracellular enzyme from a kind of marine bacterium of Flavobacterium YS-80-122.The study mainly concerned about the study of chemical characters of MLAP. During our experiments, we studied the purification conditions of enzyme, the characters of purified enzyme and enzyme kinetic parameters, and structural model by computer analysis. Through these methods, we got the data of the enzyme's characters and many useful structural information about the area of protein-ligand interactions. These results can provide theoretical foundation for further industrial use of this kind of enzyme.
    The main results and conclusions are as follows:
    Isolation and purification of MLAP: (1)A preliminary study on industrial abstraction technology is carried out by centrifuging the fermentation medium with high speed (6000r7m) at low temperature(4 ) and ultra filtrating (capturing molecular weight 10000Dal). After cooling dryness we get the raw samples. (2)Enzyme were precipitated by, ammonium sulphate (30%-65%). The precipitate was dialyzed against 20mM Na2HPO4-KH2PO4 (pH=6.5 ) buffer. The dialyzate was applied to IEF producing system(12W) and column Sephacry I S-200. At last we get the electrophoreticly pure sample after cooling dryness and the purity is checked by SDS- PAGE and C8 HPLC.
    Chemical characterization of MLAP: (1)We get its molecular weight--49,300+
    
    
    1000Dal by SDS PAGE gel and HPLC gel, and its pI-8.5 by IEF analysis system. For its native character is different from all the alkaline protease people knewed, we can classify it as a new kind of protease. (2)We have studied the effects of temperature and pH on enzyme activity and stability. With the experiments results, we have made a model of enzyme activity- temperature-pH (r2>0.9). And through this model we knew its pH optima is at 9.5, temperature optima is at 30 . The enzyme was stable at low temperature (t 30 ) and keeping relatively low pH C pH 8 ) is helpful for its stability. (3)In addition we studied the effects of various metal ions and some other ingredients which often occurr in detergents such as some kinds of surfactants and oxidants on enzyme activity. In our experiments we knew that the MLAP is compatible with most of the metal ions and surfactants. Few metal ions such as Pb2+, Ag+ , Cu2+act as strong inhibitors of enzyme activity. Also strong inhibition was observed with EDTA, and the finding was different from former alkaline protease.
    Study of kinetics parameters of MLAP: (1)We studied the effects of pH and temperature on the kinetic parameters of the enzyme hydrolyzing casein reaction. We got the data of activation energy(Ea=33.2kJ/mol) and reaction temperature modulus( Q10=1017433[l/ (T1-T2) ]). Also we get the values of pKa=9.3 and pKb=10.7, and which offers many useful information concerning the groups involvedin enzyme funcion. (2)By studying the kinetics parameters changing by adding its inhibitor such as EDTA, we deduce that the inhibitor EDTA is a kind of competitive inhibitor to this enzyme. So we knew there must be some metal elements in the protein-ligand interactions area.
    Homoibgy modeling and structural prediction of MLAP: (1)By analyzing the sequencing result with DNASTAR software, we get the result as follows: The molecule weight of the enzyme is 49903.92Dal; the pi is 8.52; there are 459 amide acids and 148 ones of which are hydrophobic and 153 ones are polar. It has a high homology to pseudomonas(nearly 76%), so it should has the similar
引文
[1] Adil Anwar,Mohammed Saleemuddin. Alkaline protease: A review. Bioresource Technology , 1998, 64:175-183
    [2] Arpigny JL et al. Biochim. Biophys. Acta, 1993, 1171:331-333.
    [3] A. J. J. Straathof. Development of a computer program for analysis of enzyme kinetics by progress curve fitting[J]. Journal of Molecular Catalysis B:Enzymeatic, 2001,11:991?98
    [4] Apolinary Sobieszek*. Enzyme Kinetic characterization of the smooth muscle myosin phosphorylating system: activation by calcium and calmodulin and possible inhibitory mechanisms of antagonists. Biochimica et Biophysica Acta, 1999, 1450:77-91
    [5] B. Johnvesly, G. R. Naik*. Studies on production of thermostable alkaline protease from thermophilic and alkaliphilic Bacillus sp. JB-99 in a chemically defined medium. Process Biochemistry, 2001, 37:139-144
    [6] Bhosale, S. H., M. B. Rao, V. V. Deshpande, and M. C. Srinivasan. Thermostability of high activity alkaline protease from Conidiobolus coronatus (NCL 86. 8. 20) . Enzyme Microb. Technol, 1995, 17:136-139.
