共晶类铵盐含能材料的合成、理论计算与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为探索新型高能量密度共晶类含能材料的制备方法,本文设计并制备了一系列铵类共晶含能材料,并对其晶体结构、组装方式、制备过程、爆炸性能以及应用技术进行了相应的研究,具体的研究内容和结论如下:
     1.对共晶含能材料SY(三乙烯二胺/乙二胺高氯酸盐共晶)和MT(三乙烯二胺/甲胺高氯酸盐共晶)的合成工艺和晶体结构进行了研究。按照质量比为EDA(乙二胺)TEDA(三乙烯二胺)HC1O4=1:1.9:9.6投料制得了以SE(三乙烯二胺高氯酸盐)和YE(乙二胺高氯酸盐)为合成子的共晶含能材料SY,并对其单晶结构进行了测试,得到SY属于正交晶系,晶胞参数为a=8.1030(16)A,b=24.725(5)A,c=10.195(2)A;按照质量比TEDA(三乙烯二胺):Methylamine(甲胺):HC1O4=3.6:1:3.8投料制得共晶含能材料MT,X-射线单晶衍射测定结果表明MT属于单斜晶系,晶胞参数a=8.9750(18)A,b=17.836(4)A,c=10.455(2)A。对SY和MT的晶胞结构分析表明这两种共晶含能材料中含有大量的分子间和分子内氢键,可以形成多个多元环状结构,且每个胺基上的氢均可以形成三叉型氢键。
     2.对SY和MT进行了理论研究。利用Materials Studio软件中的CASTEP模块在三种不同计算方法(LDA-CA-PZ、GGA-PBE和GGA-PW91)对SY和MT进行了理论计算,晶胞的优化结果表明三种不同计算方法的计算结果无明显差异。对SY的能带研究表明,其能带在-30eV~10eV能量区间内可以明显的分为五个不同的能量区间,分别是导带部分的一个能量区间;价带部分四个能量区间,分别是10eV~0eV、0eV~-10eV、-10eV~-15eV、-15eV~-22.5eV和-25eV~-30eV。这五个能量区间均是由s、p轨道构成。费米能级附近的价带顶部和导带底部都比较平缓,对应着态密度图在该位置比较尖锐,说明在该位置处有较强的相互作用。对MT的能带计算结构表明,MT能带8eV~-27eV能量区间内可以分为四个能量区间:导带部分一个能量区间,区间范围5eV~8eV;价带部分三个能量区间,分别是0eV~-14eV、-17eV~-21eV和-25eV~-27eV,从态密度图可以看出,所有能量区间均是由sp带构成。
     3.对SY进行了静压下的理论研究。利用CASTEP模块研究了SY在0-100GPa压力下的结构,结果表明在0-10GPa小压力作用下,SY的晶胞参数a、b、c和v呈现随压力增大而减小的现象。高压下能带的计算结果表明当SY晶体加压时,体系中的s轨道的电子和p轨道的电子态密度均有向低能量移动的趋势,同时随着压力的增大,态密度的峰值变小,移动的幅度变大,能量分布变宽,每个能区范围变宽,能隙变小,这表明在高压下SY的感度将会提高。
     4.对SY进行了结构表征,对其合成工艺进行了优化。采用红外光谱和X-射线粉末衍射对晶体结构进行了分析,结果表明SY中含有EDA和TEDA的高氯酸盐,且其比例为1:1;通过大量实验得到了SY最佳合成工艺:采用EDA (5g)和TEDA (9.4g)室温下配制成混合液,滴加高氯酸进行中和反应制得。反应过程中应注意反应温度,加料速度,以及冷却温度的控制,可以得到颗粒均匀,性能稳定的产物。制备SY过程中产生的母液可以用来配制反应液,实现母液的循环利用。采用母液作为底液时,该反应的得率可以达到100%,同时降低了废液的排放量,减少了对环境造成的污染。
     5.对SY的爆炸性能和应用进行了研究。对SY进行了5s爆发点、撞击感度、摩擦感度、火焰感度以及静电感度的测试,测试结果表明SY的爆炸性能可以与传统的高能炸药相媲美。本文探索了SY在以下领域的应用,包括:SY可以用作工业雷管的起爆药和主装药,同时也可以作为耐高温雷管单一装药;SY可以应用于分离式点火—起爆系统中的关键部分DDT装药;SY也可以用作固体火箭冲压发动机堵盖的多孔基体装药。
A seires of new kind perchlorate ammonium cocrystal energetic materials were designed and prepared. The synthesis process, crystal structure, explosive properties and application have been studied. The contents and conclusions are as follows:
     1. The synthesis process and crystal structure of SY (Triethylenediamine/Ethylenediamine perchlorate salt) and MT (Triethylenediamine/Methylamine perchlorate salt) were studied. The optimal synthesis process for SY is EDA (Ethylenediamine):TEDA (Triethylenediamine):HC104=1:1.9:9.6. Single crystal diffraction analysis indicates that SY belongs to orthorhombic system with cell parameters of a=8.1030(16)A, b=24.725(5)A, c=10.195(2)A. MT was prepared by TEDA (Triethylenediamine): Methylamine:HC104=3.6:1:3.8, which belongs to monoclinic system with cell parameters of a=8.9750(18)A, b=17.836(4)A, c=10.455(2)A. It is easy to form hydrogen bond between perchlorate and amine, and the calculation results indicate there are three different kinds of hydrogen bond in the new cocrystal energetic materials.
