对烟粉虱抗性不同番茄材料叶表腺毛和次生代谢物质差异分析及抗性QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
番茄(Solanum lycopersicum.Mill)生长过程中易受多种病虫害的影响,属于病虫害多发的蔬菜作物。B型烟粉虱属于世界性入侵害虫,2007年以来烟粉虱危害对我国番茄生产造成了毁灭性的打击,南方露地和北方保护地番茄严重减产甚至绝收。目前无论是国际市场还是国内市场都没有成熟的番茄抗烟粉虱品种。与番茄抗病和抗逆性研究相比,番茄抗虫性机理更为复杂,遗传背景较为薄弱,严重阻碍了抗虫种质资源的利用,抗虫基因的转化和抗虫育种的进展。
     针对以上问题。本研究以普通番茄(S. lycopersicum)‘9706’、‘LA3556’、‘毛粉802’,潘那利番茄(S. pennellii)‘LA0716’,多毛番茄(S. habrochaites)‘LA2329’、‘LA1777’、‘PI134417’和醋栗番茄(S. pimpinellifolium)‘TO937’、‘PI126933’为试验材料,通过对番茄叶表腺毛类型、密度和次生代谢物质差异分析及与番茄对烟粉虱抗性的相关性分析;明确了不同番茄材料抗虫性状差异,进而确定了番茄抗虫性状与番茄对烟粉虱抗性间的关系;分析接烟粉虱处理后番茄叶表次生代谢物质的变化及相关基因表达量的变化,探讨不同番茄材料对烟粉虱的抗性机制;同时对番茄抗烟粉虱相关QTL进行分析。主要研究结果如下:
     1.多毛番茄‘LA2329’、‘LA1777’和‘PI134417’和潘那利番茄‘LA0716’对烟粉虱抗性最强;醋栗番茄‘TO937’的抗性具有明显的发育阶段特异性;普通番茄‘9706’、‘LA3556’、‘毛粉802’和醋栗番茄‘PI126933’对烟粉虱无抗性。
     2.不同番茄材料叶表腺毛类型和密度具有显著的种间和种内差异。抗烟粉虱的多毛番茄LA1777、LA2329、PI134417,潘那利番茄LA0716和醋栗番茄TO937叶表密布有腺体的Ⅳ型腺毛,其密度>5个·mm-2;不抗烟粉虱的普通番茄9706、LA3556、毛粉802及醋栗番茄‘PI126933’叶表主要为无腺体的Ⅲ型腺毛,密度为3.4~10.6个·mm-2。此外,3份多毛番茄叶表Ⅵ型腺毛密度显著高于其他番茄材料。叶表Ⅳ型腺毛密度和萜类物质含量与叶表烟粉虱产卵量显著负相关;Ⅵ型腺毛密度与叶表萜类物质含量显著正相关,与烟粉虱产卵量无相关性;叶表无腺体的Ⅲ型腺毛密度与烟粉虱产卵量显著正相关。
     3.本研究中,抗烟粉虱的3份多毛番茄叶表萜类物质的种类和含量高于其他番茄材料,同时具有显著的种内差异。‘LA1777’叶表萜类物质共有24种,包括3种单萜类物质和21种倍半萜类物质,其中CⅠ类和CⅡ类倍半萜类物质含量差异不大。‘LA2329’的萜类物质共有24种,包括5种单萜和19种倍半萜类物质,主要为CⅡ类倍半萜和与之结构相同的倍半萜类物质。‘PI134417’中萜类物质为14种,包含1种单萜和13种倍半萜类物质,主要为CⅠ类倍半萜和与之结构相同的倍半萜类物质。抗烟粉虱的潘那利番茄‘LA0716’和醋栗番茄‘TO937’与不抗烟粉虱的普通番茄‘9706’、‘LA3556’、‘毛粉802’和醋栗番茄‘PI126933’叶表共检测到10种萜类物质,包括6种单萜和4种CⅠ类倍半萜。不同发育时期,番茄叶表萜类物质种类变化较小,物质含量差异显著。
     4.接烟粉虱处理后,多毛番茄‘LA1777’共有21种倍半萜类物质具有显著差异。接虫8h、48h和21d处理后,分别有3种、8种和10种萜类物质其含量显著增加。‘LA2329’共有12种倍半萜类物质具有显著差异。接虫8h和48h处理后,含量较高的7种物质,含量显著降低,4种微量的物质,含量显著增加;接虫21d处理后,11种物质含量均显著增加。‘PI134417’只有2种倍半萜类物质具有显著差异。接虫48h后,物质含量显著降低,接虫21d后,含量显著增加。
     5.萜类合成途径的基因表达分析显示,3份多毛番茄材料萜类物质合成途径中基因表达量显著高于其他番茄材料,说明番茄可在转录水平调控倍半萜类物质的合成。接烟粉虱处理后,基因表达差异最大的为前体物质FPP合酶基因FPS和萜类合酶基因TPS9、TPS12和SSTLH3,其基因表达量与倍半萜类物质含量基本一致,说明这几个基因为调控萜类物质含量积累的主要基因。
     6.利用多毛番茄‘LA2329’和普通番茄‘9706’构建的BC1群体中,共定位到33个与番茄抗烟粉虱相关的QTL。叶片烟粉虱成虫附着量和产卵量定位的QTL位点相同,共定位到8个QTL,其中2个主效QTL定位在2号染色体,分别介于标记InDel_FT45~SSR57之间和SSR57~InDel_FT49之间,解释的表型变异率分别为33.2%和39.8%。
A number of arthropod pests attack tomato throughout its production cycle. Bemisia tabaci(Gennadius) biotype B is a worldwide pest and since2007has become a severe pest in China causingextreme damage to field tomato production in southern China and to greenhouse tomato production innorthern China. There are no tomato varieties resistant to whitefly in the international and domesticmarkets. Compared with disease and abiotic stress resistance mechanisms, tomato insect resistancemechanisms are more complex and in only a few instances have the genetic basis for resistance beeninvestigated. These problems prevent use of insect-resistant germplasm resources, transformation ofinsect resistance genes and development of breeding for insect resistance.