    [7] Burns Michael Eugene, et. al. Bleaching compounds comprising N-acyl caprolactam and/or peroxy acid activators[P]. 美国专利:US5998350,1999
    [8] C.Ganesh Kumar, Hiroshi Takagi. Microbial alkaline proteases: From a bioindustrial viewpoint. Biotechnology Advances, 1999, 17:561-94
    [9] Combet C, Jambon M, Deleage G & Geourjon C Bioinformatics, 2002, 18:213-214.
    [10] Chiplonkar, J. M., S. V. Gangodkar, U. V. Wagh, G. D. Ghadge, M. V. Rele, and M. C. Srinivasan. Applications of alkaline protease from Conidiobolus in animal cell culture. Biotechnol. Lett, 1985, 7: 665-668
    [11] Davail S et al., J.Biol. Chem, 1994, 269: 17448-17453.
    [12] F. Alfani, M. Cantarella ,A. Gallifuoco. On the effectiveness factor of immobilized enzymes with linear mixed-type product inhibition kinetics. The Chemical Engineering Journal, 1995, 57:B23-B29
    [13] F Corpet, J Gouzy, D Kahn. The ProDom database of protein domain families. Nucleic Ac Res , 1998,26:323-326
    [14] F Travers, T barman* . Cryoenzymology: How to practice kinetic and structural studies. Biochimie, 1995, 77:937-948
    [15] Feller G, et al. FEMS Microbiol Rev, 1996, 18:189-202.
    [16] Feller G et al. Eur. J. Biochem, 1994, 222:441-447.
    [17] Feller. G, et al., J. Bio. chem., 1972, 267187:5217-221
    [18] Godfrey, T., and S. West. Industrial enzymology. 2nd ed.New York: Macmillan Publishers Inc., 1996. 3-56
    [19] Gerike U, et al. Eur J Biochem, 1997, 248: 49-57.
    [20] Guex, N. and Peitsch, M. C. SWISS-MODEL and the Swiss-PdbViewer: An environment
    
    for comparative protein modelling. Electrophoresis, 1997, 18:2714-2723.
    [21] Hans Erik Schiff, et. al. Multiple Enzymes in Household Detergents.日用化学品 科学,2000,23 (增 2) : 147-159
    [22] Han-Seung Joo, Gun-Chun Park, Ki Tae Kim, Suung R. Paik, Chung-Soon Chang, Simple methods for alkaline protease purification from the polychaeta, Periserrrula leucophryna. Process Biochemistry, 2001, 37:299-303
    [23] Hanna-Kirsti,et al. Eur. J. Biochem, 2000, 267:1039-1049
    [24] Hochachka, et al. In Biochemical Adaptation. Princeton University Press, New Jersy, 355-449
    [25] Hanna-Kirsti, et al. Eur. J. Biochem, 2000, 267:1039-1049
    [26] Iyo, A. H.,et al. Appli. Environ. Microbiol, 1999, 6:995-998
    [27] J.Singh, N. Batra, R. C. Sobti. Serine alkaline protease from a newly isolated Bacillus sp. SSR1. Process Biochemistry ,2001, 36:781-785
    [28] JM Yon, D Perahia, C Ghelis. Conformational dynamics and enzyme activity. Biochimie, 1998, 80:33-42
    [29] Kelley LA, Enhanced Genome Annotation using Structural Profiles in the Program 3D-PSSM. MacCallum RM & Sternberg MJE. J. Mol. Biol, 2000, 299(2) :499-520.
    [30] Keay, C.T. et al. :process priochem., 1976,11(6) :3
    [31] Keay, L. et al. :Biotechng., 1970,12:179-213
    [32] Kott Kevin Iee, et. al. Laundry detergents comprising modified alkylbenzene sulfonates[P]. 美国专利:W00023549,1999
    [33] Kobori H., et al., Proc. Ncad.Sic.U. S. A, 1984, 81:6691-6695
    [34] Mohamed A. Abdel-Naby, A-M. S. Ismail, S. A. Ahmed, Ahmed F. Abdel Fattah. Production and immobilization of alkaline protease from Bacillus myciodes. Bioresource Technology, 1998, 64:205-210
    [35] Mustafa Bayram. Application of computer algebra techniques to enzyme kinetics. Applied Mathematics and Computation, 1998, 94:73-81
    [36] M. A. Moruno-Ddvila, C. Garrido-del Solo, M. Garcia-Moreno, F. Garcia-Cdnovas, R. Vardn. Kinetic analysis of enzyme systems with suicide substrate in the presence of a reversible, uncompetitive inhibitor. BioSystems, 2001,61:5-14
    [37] Nakagawa, Y. :in "MeEhodsinEnzymology" . 19 Acdamic. press, 1970. 501-591
    [38] Okubo Y, , et al. Biochem Biophys Res Commun, 1999, 256(20) :333-340.