     2. The theoretical calculation of SY and MT was conducted. CASTEP was employed to calculate cell parameters of SY with different computational methods (LDA-CA-PZ, GGA-PBE and GGA-PW91). The results show that band energy of SY can be divided into four parts:0~-10eV,-10eV~-15eV,-15eV~-22.5eV,-25eV~-30eV. It is found that the top of calence bands has large dispersion, wheras the bottom of conduction has nearly small dispersion. The calculation of MT show that band energy of SY can be divided into four parts:5eV~8eV,0eV~-14eV,-17eV~-21eV and-25eV~-27eV.
     3. High pressure calculation of SY was investigated to find out the relationship between pressure and crystal structure. CASTEP code of Materials Studio was used to calculate SY under high pressure (0-100GPa). The results show that the cell parameters of SY were decreased while pressure increased under0-10GPa. But it is unusual at2GPa where a and c were increased. Electrons from s and p orbits move toward lower energy part. With the increase of pressure, the density of states of SY is broader, the band gap become narrower.
     4. The structure of SY was characterized and the synthesis processes were optimized. The crystal of SY was got by solvent evaporation method. SY was characterized by FTIR, HNMR spectroscopy, X-ray diffraction (XRD) and single crystal diffraction analysis. The results show that SY is the combination of SE and YE with the ratio of1:1.
     5. Explosive properties and application of SY were studied. The thermal explosion temperature for5s, impact sensitivity, fraction sensitivity, flame sensitivity and electrostatic spark sensitivity were tested. The results show that SY is a promosing energetic mateiral. The investigations of SY application show that SY can be used as primary and secondary explosive in detonator. Also it can be used in separate initiation system which can be applied in the fuse to enhance its safety because of no use of detonators. The third usage of SY is in the port cover of rocket-ramjet engine, and the performance show that it had prominent advantages.
引文
[1]舒远杰,龙新平.含能材料辉煌的21世纪.四川省中青年专家大会[C],四川成都,2002,10
    [2]黄辉,王泽山,黄亨建,李金山.新型含能材料的研究进展[J].火炸药学报,200528:9-13
    [3]Ostmark, H. Langlet, A. Bergman, H. Wingborg, N. Wellmar, U. and Bemm, U.Fox-7—a new explosive woth low sensitivity and high performance[J]. Proc. Eleventh (Int.) Det. Symp. Preprints,1998:18~21
    [4]Latypov, N.V., Bergman, J., Langlet, A., Wellmar, U., Bemm, U. Synthesis and reactions of 1,1-diamino-2,2-dinitroethylene[J]. Tetrahedron 1998,54:11525~11536
    [5]Ritter H. Analyse des thermischen verhaltens vonhochfeinem ALEX(PU 375) [R]. Saint Louis:ISL,1999
    [6]Mench M M. Propellant burning rate enhancements and thermal behavier of ultra-fine powder (Alex) [C] 29th Int Annu Conf ICT. Karlsruhe:ICT,1998
    [7]Gilbert P S, Jack A. Research towards novel erergetic materials. J. Energ. Mater.1986, 45:5-28
    [8]Lyer S, Damavarapu R, Strauss B, Bracuit A, Alster J, Stec D. III. New high density materials for propellant application. J. Ballistics.1992,11:72~79
    [9]施明达.高能量密度材料合成的研究进展[J].火炸药学报.1992,1:19-25
    [10]Agrawal P J. Recent trends in high-energy materials[J]. Prog. Energy Combust. Sci. 1998,24:1~30
    [11]肖鹤鸣.高能化合物的结构和性质.北京:国防工业出版社,2004
    [12]欧育湘,陈进全.高能量密度化合物.北京:国防工业出版社,2005
    [13]SNPE. Improvements in NTO based PBXs, a new powerful and insensitive class of PBX[C]//Insensitive Munitions& Energetic Materials Technology Symposium. San Diego: NDIA,1997
    [14]Philip, Alexander, Robert, et al. Synthesis, scale-up and experimental testing of LLM-105 (2,6-diamino-3,5-dinitropyrazine-1-oxide) [C]//Insensitive Munitions& Energetic Materials Technology Symposium. San Diego:NDIA,1998
    [15]Hiskey M, Chavez D, et al. Progress in high-nitrogen chemistry in explosives, propellant and pyrotechnics[C]//Proc 27th International Pryotechnics Seminiar. Colorado: DSTO,2000,3-14
    [16]Hammerl A, Michael A Hiskey, Gerhard Holl, et al. Azideformamidinium and guanidinium 5,5'-azotetrazolate salts [J]. Chem. Mater.2005,17(14):3784-3793
    [17]Shannon M, Lenahan, Jerry S Salan. Improvements in the synthesis of guanidinium azotetrazolate(GuZT) [DB/OL]. Naval Surface Warfare Centerr, Indian Head Division Indian head, MD. http://ematerials.org/GUZTAIChE.pdf