     S.lycopersicum ‘9706’,‘LA3556’,‘maofen802’, S.habrochaites ‘LA2329’,‘LA1777’,‘PI134417’,S. pennellii ‘LA0716’and S. Pimpinellifolium ‘TO937’,‘PI126933’ were used in this study. In order toillustrate the mechanism of different tomato accessions resistance to Bemisia tabaci. This reasearchinvolved correlational analysis for trichomes, secondary metabolites on leaf surface and resistance towhitefly among the tomato accessions; secondary metabolite profiles on the leaf surfaces, geneexpression resulting from several whitefly treatments and identification of QTL‘s associated withresistance to Bemisia tabaci in S. habrochaites LA2329. Main results for this study are as follows:
     1. The resistance of S.habrochaites ‘LA2329’,‘LA1777’,‘PI134417’and S. pennellii ‘LA0176’towhitefly was the strongest. The resistance of S. pimpinellifolium ‘TO937’ to whitefly was significantdifference in different developmental stages. S.lycopersicum ‘9706’,‘LA3556’,‘maofen802’ and S.Pimpinellifoliu ‘PI126933’ were sensitive to whitefly.
     2. Trichome type and density on abaxial leaf surfaces of the different tomato accessions showedsignificant inter-and intra-specific differences. Type Ⅳ and Ⅵ trichome densities were superior onabaxial leaf surfaces of S. habrochaites, the densities of them were more than5·mm-2. Type Ⅳ trichomedensities were superior on abaxial leaf surfaces of S. pennellii and S. pimpinellifolium ‘TO937’, thedensities were6.7and15.4·mm-2, respectively. Other tomato accessions trichomes on abaxial leafsurfaces were mainly non-glandular trichomes, densities were3.4~10.6·mm-2. Type Ⅳ and Ⅵ trichomedensities were less than4·mm-2on abaxial leaf surface of these tomato accessions. Density of type Ⅳtrichomes, wax content on leaf surfaces, and terpenoid content were significantly negative correlatedwith number of whitefly eggs laid on abaxial leaf surfaces. Conversely, density of type Ⅲ trichomeswas positive correlated with the number of whitefly eggs laid on abaxial leaf surfaces. Density of typeⅥ trichome was positive correlated with terpenoid content, but not correlated with number of whiteflyeggs laid on abaxial leaf surfaces.
     3. Terpenoids of S. habrochaites ‘LA2329’,‘LA1777’ and ‘PI134417’ were mainly sesquiterpenes,which showed significant inter-and intra-specific differences. Terpenoids of ‘LA1777’ were25compositions including3monoterpenes and22sesquiterpenes that comprised of type CⅠand CⅡsesquiterpenes. Terpenoids of ‘LA2329’ were24compositions including5monoterpenes and16 sesquiterpenes that comprised of type CⅡ sesquiterpenes and sesquiterpenes with the same chemicalstructure of type CⅡ sesquiterpenes. Terpenoids of ‘PI134417’ were14compositions including1monoterpenes and13sesquiterpenes that comprised of type CⅠ sesquiterpenes and sesquiterpenes withthe same chemical structure as type CⅠ sesquiterpenes. Conversely,terpenoids of S. lycopersicum, S.pennellii and S. pimpinellifolium were mainly monoterpenes, which were10compositions andcomprised of6monoterpenes and4type CⅠ sesquiterpenes, which showed little diversity among thethree tomato species. Terpenoid composition was relatively small different among developmental stages,but terpenoid concentration differed significantly among developmental stages.
     4. Secondary metabolites were significantly different among3tomato accessions of S.habrochaitesafter whitefly treatment,compared to uninfested controls. A total of21kinds of sesquiterpenes of‘LA1777’ were significant difference after whitefly treatment. After8h by whitefly adults infestion,48h exposure to whitely eggs and21d by whitefly nymphs infestion,3sesquiterpenes,8sesquiterpenesand10sesquiterpenes significantly increased. A total of12kinds of sesquiterpenes of ‘LA2329’ weresignificant difference after whitefly treatment. After8h by whitefly adults infestion and48h exposureto whitely eggs7sesquiterpenes significantly decreased and4sesquiterpenes significantly increased.After21d by whitefly nymphs infestion,11sesquiterpenes significantly increased. A total of2kinds ofsesquiterpenes of ‘PI134417’ were significant difference after whitefly treatment. After8h by whiteflyadults infestion and48h exposure to whitely eggs these sesquiterpenes significantly decreased, andafter21d by whitefly nymphs infestion, significantly increased.
     5. Expression of genes associated with tomato terpenoid biosynthesis of S. habrochaites‘LA2329’,‘LA1777’and ‘PI134417’were highter than others tomato accessions. The result illustrategenes control sesquiterpenes biosynthesis in the transcriptional level. The terpenoid gene expression oftomato accessions was not significant affected by treatment of adult whiteflies. Expressions of FPS,TPS9, TPS12and SSTLH3of tomato accessions were significantly difference after whitefly treatment,compared to uninfested controls. This suggest FPS,TPS9,TPS12and SSTLH3were the key geneswhich regulate sesquiterpenes biosynthesis.
     6.33QTL associated with insect-resistance were mapped in the BC1population generated fromtomato cultivar‘9706’crossed with S. habrochaites‘LA2329’.8QTL associated with adult whiteflynumbers and oviposition numbers were located in the same locus. Of the8QTL,2major QTL werelocated in the interval defined by the markers InDel_FT45~SSR57and SSR57~InDel_FT49onchromosome2and explained33.2%and39.8%of phenotypic variation,respectively.