    [39] 0. Lund, K. Frimand, J. Gorodkin, H. Bohr, J. Bohr, J. Hansen and S. Brunak. Protein distance constraints predicted by neural networks and probability density functions. Protein Engineering, 1997, 10:1241-1248
    [40] Phadatare, S. U., M. C. Srinivasan, and V. V. Deshpande. High activity alkaline protease from Conidiobolus coronatus (NCL 86. 8. 20) : enzyme production and compatibility with commercial detergents. Enzyme Microb. Technol, 1993, 15:72-76
    [41] Roman A. Laskowski et al. PROCHECK: a program to check the stereochemical quanlity of protein structures. J.Appl.Cryst, 1993, 26:283-291.
    
    
    [42]Russell R J, Gerike U, Danson M J, et al. Structure, 1998, 6(3):351-361.
    [43]Russel, R. et al., Structure 1998, 6:351-361.
    [44]Spengler SJ, Science, 2000, 5456:287-1221
    [45]Speckmann Horst-dieter, et. al. Detergent containing an enzyme and bleach activator agents [P]. 德国专利: WO200060036/DE19914811, 2000.
    [46]Speckmann Horst-dieter, et. al. Detergent forms with special bleach activators[P]. 德国专利: WO200060037, 2000
    [47]Tanner J. J, Biochemistry, 1996, 35:2597-2609
    [48]Weaver, LH: in "Enzymes and proteins from thermophili Microorganism" (Wber Hed. Birkhaser verlag).Basel: und stuttgart, 1976. 7-31
    [49]Whicaker, J.R. Food. Related Enzymes(American Chemical Sociely), 1974, 191
    [50]Wang. D. I.C. et al., Adv. Appl. Microbiol., Edi. By Perlman, D., Academic Press, 1970. 12-121
    [51]陈石根,周润琦.酶和酶学.见:酶学.第一版.上海:复旦大学出版社,2001.1-14
    [52]程皆能,妙佳萍,杨银华.工业微生物,1986,16(9):15—25
    [53]杜志平,等.浅谈洗涤助剂.日用化学品科学,2000,23(1):25-27
    [54]冯清平,沈剑敏,高燕,兰州大学学报(自然科学版本)1994,30(4):83—87。
    [55]方海红,胡好远,黄红英等,微生物学通报,2002,29(2):57-59
    [56]龚仁敏.图形法导出可逆抑制作用的酶反应动力学方程.安徽师大学报(自然科学版),1997,20(4):339-341
    [57]龚仁敏.酶可逆抑制作用中线性混合性抑制的动力学.安徽师大学报(自然科学版),1998,21(1):46-49
    [58]龚仁敏.图形法推导复杂酶反应的动力学方程.大学化学,2000,15(1):55-57
    [59]汉斯,等.酶在现代洗净过程中的作用.日用化学品科学,2000,23(1):6-9
    [60]华章熙.合成洗涤剂工业的热点问题—酶.日用化学品科学,1998,2:26-28
    [61]华章熙.合成洗涤剂工业的热点问题—酶.日用化学品科学,1998,3:22-26
    [62]胡学智.碱性蛋白酶.张树政主编:酶制剂工业(下册)。第一版.北京:科学出版社1984,433-455
    [63]洪军,赵彩虹,赵禾.有抑制剂存在的酶催化反应的类型鉴别.松辽学科(自然科学版),1995,2:59-63