    [18]Chris Radack, Jerry Salan, Shannon Lenahan. Bnis triaminogunidinium azotetrazolate (TAGzT) scale up and production[DB/OL]. Naval Surface Warfare Centerr, Indian Head Division Indian head, MD. http://ematerials.org/TAGZT.pdf
    [19]徐松林,阳世清.偶氮四唑三胍盐的合成与表征[J].合成化学,2005 13(5):486-488
    [20]徐松林,阳世清.偶氮四唑非金属盐类含能材料的合成与性能研究[J].含能材料,2006,14(5):377-340
    [21]何春林,杜志明,从晓明.偶氮四唑二胍盐的表征及性能研究[C]//第四届全国化学推进剂学术交流会河南洛阳2009
    [22]孙艳苓,颜冬林,朱顺官,张琳,马鹏.5,5’-偶氮四唑锌的合成及表征[J].含能材料2012,5:297-301
    [23]黄明,李洪珍,董海山等.呋咱类含能材料合成研究.2004年全国含能材料发展与应用学术研讨会[C].中国厦门,2004:73-78
    [24]李加荣.呋咱系列含能材料的研究进展[J].火炸药学报,1998,3:56-60
    [25]Hiskey M, Chavez D. Insensitive high-nitrogen compounds[R]. DE:776133,2001
    [26]岳守体.高氮含能化合物的合成放大及其应用相关性研究[D].长沙:国防科技大学,2003
    [27]Lehn J M. Supramolecular Chemistry-Concepts and Perspectives. Weihheim:VCH,1995;沈兴海译.超分子化学-概念和展望[M].北京:北京大学出版社,2002
    [28]Lehn J M, Atwood J L, Davies L E D, Macnicol D D, Vogtle F et al. Comprehensive Supramolecular Chemistry[M]. Vil.1-11. New York:Pergamon,1996
    [29]Lehn J M, Comprehensive Supramolecular Chemistry[M]. Pergamon, Oxford,1996
    [30]Herrman W. A., N. W. Huber, O.Rute, Angew.Chem. Int. Ed. Engl.1995,34:2187~ 2189
    [31]J. Becher, Schaumburg E.K. Molecular Engineering for advanced materials[M]. Kluwer Academic Pub,1995
    [32]Nangia A. Database research in crystal engineering [J]. Cyrst. Eng. Comm.2002,4: 93~101
    [33]Bein T. Supramolecular Architecture[M]. American Chemistry Society:Washington, DC,1992
    [34]Maneiro, M., Bermejo, M.R., Sousa, A; Fonda, M., Gonzalez, A.M., McAuliffe, A.C. Synthesis and structural characterization of new complexes. Polyhedron,2000,19:47
    [35]Lehn J M. Supramolecular chemistry-scope and perspectives. Molecular, supramolecules, and molecular devices (Nobel Lecture)[J]. Angew Chem Int Ed Engl,1988, 27(1):90
    [36]Ghadin M R, Granja J R, Buehler L K. Artificial transmembrane ion from self-assembling peptide nanotube[J]. Nature.1994,369:301~304
    [37]Whitesides G. M., Mathias J. P., Seto C.T. Molecular Self-Assembly and Nanochemistry a Chemistry Strategy for the synthesis of nanostructures[J]. Science,1991, 254(5036):1312~1319
    [38]Whitesides G M. Grzybowski B. Self-Assembly at all scales[J]. Science,2002, 295(5564):2418-2421
    [39]Lara Ochoa F, Espinosa Perez G. Supramolecular Chemistry,2007,19(8):553~557
    [40]Morissette S, Almarsson, Peterson M, et al. Advanced Drug Delivery Review,2004, 56(3):275~300
    [41]Shan N, Zaworotko M. Drug Discovery today,2008,13(10):400~446
    [42]Childs S L, Chyall L J, Dunlap J T et al. Cyrstal engeinnering approach to forming cocrystals of amine hydrochlorides with organic acids. Molecular complexes of fluxetine hydrochloride with benzoic, succinic and fumaric acids[J]. Am Chem Soc,2004,126(41): 1333~13342
    [43]张希,林志宏,高倩.超分子化学[M].吉林大学出版社,1995
    [44]Etter M. C, Panunto T. W. 1,3-Bis(m-nitrophenyl) urea:an exceptionally good complexing agent for proton acceptors[J]. J.Am.Chem.Soc.,1988,110:5896
    [45]Vishweshw AR P, Mcmahon JA, Bis JA, et al. Pharmaeeutieal cocrystals [J]. Pharm. Sci.,2006,3:499~516
    [46]Jeffrey G. A. An Inytoduction to Hydrogen Bonding[M]. Oxford Universoty Press, New York,1997
    [47]Desiraju G. R, Steiner T. The Weak Hydrogen Bonding[M]. Oxford University Press, Oxford 1999
    [48]Gilli G., Gilli P. The Nature of the Hydrogen Bond:Outline of a Comprehensive Hydrogen Bond Theory[M]. Oxford University Press, USA 2009
    [49]Gao Yuan, Zu Hui, Zhang Jianjin, Progress on Chemistry,2010,22:829~836
    [50]Hoeben F., Jonkheijm P., Meijer E., A. Schenning, Chem. Rev.,2005,105:1491
    [51]Kock U.,Popelier P. L. A., Characterization of C-H...O hydrogen bonds on the basis of the charge density[J]. J. Phys. Chem.,1995,99:9747~9754
    [52]Popelier P. L. A. Characterization of a Dihydrogen Bond on the Basis of the Electron Density[J]. J. Phys. Rev. A.,1998,102:1873~1878
    [53]Hobza P. Havlas Z., Blue-Shifting hydrogen bond[J]. Chem. Rev.,2000,100:4253-4264
    [54]Scheiner S., Hydrogen bonding[M]. Oxforf Universoty Press:Oxford,1997
    [55]Pribble R.N., Garret A.W., Haber K., Zwier T.S., Resonant ion-dip infrared spetroscopy of benzene-H2O and benzene-HOD[J]. J.Chem. Phys.,1995,103:531~544