引文
1.高建昌,郭广君,国艳梅,王孝宣,张友军,杜永臣,不同番茄材料对B型烟粉虱个体发育和繁殖能力的影响.生态学报,2011,31(23):7211-7217
    2.刘冰,杜永臣,王孝宣,国艳梅,高建昌,朱德蔚,戴善书,利用高代回交群体定位醋栗番茄发芽期与幼苗期耐冷QTL.园艺学报2010,37(7):1093-1101
    3.秦永生,叶文雪,刘任重,张天真,郭旺珍,陆地棉纤维品质相关QTL定位研究.中国农业科学,2009,42(12):4145-4154
    4.王红,王花红,马晨菲,刘本叶,李国凤,许国旺,叶和春,基于代谢组学方法的青蒿素生物合成研究.植物代谢组学—方法与应用.北京:化学工业出版社,2011:235-259
    5. Alba J.M., Montserrat M., Fern¨¢ndez-Mu oz R., Resistance to the two-spotted spider mite(Tetranychus urticae) by acylsucroses of wild tomato (Solanum pimpinellifolium) trichomesstudied in a recombinant inbred line population. Experimental and Applied Acarology2009,47(1):35-47
    6. Allison J.D., Daniel Hare J., Learned and naive natural enemy responses and the interpretation ofvolatile organic compounds as cues or signals. New Phytologist2009,184(4):768-782
    7. Alonso W.R., Rajaonarivony J., Gershenzon J., Croteau R., Purification of4S-limonene synthase, amonoterpene cyclase from the glandular trichomes of peppermint (Mentha x piperita) andspearmint (Mentha spicata). Journal of Biological Chemistry1992,267(11):7582-7587
    8. Anderson P.K., Morales F.J. and Tropical C.I.d.A., Whitefly and Whitefly-borne viruses in thetropics: building a knowledge base for global action. Centro Internacional de Agricultura Tropical.2005
    9. Antonious D.G.F., Kochhar T.S., Zingiberene and curcumene in wild tomato. Journal ofEnvironmental Science and Health, Part B2003,38(4):489-500
    10. Antonious G.F., Production and quantification of methyl ketones in wild tomato accessions.Journal of Environmental Science and Health, Part B2001,36(6):835-848
    11. Arimura G., Kost C., Boland W., Herbivore-induced, indirect plant defences. Biochimica etBiophysica Acta (BBA)-Molecular and Cell Biology of Lipids2005,1734(2):91-111
    12. Arimura G.I., Huber D.P., Bohlmann J., Forest tent caterpillars (Malacosoma disstria) induce localand systemic diurnal emissions of terpenoid volatiles in hybrid poplar (Populus trichocarpa×deltoides): cDNA cloning, functional characterization, and patterns of gene expression of(-)-germacrene D synthase, PtdTPS1. The Plant Journal2004,37(4):603-616
    13. Avila J., Nieto C., Ca as L., Benito M.J., Paz-Ares J., Petunia hybrida genes related to the maizeregulatory C1gene and to animal myb proto-oncogenes. The Plant Journal2002,3(4):553-562
    14. Baldin E.L.L., Vendramim J.D., Louren o A.L., Resistance of tomato genotypes to the whiteflyBemisia tabaci (Gennadius) biotype B (Hemiptera: Aleyrodidae). Neotropical Entomology2005,34(3):435-441
    15. Bas N., Mollema C., Lindhout P., Resistance in Lycopersicon hirsutum f. glabratum to thegreenhouse whitefly (Trialeurodes vaporariorum) increases with plant age. Euphytica1992,64(3):189-195
    16. Bede J.C., Musser R.O., Felton G.W., Korth K.L., Caterpillar herbivory and salivary enzymesdecrease transcript levels of Medicago truncatula genes encoding early enzymes in terpenoidbiosynthesis. Plant Molecular Biology2006,60(4):519-531
    17. Bellotti A.C., Arias B., Host plant resistance to whiteflies with emphasis on cassava as a case study.Crop Protection2001,20(9):813-823
    18. Ben-Israel I., Yu G., Austin M.B., Bhuiyan N., Auldridge M., Nguyen T., Schauvinhold I., Noel J.P.,Pichersky E., Fridman E., Multiple biochemical and morphological factors underlie the productionof methylketones in tomato trichomes. Plant Physiology2009,151(4):1952
    19. Besser K., Harper A., Welsby N., Schauvinhold I., Slocombe S., Li Y., Dixon R.A., Broun P.,Divergent regulation of terpenoid metabolism in the trichomes of wild and cultivated tomatospecies. Plant Physiology2009,149(1):499-514
    20. Biswas K.K., Foster A.J., Aung T., Mahmoud S.S., Essential oil production: relationship withabundance of glandular trichomes in aerial surface of plants. Acta Physiologiae Plantarum2009,31(1):13-19
    21. Bleeker P.M., Diergaarde P.J., Ament K., Guerra J., Weidner M., Schütz S., de Both M.T.J., HaringM.A., Schuurink R.C., The role of specific tomato volatiles in tomato-whitefly interaction. PlantPhysiology2009,151(2):925-935
    22. Bleeker P.M., Spyropoulou E.A., Diergaarde P.J., Volpin H., De Both M.T.J., Zerbe P., Bohlmann J.,Falara V., Matsuba Y., Pichersky E., RNA-seq discovery, functional characterization, andcomparison of sesquiterpene synthases from Solanum lycopersicum and Solanum habrochaitestrichomes. Plant Molecular Biology2011,77(4):323-336
    23. Botella-Pavia P.B.O., Phillips M.A, Carretero-Paulet L, Boronat A, Rodriguez-Concepcion M(2004) Regulation of carotenoid biosynthesis in plants: evidence for a key role ofhydroxymethylbutenyl diphosphate reductase in controlling the supply of plastidial isoprenoidprecursors. Plant Journal40:188-199
    24. Broekgaarden C., Poelman E.H., Steenhuis G., Voorrips R.E., Dicke M., Vosman B., Genotypicvariation in genome-wide transcription profiles induced by insect feeding: Brassicaoleracea–Pieris rapae interactions. BMC genomics2007,8(1):239
    25. Brown J., Frohlich D., Rosell R., The sweetpotato or silverleaf whiteflies: biotypes of Bemisiatabaci or a species complex? Annual Review of Entomology.1995,511-534