    [64]江行娟,扬庆云.复旦大学学报(自然科学版),1993,32(4):387—393
    [65]江盛梅,等.嗜麦芽单胞菌的碱性蛋白酶在大肠杆菌中的克隆和表达.生物工程学报,1993,9(2):266-270
    [66]论世仪.酶制剂的工业提取法,见:张树政主编,酶制剂工业(上册),北京:科学出版社,1984.198-216
    [67]刘璐,卢守友,王爱军.酶催化动力学分析的特点和应用前景.唐钢科技,1996,3:39-41
    [68]刘叶青等.工业微生物,1988,18(1),6-10
    [69]马延和等. 海洋生物酶的研究进展与展望.海洋高新技术发展研讨会论文集.1999.271-277
    [70]那淑敏,余茂效.微生物学报,1988,28(3):249-256
    [71]邱秀宝等.嗜冷性海洋微生物产碱性蛋白酶研究.微生物学通报,1991,18(3):
    
    138-141
    [72]邱秀宝,程秀兰,袁影.微生物学通报,1988,15(3):101—104
    [73]邱秀宝,程秀兰.微生物学报,1984,24(1):66—73。
    [74]邱秀宝,袁影等.微生物学报,1990.30(2):129—133
    [75]孙谧等.黄杆菌属—新种.海洋水产研究,2000,21(4):6-13
    [76]孙谧等.黄海黄杆菌YS-9412-130低温碱性蛋白酶性质鉴定.海洋水产研究,2001,21(4):1-10
    [77]吴琼法.超滤技术.见:张树政主编,酶制剂工业(上册),北京:科学出版社,1984.240-253
    [78]王福荣,等.1994.工业酶制剂通用试验方法.中华人民共和国行业标准,(QB/T 1803—93):1~6
    [79]王静,王刚,刘武钧等.一级反应网络法求单底物酶促反应的米氏常数.重庆大学学报(自然科学版),1998,21(2):125-130
    [80]徐晓鸿,等.全球洗涤剂最新发展和技术动态.日用化学品科学,2002,25(2):1-4
    [81]夏良树,等.洗涤剂用复合酶的配伍性能研究.日用化学工业,2001,(5):58-61
    [82]辛明秀等.微生物学报,2000,40(5):518-522
    [83]阎隆飞 孙之荣.蛋白质工程与药物分子设计.蛋白质分子结构,1999,263-272
    [84]杨文博,冯耀宇,微生物学通报,1994,21(5):273-278
    [85]俞俊堂.发酵液的预处理和固液分离法,见:生物工艺学(上册).上海:华东化工学院出版社,1991.252-262
    [86]佐藤友太郎:食品工业,1974,17(22):57-60
    [87]赵云德,等.地衣芽孢杆菌2709碱性蛋白酶基因克隆与序列分析.生物化学与生物物理学报,1993,25(6):577-583
    [88]赵铭等.工业微生物,1987,17(4):9-16
    [89]张莉娟,等.The Study of Surfactanas Synergism,日用化学品科学,2000,23(增2):33-34
    [90]赵敏.非竞争性抑制作用的非稳态酶动力学分析[M].温州师范学院学报,1995,6:74—77
    [91]赵敏.双曲线竞争抑制酶体系的非稳态酶动力学.温州师范学院学报(自然科学版),1998,19(6):56-59
    [92]赵敏.非竞争性抑制作用的非稳态酶动力学分析.温州师范学院学报(自然科学版),1995,16(6):74-77
    [93]赵敏.Random Bi Bi机制的非稳态酶动力学布尔函数图论研究.生物数学学报,2001,16(1):30-34
    [94]赵敏.二酶系统竞争性抑制稳态动力学的布尔函数图论研究.温州师范学院学报(自然科学版),2000,21(6):29-31
    [95]赵敏.二酶系统反竞争性抑制非稳态动力学的布尔函数图论研究.甘肃科学学报,2001,13(1):47-50
    [96]李光林,杨亚玲.酶-底物-抑制剂系统的分形反应动力学方程.西南农业大学学报,1997,19(4):393-396
    [97]罗奇鸣,刘海燕,段志红,施蕴渝.分子设计:用多拷贝分子动力学模拟方法搜索HIV蛋白酶活性中心的官能团结合位点.生物物理学报,1998,14(2):303-310
    
    
    [98]蔡汝秀,吴新国,林智信,程介光.动力学分析方法检测酶反应活性中间体的研究.高等学校化学学报,1997,18(3):364-367
    [99]赵敏.竞争性抑制的非稳态酶动力学布尔函数图论研究.生物数学学报,2000,15(2):245-249
    [100]邹国林,朱汝璠.酶学.武汉:武汉大学出版社,1997.163-203

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700