    [56]Djafari S., Lembach G, Barth H.D., Brutseny B.Z., On the Assignment of a Size Specofic, Intracluster Ion/Molecule Reaction with IR-Depletion Spectroscopy[J]. Phys. Chem.,1996,195:253~272
    [57]Djafari S., Barth H.D., Buchhold K., Brutschy B., Infrared-depletion spectroscopy study on hydrogen-bonded fluorobenzene-methanol clusters [J]. J. Chem. Phys.,1997,107: 10573~10581
    [58]Dykstra C E. Intermolecular electrical interaction:a key ingredient in hydrogen bonding [J]. Acc. Chem. Res.,1988,21:355~361
    [59]Brown M. P., Heseltine R,W. Co-ordinated BH3 as proton acceptor group in hydrogen bonding[J]. Chem. Commun.,1968,1551~ 1552
    [60]Bosque R, Maseras F, Eisenstein O, et al. Site Preference Energetics, Fluxionality and Intramolecular M-H...H-N Hydrogen Bonding in a Dodecahedral Transition Metal Polyhydride[J]. Inorg. Chem.,1997,36(24):5505~5511
    [61]Rozas I, Alkorta I, Elguero J. Field effects on dihydrogen bonded system [J]. Chem Phys Lett.,1997,275(4):423~428
    [62]Feracin S, Buergi T, Bakhmutov V, et al. Hydrogen/Hydrogen Exchange and Formation of Dihydrogen Dervatives of Rhenium Hydride Complexes in Acidic Solutions[J]. Organometallics,1994,13(11):4194~4201
    [63]Ndemann DR, Ulrich S, Limbach H H, et al. Solvent-Assisted Reversible Proton Transfer within an Intermolecular Dihydrogen Bond and Characterization of an Unstable Dihydrogen Complex[J]. Inorg. Chem.,1999,38(11):2550~2551
    [64]Chu H S, Lau C P, WongK Y et al. Omtramolecular N-H...H-Ru Proton-Hydride interaction in Ruthenium Complexes with (2-(Dimethylamino) ethyl)cyclopentadienyl and (3-(Dimethylamino) propyl)cyclopentadienyl ligands. Hydrogenation of CO2 to Formic Acid via the N-H...H-Ru hudrogen-bonded Complexes[J]. Organometallics,1998,17(13):2768~ 2777
    [65]Custelcean R, Jackson J E. Topochemical Control of Covalent Bond Formation by Dihydrogen Bonding [J]. J. Am. Chem. Soc.,1998,120(49):12935~12941
    [66]Kang X, Ma L, Fang Z, et al. Promoted hydrogen release from ammonia borane by mechanically milling with magnesium hydride:a new destabilizing approach [J]. PCCP,2009, 11(14):2507~2513
    [67]史福强,安静仪,李文等.毗咯与HCl和CHC13分子Cl(C)-H...π型氢键的理论研究[J].化学学报,2004,62:1171-1175
    [68]Ferguson G, Gallagher J.F., Glidewell C., Zalaria C. M.,. Acta Crystallogr., Sect. C, 1994,50:70~73
    [69]M. Mons, E.G Robertson, J.P. Simons. Intra- and Intermolecular π-Type Hydrogen Bonding in Aryl Alcohols:□ UV and IR-UV Ion Dip Spectroscopy[J]. J. Phys. Chem. A, 2000,104:1430~1437
    [70]Pejov L., Solimannejad M., Stefov V.. On the Assessment of Some New Meta-Hybrid and Generalized Gradient Approximation Functionals for Calculations of Anharmonic Vibrational Frequency Shifts in Hydrogen-Bonded Dimersmore[J]. Chem. Phys.,2006,323: 259~270
    [71]Gallo E.A., Geliman S.J. N-H--π Hydrogen Bonding in a Norbornenyl Diamide[J]. Tetrahedron Lett.,1992,33:7485~7488
    [72]王素纹,黎安勇.吡啶与CHX3 (X=F, Cl, Br, I)形成分子间红移和蓝移氢键的理论研究[J].西南大学学报,2007,29:26-31
    [73]Hunter C.A., Sanders J.K. M.. The Nature ofπ-πinteractions [J]. J. Am. Chem. Soc. 1990,112:5525-5534
    [74]王宇宙,吴安心.芳环超分子体系中的π-π相互作用[J].有机化学,2008,6:997-1011
    [75]Dumas J M, Gomel M. Molecular Interactions Involving Organic Halides[M]. Inthe Chemisry of Functional Groups, Supplement. D, Patai, S., Rappoport, Z., Eds.; John Wiley& Sons Ltd:New York,985~1020
    [76]Legon A C. Prepeactive complexes of dihalogens XY with lewis basesB in the gas phase:a systematic case of the halogen analogue B...HX [J]. Angew. Chem. Int Ed.,1999, 38 (19):2686~2714
    [77]Corradi E, Meille S V, Messina M T, et al. Perfluorocarbon self-assembly,part IX. Halogen bonding versus hydrogen bonding in dirving self-assembly processes[J]. Ang. Chem. Int Ed.,2000,39:1782~1786
    [78]Kilah N L. Wise M D, Serpell C J, Thompson A L, White N G et al. Enhancement of Anion Recognition Exhibited by a Halogen-Bonding Rotaxane Host System[J]. J. Am. Chem. Soc.,2010,132:11893~11893
    [79]Bruce D.W., Metrangolo P., Meyer F., Pilati T., Praesang C., et al. Structure- Function Relationships in Liqued-Crystalline Halogen-Bonded Complexes[J]. Chem. Eur. J..2010,16: 9511~9524
    [80]Cauliez P., Polo V., Roisnel T., Llisar R., The thiocyanate anion as a polydentate halogen bond acceptor[J]. Cryst. Eng.Comm.,2010,12:558~566