    26. Byrne F.J., Castle S., Prabhaker N., Toscano N.C., Biochemical study of resistance to imidaclopridin B biotype Bemisia tabaci from Guatemala. Pest Management Science2003,59(3):347-352
    27. Carter C.D., Gianfagna T.J., Sacalis J.N., Sesquiterpenes in glandular trichomes of a wild tomatospecies and toxicity to the Colorado potato beetle. Journal of Agricultural and Food Chemistry1989a,37(5):1425-1428
    28. Carter C.D., Sacalis J.N., Gianfagna T.J., Zingiberene and resistance to Colorado potato beetle inLycopersicon hirsutum f. hirsutum. Journal of Agricultural and Food Chemistry1989b,37(1):206-210
    29. Carter C.D., Snyder J.C., Mite responses in relation to trichomes of Lycopersicon esculentum x L.hirsutum F2hybrids. Euphytica1985,34(1):177-185
    30. Channarayappa C., Shivashankar G., Muniyappa V., Frist R., Resistance of Lycopersicon species toBemisia tabaci, a tomato leaf curl virus vector. Canadian Journal of Botany1992,70(11):2184-2192
    31. Chatzivasileiadis E.A. and Sabelis M.W., Toxicity of methyl ketones from tomato trichomes toTetranychus urticae Koch. Experimental and Applied Acarology1997,21(6):473-484
    32. Chu C., Natwick E., Chen T., Henneberry T., Analyses of cotton leaf characteristics effect onBemisia tabaci (Homoptera: Aleyrodidae) biotype B colonization on cotton in Arizona andCalifornia. Southwestern Entomologist2003,28(4):235-240
    33. Chung S.H., Felton G.W., Specificity of induced resistance in tomato against specialistLepidopteran and Coleopteran species. Journal of chemical ecology2011,37(4):378-386
    34. Croteau R., Karp F., Biosynthesis of monoterpenes: Preliminary characterization of bornylpyrophosphate synthetase from sage ( Salvia officinalis) and demonstration that geranylpyrophosphate is the preferred substrate for cyclization. Archives of Biochemistry and Biophysics1979,198(2):512-522
    35. De Azevedo S.M., Ventura Faria M., Maluf W.R., Barneche de Oliveira A.C., De Freitas J.A.,Zingiberene-mediated resistance to the South American tomato pinworm derived fromLycopersicon hirsutum var. hirsutum. Euphytica2003,134(3):347-351
    36. Denholm I., Cahill M., Byrne F., Devonshire A., Progress with documenting and combatinginsecticide resistance in Bemisia. Bemisia1995:577-603
    37. Deschamps C., Gang D., Dudareva N., Simon J.E., Developmental regulation of phenylpropanoidbiosynthesis in leaves and glandular trichomes of basil (Ocimum basilicum L.). InternationalJournal of Plant Sciences2006,167(3):447-454
    38. Dicke M., Baldwin I.T., The evolutionary context for herbivore-induced plant volatiles: beyond the‘cry for help’. Trends in Plant Science2010,15(3):167-175
    39. Dicke M., Takabayashi J., Posthumus M.A., Schütte C., Krips O.E., Plant-phytoseiid interactionsmediated by herbivore-induced plant volatiles: variation in production of cues and in responses ofpredatory mites. Experimental and Applied Acarology1998,22(6):311-333
    40. Dimock M.B., Kennedy G.G., Williams W.G., Toxicity studies of analogs of2-tridecanone, anaturally occurring toxicant from a wild tomato. Journal of chemical ecology1982,8(5):837-842
    41. Dudareva N., Andersson S., Orlova I., Gatto N., Reichelt M., Rhodes D., Boland W., Gershenzon J.,The nonmevalonate pathway supports both monoterpene and sesquiterpene formation insnapdragon flowers. Proceedings of the National Academy of Sciences of the United States ofAmerica2005,102(3):933
    42. Duffey S., Bloem K., Plant defense-herbivore-parasite interactions and biological control.1986,
    43. Economou L.P., Lykouressis D.P., Barbetaki A.E., Time allocation of activities of two heteropteranpredators on the leaves of three tomato cultivars with variable glandular trichome density.Environmental Entomology2006,35(2):387-393
    44. Eigenbrode S., Trumble J., White K., Trichome exudates and resistance to beet armyworm(Lepidoptera: Noctuidae) in Lycopersicon hirsutum f. typicum accessions. EnvironmentalEntomology1996,25(1):90-95
    45. Eigenbrode S.D., Trumble J.T., Antibiosis to beet armyworm (Spodoptera exigua) in Lycopersiconaccessions. HortScience1993,28(9):932-934
    46. Elbert A., Nauen R., Resistance of Bemisia tabaci (Homoptera: Aleyrodidae) to insecticides insouthern Spain with special reference to neonicotinoids. Pest Management Science2000,56(1):60-64
    47. Falara V., Akhtar T.A., Nguyen T.T.H., Spyropoulou E.A., Bleeker P.M., Schauvinhold I., MatsubaY., Bonini M.E., Schilmiller A.L., Last R.L., The tomato terpene synthase gene family. PlantPhysiology2011,157(2):770-789
    48. Farag M.A., ParéP.W., C6-Green leaf volatiles trigger local and systemic VOC emissions in tomato.Phytochemistry2002,61(5):545-554
    49. Farrar R., Kennedy G., Kalloo G., Insect and mite resistance in tomato. Genetic improvement oftomato.1991:121-142
    50. Fernández-Mu oz R., Salinas M., álvarez M., Cuartero J., Inheritance of resistance to two-spottedspider mite and glandular leaf trichomes in wild tomato Lycopersicon pimpinellifolium (Jusl.) Mill.Journal of the American Society for Horticultural Science2003,128(2):188-195
    51. Fernandes M.E.S., Fernandes F.L., Silva D.J.H., Pican o M.C., Jhamc G.N., Carneiro P.C., QueirozR.B., Trichomes and hydrocarbons associated with the tomato plant antixenosis to the leafminer.Anais da Academia Brasileira de Ciências2012,84(1):201-210
    52. Fery R., Kennedy G., Genetic analysis of2-tridecanone concentration, leaf trichome characteristics,and tobacco hornworm resistance in tomato. Journal of the American Society for HorticulturalScience (USA)1987,112:886-891
    53. Firdaus S., van Heusden A.W., Hidayati N., Supena E.D.J., Visser R.G., Vosman B., Resistance toBemisia tabaci in tomato wild relatives. Euphytica2012,187(1):31-45
    54. Freitas J.A., Maluf W.R., das Gra as Cardoso M., Gomes L.A.A., Bearzotti E., Inheritance of foliarzingiberene contents and their relationship to trichome densities and whitefly resistance intomatoes. Euphytica2002,127(2):275-287
    55. Frelichowski Jr J., Juvik J., Inheritance of sesquiterpene carboxylic acid synthesis in crosses ofLycopersicon hirsutum with insect‐susceptible tomatoes. Plant breeding2005,124(3):277-281
    56. Frelichowski Jr J.E., Juvik J.A., Sesquiterpene carboxylic acids from a wild tomato species affectlarval feeding behavior and survival of Helicoverpa zea and Spodoptera exigua (Lepidoptera:Noctuidae). Journal of Economic Entomology2001,94(5):1249-1259
    57. Fridman E., Pichersky E., Metabolomics, genomics, proteomics, and the identification of enzymesand their substrates and products. Current Opinion in Plant Biology2005,8(3):242-248
    58. Gatehouse J.A., Plant resistance towards insect herbivores: a dynamic interaction. New Phytologist2002,156(2):145-169
    59. Gentile A., Webb R., Stoner A., Resistance in Lycopersicon and Solanum to greenhouse whiteflies.J. econ. Entomol1968,61(5):1355-1357
    60. George F.A. and Snyder J.C., Natural products: repellency and toxicity of wild tomato leaf extractsto the two-spotted spider mite, Tetranychus urticae Koch. Journal of Environmental Science andHealth Part B2006,41(1):43-55
    61. George F.A., Tejinder S.K. and Alvin M.S., Natural products: Seasonal variation in trichome countsand contents in Lycopersicum hirsutum f. glabratum. Journal of Environmental Science and HealthPart B2005,40(4):619-631
    62. Glover B.J., Bunnewell S., Martin C., Convergent evolution within the genus Solanum: thespecialised anther cone develops through alternative pathways. Gene2004,331:1-7
    63. Glover B.J., Perez-Rodriguez M., Martin C., Development of several epidermal cell types can bespecified by the same MYB-related plant transcription factor. Development1998,125(17):3497-3508
    64. Goertzen L.R., Small E., The defensive role of trichomes in black medick (Medicago lupulina,Fabaceae). Plant Systematics and Evolution1993,184(1):101-111
    65. Goffreda J.C., Mutschler M.A., Tingey W.M., Feeding behavior of potato aphid affected byglandular trichomes of wild tomato. Entomologia Experimentalis et Applicata1988,48(2):101-107
    66. Goupil P., Souguir D., Ferjani E., Faure O., Hitmi A., Ledoigt G., Expression of stress-relatedgenes in tomato plants exposed to arsenic and chromium in nutrient solution. Journal of PlantPhysiology2009,166(13):1446-1452
    67. Goyal S., Lambert C., Cluzet S., Mérillon J., Ramawat K.G., Secondary metabolites and plantdefence. Plant Defence: Biological Control2012:109-138
    68. Guo Z., Weston P.A., Snyder J.C., Repellency to two-spotted spider mite, Tetranychus urticaeKoch, as related to leaf surface chemistry of Lycopersicon hirsutum accessions. Journal ofchemical ecology1993,19(12):2965-2979
    69. Gurr G., McGrath D., Foliar pubescence and resistance to potato moth, Phthorimaea operculella,in Lycopersicon hirsutum. Entomologia Experimentalis et Applicata2002,103(1):35-41
    70. Heinz K.M., Zalom F.G., Variation in trichome-based resistance to Bemisia argentifolii(Homoptera: Aleyrodidae) oviposition on tomato. Journal of Economic Entomology1995,88(5):1494-1502
    71. Herde M., G rtner K., K llner T.G., Fode B., Boland W., Gershenzon J., Gatz C., Tholl D.,Identification and regulation of TPS04/GES, an Arabidopsis geranyllinalool synthase catalyzingthe first step in the formation of the insect-induced volatile C16-homoterpene TMTT. The Plant CellOnline2008,20(4):1152-1168
    72. Howe G.A., Jander G., Plant immunity to insect herbivores. Annu. Rev. Plant Biology.2008,59:41-66
    73. Iijima Y., Davidovich-Rikanati R., Fridman E., Gang D.R., Bar E., Lewinsohn E., Pichersky E.,The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes andphenylpropenes in the peltate glands of three cultivars of basil. Plant Physiology2004,136(3):3724-3736
    74. Jansen R.C., Interval mapping of multiple quantitative trait loci. Genetics1993,135(1):205-211
    75. Kang J.H., Liu G., Shi F., Jones A.D., Beaudry R.M., Howe G.A., The tomato odorless-2mutant isdefective in trichome-based production of diverse specialized metabolites and broad-spectrumresistance to insect herbivores. Plant Physiology2010a,154(1):262-272