    [81]Raatikainen K., Huuskonen J., Lahtinen M., Metrangolo P., Rissanen K., Halogen bonding drives the self-assembly of piperazine cyclophanes into tubular structures [J]. Chem. Comm.,2009,2160~2162
    [82]De Santis A, Forni A, Liantonio R, et al. Chem. Eur. J.,2003,9:3974~3986
    [83]Walsh R B, Padgett C W, Metrangolo p,et al. Crystal Engineering through Halogen Bonding:□ Complexes of Nitrogen Heterocycles with Organic Iodides[J]. Crystal Growth Design,2001,1(2):165-175
    [84]Pedireddi VR, Jones W,Chorlton AP et al. Creation of crystalline supramolecular arrays:a comparison of co-crystal formation from solution and by soli-state grinding[J]. Chem. Commu.,1996,8:987~988
    [85]Ling A., Baker J. Halogen derivatives of quinone. Part Ⅲ. Derivatives of quinhydrone[J]. Journal of the Chemical Society, Transactions,1893,63:1311 ~ 1314
    [86]Stahly G P. Diversity in single-and multiple-component crystal. The research for and prevalence of polymorphs and cocrystals[J]. Crystal Growth Des,2007,7(6):1007~1026
    [87]Childs S L, Mougin P, Stahly B C. US2007/0287194,2007
    [88]Peterson M L, Morissette S L, Mcnulty C, et al. Iterativehigh-throughput polymorphism studies on aeetaminophen and an experimentally derived structure for form Ⅲ[J]. J. Am Chem. Soc,2002,124(37):10958~10959
    [89]Vishweshwar P., McMahon J.,Zaworotko M., Journal of Pharmaceutical Sciences 2006, 95:499~516
    [90]Tiekink E., Vittal J. J., Frontiers in Crystal Engineering[M]. Chichester:Wiley,2005, 25-49
    [91]Shan N, Zaworotko M. The role of cocrystals in pharmaceutical science[J]. Drug Discovery Today,2008,13(9/10):440~446
    [92]Schmidt G. M. J. Photodimerzation in the solid state[J]. Pure Appl. Chem.,1971,27: 647~678
    [93]Desiraju G.R. Crystal Enginnering:The design of Organic Solid[M]. Elevier, Amsterdam,1989
    [94]Beaty A.M. Open-framework coordination complexes from hydrogen-bonded networks:toward host/guest complexes[J]. Coordination Chemistry Review,2003,246:131
    [95]Bhogala B.R., Vishwesh P., Nangia A., Four-Fold Inclined Interpenetrated and Three-Fold Parallel Interpenetrated Hydrogen Bond Networks in 1,3,5-Cyclohexanetricarboxylic Acid Hydrate and its Molecular Complex with 4,4-Bipyridine[J]. Crystal Growth & Design,2002,2:325~328
    [96]Jeffrey G A. New York:Oxford University Press.,1997,185
    [97]Micheal, L. US 4086110,1978
    [98]Landenberger, K.B., Matzger A. J., Cocrystal engineering of prototype energetic material:supramolecular chemistry of 2,4,6-trinitroluene[J]. Crystal Growth & Design,2010, 10:5341~5347
    [99]Bolton, O.; Simke, L. R.; Pagoria, P. F.; Matzger, A. J. High Power Explosive with Good Sensitivity:A 2:1 Cocrystal of CL-20:HMX[J]. Cryst. Growth. Des.,2012,12:4311 ~ 4314
    [100]Landenberger, K. B.; Matzger, A. J. Cocrystals of 1,3,5,7-Tetranitro-1,3,5,7-tetrazacyclooctane (HMX)[J]. Cryst. Growth. Des.,2012,12:3603~3609
    [101]Bolton, O.; Matzger, A. J. Improved Stability and Smart-Material Functionality Realized in an Energetic Cocrystal[J]. Angew. Chemie Int. Ed.,2011,50:8960-8963
    [102]卫春雪,段晓惠,刘建成等.环四甲撑四硝胺/1,3,5-三氨基-2,4,6-三硝基苯共晶炸药分子模拟研究[J].化学学报,2009,67:2822-2826
    [103]Shen J P, Duan X H. Preparation and Characterization of a novel cocrystal explosive[J]. Cryst. Growth. Des.,2011,11:1759~1765
    [104]Guo C., Zhang H, Wang X. Study on a novel energetic cocrystal of TNT/TNB[J]. J. Mater. Sci.,2012,48:1351 ~ 1357
    [105]He Lin, Shun-guan Zhu, Lin Zhang et al. Theoretical investigation of a novel high density cage compound 4,8,11,14,15-pentanitro-2,6,9,13-tetraoxa-4,8,11,14,15-pentaazaheptacyclo[5.5.1.13,11.15,9] pentadecane. J. Mol. Model.2013,19(3):1019~1026
    [106]Peng Ma, Lin Zhang, Shunguan Zhu Houhe Chen Synthesis, crystal structure and DFT calculation of an energetic perchlorate amine salt[J]. Journal of Crystal Growth,2011, 15:70~74
    [107]Peng Ma, Lin Zhang, Shunguan Zhu Houhe Chen. Synthesis, Structural Investigation, Thermal Decomposition and Properties of a Cocrystal Energetic Perchlorate Amine Salt[J]. Combustion, Explosion and Shock Waves,2012,48(4):483~487
    [1]Corey E.J. General methods for the construction of complex molecules[J]. Pure Appl. Chem.,1967,14:19~38