    76. Kang J.H., Shi F., Jones A.D., Marks M.D., Howe G.A., Distortion of trichome morphology by thehairless mutation of tomato affects leaf surface chemistry. Journal of Experimental Botany2010b,61(4):1053-1064
    77. Kant M.R., Ament K., Sabelis M.W., Haring M.A., Schuurink R.C., Differential timing of spidermite-induced direct and indirect defenses in tomato plants. Plant Physiology2004,135(1):483-495
    78. Karban R., The ecology and evolution of induced resistance against herbivores. FunctionalEcology2011,25(2):339-347
    79. Kellogg B.A., Poulter C.D., Chain elongation in the isoprenoid biosynthetic pathway. CurrentOpinion in Chemical Biology1997,1(4):570-578
    80. Kennedy G., Sorenson C., Role of glandular trichomes in the resistance of Lycopersicon hirsutum f.glabratum to Colorado potato beetle (Coleoptera: Chrysomelidae). Journal of EconomicEntomology1985,78(3):547-551
    81. Kennedy G.G., Consequences of modifying biochemically mediated insect resistance inLycopersicon species: In Consequences of modifying biochemically mediated insect resistance inLycopersicon species, Natural resistance of plants to pests: role of allelochemicals. AmericanChemical Sociaty Symposium Series1986,296:130-141
    82. Kennedy G.G., Resistance in tomato and other Lycopersicon species to insect and mite pests.Genetic Improvement of Solanaceous Crops2007,2:488-519
    83. Kennedy G.G., Tomato, pests, parasitoids, and predators: tritrophic interactions involving thegenus Lycopersicon. Annual Review of Entomology2003,48(1):51-72
    84. Kessler A., Baldwin I.T., Plant responses to insect herbivory: the emerging molecular analysis.Annual Review of Plant Biology2002,53(1):299-328
    85. Kessler A., Halitschke R., Baldwin I.T., Silencing the jasmonate cascade: induced plant defensesand insect populations. Science Signalling2004,305(5684):665-668
    86. Kessler A., Heil M., The multiple faces of indirect defences and their agents of natural selection.Functional Ecology2011,25(2):348-357
    87. Kim J., Kang K., Vigil E.G., Shi F., Jones A.D., Barry C.S., Last R.L., Striking natural diversity inglandular trichome acylsugar composition is shaped by variation at the Acyltransferase2locus inthe wild tomato Solanum habrochaites. Plant Physiology2012,160(4):1854-1870
    88. Kogan M., Ortman E.F., Antixenosis a new term proposed to define painters nonpreferencemodality of resistance. Bulletin of the ESA1978,24(2):175-176
    89. Kroumova A.B., Wagner G.J., Different elongation pathways in the biosynthesis of acyl groups oftrichome exudate sugar esters from various solanaceous plants. Planta2003,216(6):1013-1021
    90. Labate J.A., Grandillo S., Fulton T., Mu os S., Caicedo A.L., Peralta I., Ji Y., Chetelat R.T., Scott J.,Gonzalo M.J., Tomato. Vegetables. Berlin: Springer Berlin Heidelberg,2007:1-125
    91. Lange W.H., Bronson L., Insect pests of tomatoes. Annual Review of Entomology1981,26(1):345-371
    92. Lapidot M., Friedmann M., Breeding for resistance to whitefly-transmitted geminiviruses. Annalsof Applied Biology2002,140(2):109-127
    93. Lapidot M., Polston J.E., Resistance to Tomato yellow leaf curl virus in tomato. Natural ResistanceMechanisms of Plants to Viruses2006:503-520
    94. Larkin J.C., Brown M.L., Schiefelbein J., How do cells know what they want to be when theygrow up? Lessons from epidermal patterning in Arabidopsis. Annual Review of Plant Biology2003,54(1):403-430
    95. Le Roux V., Dugravot S., Campan E., Dubois F., Vincent C., Giordanengo P., Wild Solanumresistance to aphids: antixenosis or antibiosis? Journal of Economic Entomology2008,101(2):584-591
    96. Leckie B.M., De Jong D.M., Mutschler M.A., Quantitative trait loci increasing acylsugars intomato breeding lines and their impacts on silverleaf whiteflies. Molecular Breeding2012:1621-1634
    97. Lemke C., Mutschler M., Inheritance of glandular trichomes in crosses between Lycopersiconesculentum and Lycopersicon pennellii. Journal of the American Society for Horticultural Science1984,109(5):592-596
    98. Li L., Zhao Y., McCaig B.C., Wingerd B.A., Wang J., Whalon M.E., Pichersky E., Howe G.A., Thetomato homolog of Coronatine-Insensitive1is required for the maternal control of seed maturation,jasmonate-signaled defense responses, and glandular trichome development. The Plant Cell Online2004,16(1):126-143
    99. Lichtenthaler H.K., The1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis inplants. Annual Review of Plant Biology1999,50(1):47-65
    100. Liedl B.E., Lawson D.M., White K.K., Shapiro J.A., Carson W.G., Trumble J.T., Mutschler M.A.,Acylsugars of the wild tomato [Lycopersicon pennellii (Corr.) D'Arcy] alters settling and reducesoviposition of Bemisia argentifolii (Silverleaf Whitefly). HortScience1995,88(3):742-748
    101. Luckwill L.C., The genus Lycopersicon.Aberdeen University Studies. Aberdeen: University press1943:1-40
    102. Maffei M.E., Gertsch J., Appendino G., Plant volatiles: production, function and pharmacology.Natural Product Reports2011,28(4):1359-1380
    103. Maliepaard C., Bas N., Van Heusden S., Kos J., Pet G., Verkerk R., Vrielink R., Zabel P., LindhoutP., Mapping of QTLs for glandular trichome densities and Trialeurodes vaporariorum (greenhousewhitefly) resistance in an F2from Lycopersicon esculentum x Lycopersicon hirsutum f. glabratum.Heredity1995,75(4):425-433
    104. Maluf W.R., Inoue I.F., Ferreira R.P.D., Gomes L.A.A., Castro E.M., Cardoso M.G., Higherglandular trichome density in tomato leaflets and repellence to spider mites. Pesquisa AgropecuáriaBrasileira2007,42(9):1227-1235
    105. McCouch S., Cho Y., Yano M., Paul E., Blinstrub M., Morishima H., Kinoshita T., Report on QTLnomenclature. Rice Genet Newsl1997,14:11
    106. McDowell E.T., Kapteyn J., Schmidt A., Li C., Kang J.H., Descour A., Shi F., Larson M.,Schilmiller A., An L., Comparative functional genomic analysis of Solanum glandular trichometypes. Plant Physiology2011,155(1):524-539
    107. Medeiros A.H., Tingey W.M., Glandular trichomes of Solanum berthaultii and its hybrids withSolanum tuberosum affect nymphal emergence, development, and survival of Empoasca fabae(Homoptera: Cicadellidae). Journal of Economic Entomology2006,99(4):1483-1489
    108. Miller B., Madilao L.L., Ralph S., Bohlmann J., Insect-induced conifer defense. White pine weeviland methyl jasmonate induce traumatic resinosis, de novo formed volatile emissions, andaccumulation of terpenoid synthase and putative octadecanoid pathway transcripts in Sitka spruce.Plant Physiology2005,137(1):369-382
    109. Momotaz A., Scott J., Schuster D., Identification of quantitative trait loci conferring resistance toBemisia tabaci in an F2population of Solanum lycopersicum x Solanum habrochaites accessionLA1777. American Society For Horticultural Science2010,135(2):134-142
    110. Moorman P.G., Newman B., Millikan R.C., Tse C.K.J., Sandler D.P., Participation rates in acase-control study: The impact of age, race, and race of interviewer. Annals of Epidemiology1999,9(3):188-195
    111. Morales F.J., Conventional breeding for resistance to whitefly-transmitted geminiviruses. CropProtect2001,20:825-833
    112. Muigai S., Bassett M., Schuster D., Scott J., Greenhouse and field screening of wild Lycopersicongermplasm for resistance to the whitefly Bemisia argentifolii. Phytoparasitica2003,31(1):27-38
    113. Muigai S., Schuster D., Snyder J., Scott J., Bassett M. and McAuslane H., Mechanisms ofresistance in Lycopersicon germplasm to the whitefly Bemisia argentifolii. Phytoparasitica2002,30(4):347-360
    114. Musetti L., Neal J.J., Resistance to the pink potato aphid, Macrosiphum euphorbiae, in twoaccessions of Lycopersicon hirsutum f. glabratum. Entomologia Experimentalis et Applicata1997,84(2):137-146
    115. Musser R.O., Hum-Musser S.M., Eichenseer H., Peiffer M., Ervin G., Murphy J.B., Felton G.W.,Herbivory: caterpillar saliva beats plant defences. Nature2002,416(6881):599-600
    116. Mutschler M., Doerge R., Liu S., Kuai J., Liedl B., Shapiro J., QTL analysis of pest resistance inthe wild tomato Lycopersicon pennellii: QTLs controlling acylsugar level and composition.Theoretical and Applied Genetics1996,92(6):709-718
    117. Nagel J., Culley L.K., Lu Y., Liu E., Matthews P.D., Stevens J.F., Page J.E., EST analysis of hopglandular trichomes identifies an O-methyltransferase that catalyzes the biosynthesis ofxanthohumol. The Plant Cell Online2008,20(1):186-200
    118. Nihoul P., Do light intensity, temperature and photoperiod affect the entrapment of mites onglandular hairs of cultivated tomatoes? Experimental and Applied Acarology1993,17(9):709-718
    119. Nombela G., Garzo E., Duque M., Mu iz M., Preinfestations of tomato plants by whiteflies(Bemisia tabaci) or aphids (Macrosiphum euphorbiae) induce variable resistance or susceptibilityresponses. Bulletin of entomological research2009,99(02):183-191
    120. Ohlroggeav J., Browseb J., Lipid biosynthesis. Plant cell1995,7:957-970
    121. Painter R.H., Insect resistance in crop plants. Soil Science1951,72(6):481
    122. Palumbo J., Horowitz A., Prabhaker N., Insecticidal control and resistance management forBemisia tabaci. Crop Protection2001,20(9):739-765
    123. Pappu H., Jones R., Jain R., Global status of tospovirus epidemics in diverse cropping systems:Successes achieved and challenges ahead. Virus Research2009,141(2):219-236
    124. Payne T., Clement J., Arnold D. and Lloyd A., Heterologous myb genes distinct from GL1enhancetrichome production when overexpressed in Nicotiana tabacum. Development1999,126(4):671-682
    125. Peiffer M., Tooker J.F., Luthe D.S., Felton G.W., Plants on early alert: glandular trichomes assensors for insect herbivores. New Phytologist2009,184(3):644-656
    126. Peralta I., Spooner D., Knapp S., The taxonomy of tomatoes: a revision of wild tomatoes (Solanumsection Lycopersicon) and their outgroup relatives in sections Juglandifolium and Lycopersicoides.Syst Bot Monogr2008,84:1-186