    [2]Corey E.J. Compuer-assisted analysis of complex synthetic problems[J]. Quart Rev. 1971,25:455~482
    [3]Stork F. Progress in the synthesis of polycyclic natural products:The total synthesis of lycopodine[J]. Pure and Applied Chemistry,1968,17:383~402
    [4]陈小明,蔡继文编.单晶结构分析原理与实践[M].北京:科学出版社,2003
    [5]张克从,张乐惠编.晶体生长科学与技术(上)[M].北京:科学出版社,1997
    [6]姚连增.晶体生长基础[M].北京:中国科学技术大学出版社,1995
    [7]GM. Sheldrick, SHELXL-97, Program for the Solution of Crystal Structure[M]. University of Gottingen, Germany,1997
    [8]Peng Ma, Lin Zhang, Shunguan Zhu, Houhe Chen. Synthesis, crystal structure and DFT calculation of an energetic perchlorate amine salt[J]. Journal of Crystal Growth.2011,335: 70~74
    [1]谢希德,陆栋.固体能带理论[M].复旦大学出版社,2007
    [2]M. Born K. Huang(黄昆). Dynamical Theory of Crystal Lattices[M]. Clarendon Press, Oxford,1954
    [3]L. Brillouin. Wave Propagation in Periodic Structure[M]. Wliey,1946
    [4]Picked C J, Payne M C. Extrapolative approches to Birllouin_zone integration[J]. Phys. Rev. B,1999,59:4685-4693
    [5]Lee J H, Shishidou T, Freeman A J. Improved triangle method for two_dimensional Brillouin zone integrations to determine physical properties [J]. Phys. Rev. B,2000,66: 233102-233106
    [6]D. Sanchez-Portal, E. Artacho, J.M. Soler. Projection of plan-wave calculations into atomic orbitals[J]. Solid State Communication,1995,95:685~689
    [7]R.S. Milliken. Electronic population Analysis on LCAOMO Molecular Wave Functions [J]. Journal of Cehmistry Physics,1955,23:1833~1840
    [8]E.R. Davidson, S. Chakravorty. A test of the Hirshfield definition of atomic charges and moments[J]. Thermochemica Acta.,1992,83:319~322
    [9]M.D. Segall, C.J. Pickard, R. Shah, M.C. Payne. Population analysis in plane wave electronic structure calculations[M]. Molecular Physics,1996,86:571~579
    [10]M.D. Segall, C.J. Pickard, R. Shah, M.C. Payne. Population analysis in plane wave electronic structure calculations of bulk materials[J]. Phys. Rev. B.1996,54:16317~16320
    [11]B. Winkler, M. Hytha. M.C. Warren, V. Milman, J. Gale, J.Shreuer. Calculation of the elastic constants of the Al2SiO5 polymorphs andalusite sillimanite and kyanite[J]. Zeitschrift fur Kristallographie,2001,216:67~70
    [12]Mulliken R.S. J. Electronic Population Analysis on LCAO-MO Molecular Wave Functions. I[J]. Chem. Phys. J.,1955,23:1833~1840
    [13]J.M. Seminaro, M.C. Concha, and P. Politzer, Molecular dynamics simulation of liquid nitromethane shocked to 143 kbar[J]. Int. J. Quantum Chem.,1995,56:621~625
    [14]H. D. Jones. Equation of state for liquid nitromethane at high pressure[J]. AIP Cnof. Proc.,2002,706:149~152
    [15]Yoo C S, Cynn H. Equation of state, phase transtion, decomposition of β-HMX (octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine) at high pressure[J]. J. Chem. Phys.1999, 111:10229~10235
    [16]Kawaguchi T, Takashina K. Tanaka, T. The Crystal Structure of Bromoform, CHBr3 [J]. Acta Cryst.,1972, B28:967-972
    [17]D. Sanchez-Portal, E. Artacho, J.M. Soler. Projection of plan-wave calculations into atomic orbitals[J]. Solid State Communication,1995,95:685~690
    [18]R.S. Milliken. Electronic population Analysis on LCAOMO Molecular Wave Functions[J]. Journal of Cehmistry Physics,1955,23:1833~1840
    [19]E.R. Davidson, S. Chakravorty. A test of the Hirshfield definition of atomic charges and moments[J]. Thermochemica Acta,1992,83:319~321
    [20]M.D. Segall, C.J. Pickard, R. Shah, M.C. Payne. Population analysis in plane wave electronic structure calculations [J]. Molecular Physics,1996,86:571~576
    [21]B. Winkler, M. Hytha. M.C. Warren, V. Milman, J. Gale, J.Shreuer. Calculation of the elastic constants of the A12SiO5 polymorphs andalusite, sillimanite and kyanite[J]. Zeitschrift fur Kristallographie,2001,216:67~70
    [1]魏佳,戴培麟,张建平.核磁共振技术的发展[J].现代仪器,2003,5:13-16.
    [2]丁克洋.二维NMR技术在有机结构分析中的应用[J].广州化学,1999,24(3):36.
    [3]Croasmun W. Two-Dimensional NMRSpectroscopy [M].2th edition. New York:VCH Publishers,1994.
    [4]Raeck C, Berger S. A 2D NMR method to study peptide phosphsrylation[J]. Analytical and Bioanalytical Chemistry,2007,389(8):2161~2165.
    [5]Aipei J. Biomedicine in the age of Imaging[J]. Seience,1993,216:554~558.
    [6]王金山.核磁共振波普仪与实验技术[M].北京:机械工业出版社,1982.
    [7]Stark E, Luchter K, Margoshes M. Near-infrared analysis (NIRA):A technology for quantitative and qualitative analysis[J]. Appl. Spectrosc. Rev.,1986,22(4):335~339.
    [8]陆路德,杨绪杰.化学与材料中的物理方法[M].南京:南京理工大学化工学院,2000
    [9]梁敬魁.粉末法测定晶体结构[M].北京:科学出版社,2003
    [10]高缘,祖卉,张建军.药物共晶研究进展[J].化学进展,2010,22(5):829-836
    [11]胡荣祖,史启祯.热分析动力学[M].北京:科学出版社.2001
    [12]李艳春.热分析中动力学方程的初步研究[D].南京:南京理工大学化工学院,2005
    [13]Joseph H. Early papers by Takeo Ozawa and their continuing relevance[J]. Thermochimi Acta,199,282/283:35~42
    [14]Schawe J E.A description of chemical and diffusion control in isothermal kinetics of cure kinetics[J].Thermochimi Acta,2002,388:299~312
    [15]北京工业学院八系《爆炸及其作用》编写组.爆炸及其作用(上册).第一版.北京:国防工业出版社,1979
    [16]郑孟菊,俞统昌,张银亮编著.炸药的性能及测试技术[M].北京:兵器工业出版社,1990
    [17]王雨时.引信安全及安全性现状与发展对策[J].探测与控制学报,2008,30(6):1-7
    [18]Bemecker.R.R, Sandasky H W.8th symposium on detonation.1985,658
    [19]Sulimov A A, Korotkov A.6th symposium on detonation,1976,5
    [20]王平.凝聚相炸药DDT的实验研究与数值计算[D].北京:北京理工大学,1989
    [21]Bemecker.r and Price. D. Studies in the reansition from deflagration to detonation in granular explosives(Ⅱ)[J].Combustion and Flame.1974,22:119~129
    [22]杨涛,夏智勋等.发射药在强约束条件下的燃烧转爆轰特性[J].推进技术.1995,6:66-73
    [23]LeuretF,ChaisseF,Presles HN,etal. Experimental study of the low velocity detonation regime during the deflagration to detonation transition in a high density explosive[C]. Proceedings of 11th International Symposium on Detonation. Snowmass:law rence Livermore National Laboratory,1998,693-701
    [24]Hare D E, Forbes JW,GarciaF,etal. A report on the deflagration-to-detonation transition(DDT)in the high explosive LX-04[C].Proceedings of International Symposium on Detonntion.Livermore:Law rence Livermore Nationl Laboratory,2004,1-29
    [25]Harold.W.S,Richard.H G,Douglas GB,etal. De lagration to detonation transition in LX-04 as a function of loading density, temperature, and Confinement[C]. Proceedings of International Symposium on Detonntion. Livermore:Law rence Livermore Nationl Laboratory,1999,1-9
    [26]张全,单睿子,刘乐卿等.一种先进的固体火箭冲压发动机堵盖设计[J].现代防御技术.2008,36(2):25-29
    [27]王明鉴.整体式固体火箭冲压发动机的应用性能探讨[J].固体火箭技术.1995,18(1):10-11
    [28]张家骅,胡顺楠,顾炎武.整体式火箭冲压发动机研制[J].推进技术,1998,21(3):29-30
    [29]王铮,胡永强.固体火箭发动机[M].北京:中国宇航出版社,1993
    [30]李存杰,龙玉珍.整体式冲压发动机的几项关键技术问题[J].飞航导弹.1992,4:37-39
    [31]GB/T 10424-2002,烧结金属摩擦材料抗压强度的测定[S]
    [1]Bickes R W, Grubelich M C, Merson J A, et al. An Overview of Semiconductor Bridge, SCB, Applications at Sandia National Laboratories [R].1995,95:2549-2554
    [2]Bickes Jr. Smart explosive ignitor:US Patent 4843964[P].1989
    [3]Bernardo Martinez Tovar, Martin C. Foster. Titanium Semiconductor bridge igniter. [P] 20070056459AL,2007
    [4]Bicks,R. W. Jr. Semiconductor bridge devoplopment technology transfer Symposium. [R] 2007,07:22110
    [5]Roland M. F. Winfried B.. Ulrich K.. Bridgeignite [P]. US,68110815b2,2004
    [6]Boucher C., Novotney D. Performance evaluation of an addressable integrated ordnance system [R] AIAA,2001,3636
    [7]Tarbell W. and Sanchez D.. Oestreich M. and Prentice J. Development and production of two explosive components using SCB technology[R]. AIAA 1995,2704
    [8]David B. Novotney, Brendan M. Welch and David W. Ewick Semiconductor bridge devolopment for enhanced ESD and RF iummunity[R]. AIAA 1999,2417
    [9]Wills K., Whang D. Semiconductor bridge technologies.[R] AIAA 1995,2548
    [10]Bickes R W,Grubelich M C,Merson J A,et al. An Overview of Semiconductor Bridge,SCB,Applications at Sandia National Laboratories[R].1995,2549
    [11]Bicks,R. W. Jr. and D. E. Wackerbarth. SCB Thermite igniter studies [R] 96-2762C, 1996
    [12]杜志军,汪佩兰.半导体桥火工品在油气井中的应用[J].火工品,2005,4:53-56
    [13]Bickes R. W., Jr., Schlobohm S. L., Ewick D. W. Semiconductor Bridge (SCB) Igniter Studies:Ⅰ:Comparison of SCB and Hot-wire Pyrotechnic Actuators. SAND 87-3095C1 (DE88-008802).
    [14]Bickes R. W., Jr., Schlobohm S. L., Bonas A. G.. Semiconductor Bridge (SCB) Igniter Studies:Ⅱ:Comparison and Hot-wire Direct Propulsion Thrusters. SAND 87-3095C2 (DE88008803)
    [15]杨庆,汪佩兰,金建峰.常规弹药弹道修正用推冲器的国内外研究概况[J].含能材料,2008,16(4):474-479
    [16]Bickes R. W., Jr., Schlobohm S. L.. Transformer Coupled Semiconductor Bridge Igniter for Low Voltage Ignition from a High Voltage Source. SAND 90-0001C (DE90-009974)
    [17]Nerheim Eldon, Hoff Dave. Integrated Silicon Secondary Explosive Detonator, US Patent 4862803,1989,9
    [18]Headley P. S., Bickes R. W., Jr. A Semiconductor Bridge (SCB) Primary Explosive Detonator[R]. SAND 86-2045,1986,7
    [19]Grubelich M. C., Bickes R. W., Jr. Ignition and Deflagration-to-detonation Characteristics of HMX and PETN Columns Employing SCB Ignition[R]. SAND 95-2579C (DE96012949)
    [20]Motley Jerry. Explosive Detonation Apparatus.US Patent 5503077,1996,4
    [21]Francois Prinz, Kent Steeves, Perter L. C. Atkeson et al. Programmable Electronic Time Delay Initiator.US005460093 A,1995,10.
    [22]金峰,康小明.半导体桥结构设计分析[J].爆破器材,2009,37(1):21-24
    [23]ZHOU Bin, MAO Guo-qiang, QIN Zhi-chun. Effect of V-type Angle and Hole of Semiconductor Bridge on Electro-explosive Performance[J]. Chinese Journal of energetic materials,2009,17(3):349
    [24]张文超,张伟,徐振相.半导体桥的研究进展与发展趋势[J].爆破器材,2009,38(2):21-24
    [25]Lee Kye-Nam, Park Myung-Il, Choi Sung-Ho, et al. Characteristics of plasma generated by polysilicon semiconductor bridge(SCB)[J]. Sensors and Actuators A,2002,96: 252~257
    [26]周彬,秦志春,毛国强.半导体桥长宽比对其发火性能的影响[J].南京理工大学学报(自然科学版).2009,2:235-237
    [27]毛国强.低发火能量、高安全性半导体桥的研究[D].南京:南京理工大学,2007
    [28]郝建春.使用半导体桥(SCB)以极低的能量点燃烟火剂[J].爆破器材,1993,2:34-37
    [29]胡剑书,焦清介.恒流作用下V型半导体桥的电热特性研究[J].煤矿爆破,2005,(4):4-6
    [30]胡剑书,焦清介.半导体桥电热性质初探[J].工程爆破,2006,1:90-93
    [31]胡剑书,焦清介.半导体桥升温方程研究[J].工程爆破,2008,14(2):77-80
    [32]胡剑书.微型半导体桥发火器件技术研究[D].北京理工大学,2006
    [33]杨贵丽,焦清介,金兆鑫,徐新春.半导体桥爆发临界性实验研究[J].火工品,2010,1:1-3
    [34]杨贵丽,焦清介.双V型半导体桥电阻计算方法研究[J].火工品,2009,3:1-4
    [35]杨贵丽.微型半导体桥换能及发火规律研究[D].北京理工大学,2010.
    [36]马鹏,朱顺官,徐大伟,张琳,张垒,陈厚和.叠氮化铅半导体桥点火研究[J].火工品,2010,1:21-24
    [37]冯红艳,朱顺官,张琳,李燕,沈瑞琪.斯蒂芬酸铅的半导体桥点火试验研究[J].兵工学报,2010,31(6):674-677
    [38]徐禄,张琳,冯红艳,刘丽娟,朱顺官.降低药剂SCB点火能量的研究进展[J].含能材料,2008,5:639-646
    [39]马鹏,朱顺官,张琳,张垒,徐禄.叠氮肼镍半导体桥点火研究[J].含能材料,2010,2:213-216
    [40]马鹏,朱顺官,张琳,陈厚和.两种粒度叠氮化铅半导体桥点火特性研究[J].含能材料,2012,2:198-201
    [41]Benson D. A., Larsen M. E. Semiconductor bridge:A plasma generator for ignition of explosives[J]. J. Appl. Phys.,1987,62(5):1622~1627
    [42]Kim J.-U., Park C.-O., Park M.-I., Kim S.-H., Lee J.-B.. Characteristics of semiconductor bridge (SCB) plasma generated in a micro-electro-mechanical system (MEMS)[J]. Phy. Let. A,2002,305:413~418
    [43]Ewick D. W., Marshall P. N., Rode K. A. Hybrid Electronic Detonator Delay Circuit Assembly. US005929368A,1999,7
    [44]Kim J., Kim S. G. Correlated Electrical and Optical Measurements of Firing Semiconductor Bridges[J]. J Vac Sci Technol B,1997,15 (6):1943~1950
    [45]Kim J., Roh T. M., Cho K.-I., Jungling K. C.. Optical Characteristics of Silicon Semiconductor Bridges Under High Current Density Condition[J]. IEEE Trans. Electron Devices,2001,48(5):852~857
    [46]祝明水,蒋明,何碧.半导体桥点火器设计[J].工程物理研究院科技年报,2006,1:171-172
    [47]万晓霞.药剂等离子体点火实验与敏化技术研究[D].南京理工大学,2008
    [48]冯红艳.SCB等离子体与药剂作用机理研究[D].南京理工大学,2010

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700