    127. Perring T.M., The Bemisia tabaci species complex. Crop Protection2001,20(9):725-737
    128. Price P.W., Bouton C.E., Gross P., McPheron B.A., Thompson J.N., Weis A.E., Interactions amongthree trophic levels: influence of plants on interactions between insect herbivores and naturalenemies. Annual Review of Ecology and Systematics1980,11:41-65
    129. Proffit M., Birgersson G., Bengtsson M., Reis R., Witzgall P., Lima E., Attraction and Ovipositionof Tuta absoluta Females in Response to Tomato Leaf Volatiles. Journal of Chemical Ecology2011,37(6):565-574
    130. Puterka G.J., Farone W., Palmer T., Barrington A., Structure-function relationships affecting theinsecticidal and miticidal activity of sugar esters. Journal of Economic Entomology2003,96(3):636-644
    131. Razdan M.K., Mattoo A.K., Tomato.Genetic improvement of solanaceous crops. Enfield: SciencePublishers.2005
    132. Rodríguez-López M.J., Garzo E., Bonani J., Fereres A., Fernández-Mu oz R., Moriones E.,Whitefly resistance traits derived from the wild tomato Solanum pimpinellifollium affect thepreference and feeding behavior of Bemisia tabaci and reduce the spread of tomato yellow leaf curlvirus. Phytopathology2011,101(10):1191-1201
    133. Rodriguez A.N.A.E., Tingey W.M., Muschler M.A., Acylsugars of Lycopersicon pennellii detersettling and feeding of the green peach aphid (Homoptera: Aphididae). Journal of EconomicEntomology1993,86(1):34-39
    134. Sánchez-Pe a P., Oyama K., Nú ez-Farfán J., Fornoni J., Hernandez-Verdugo S.,Marquez-Guzman J., Garzón-Tiznado J.A., Sources of resistance to whitefly (Bemisia spp.) in wildpopulations of Solanum lycopersicum var. cerasiforme (Dunal) spooner GJ Anderson et RK Jansenin Northwestern Mexico. Genetic Resources and Crop Evolution2006,53(4):711-719
    135. Saeidi Z., Mallik B., Kulkarni R., Inheritance of glandular trichomes and two-spotted spider miteresistance in cross Lycopersicon esculentum‘‘Nandi’’and Lycopersicon pennellii‘‘LA2963’’.Euphytica2007,154(1):231-238
    136. Saikia A., Muniyappa V., Epidemiology and control of tomato leaf curl virus in Southern India.Tropical Agriculture1989,66(4):350-354
    137. Sallaud C., Rontein D., Onillon S., Jabès F., DufféP., Giacalone C., Thoraval S., Escoffier C.,Herbette G., Leonhardt N., A novel pathway for sesquiterpene biosynthesis from Z, Z-farnesylpyrophosphate in the wild tomato Solanum habrochaites. The Plant Cell Online2009,21(1):301-317
    138. Schilmiller A., Shi F., Kim J., Charbonneau A.L., Holmes D., Daniel Jones A., Last R.L., Massspectrometry screening reveals widespread diversity in trichome specialized metabolites of tomatochromosomal substitution lines. The Plant Journal2010a,62(3):391-403
    139. Schilmiller A.L., Charbonneau A.L., Last R.L., Identification of a BAHD acetyltransferase thatproduces protective acyl sugars in tomato trichomes. Proceedings of the National Academy ofSciences2012,109(40):16377-16382
    140. Schilmiller A.L., Last R.L., Pichersky E., Harnessing plant trichome biochemistry for theproduction of useful compounds. The Plant Journal2008,54(4):702-711
    141. Schilmiller A.L., Miner D.P., Larson M., McDowell E., Gang D.R., Wilkerson C., Last R.L.,Studies of a biochemical factory: tomato trichome deep expressed sequence tag sequencing andproteomics. Plant Physiology2010b,153(3):1212-1223
    142. Schilmiller A.L., Schauvinhold I., Larson M., Xu R., Charbonneau A.L., Schmidt A., Wilkerson C.,Last R.L., Pichersky E., Monoterpenes in the glandular trichomes of tomato are synthesized from aneryl diphosphate precursor rather than geranyl diphosphate. Proceedings of the National Academyof Sciences2009,106(26):10865-10870
    143. Schuster D.J., Relationship of silverleaf whitefly population density to severity of irregularripening of tomato. HortScience2001,36(6):1089-1090
    144. Serna L., A network of interacting factors triggering different cell fates. The Plant Cell Online2004,16(9):2258-2263
    145. Sharaf N., Chemical control of Bemisia tabaci. Agriculture, Ecosystems&Environment1986,17(1):111-127
    146. Shepherd R.W., Bass W.T., Houtz R.L., Wagner G.J., Phylloplanins of tobacco are defensiveproteins deployed on aerial surfaces by short glandular trichomes. The Plant Cell Online2005,17(6):1851-1861
    147. Shepherd R.W., Wagner G.J., Phylloplane proteins: emerging defenses at the aerial frontline?Trends in Plant Science2007,12(2):51-56
    148. Siebert D.J., Localization of salvinorin A and related compounds in glandular trichomes of thepsychoactive sage, Salvia divinorum. Annals of Botany2004,93(6):763-771
    149. Simmons A.T., Gurr G.M., Trichome-based host plant resistance of Lycopersicon species and thebiocontrol agent Mallada signata: are they compatible? Entomologia Experimentalis et Applicata2004,113(2):95-101
    150. Simmons A.T., Gurr G.M., Trichomes of Lycopersicon species and their hybrids: effects on pestsand natural enemies. Agricultural and Forest Entomology2005,7(4):265-276
    151. Simmons A.T., Gurr G.M., McGrath D., Martin P.M., Nicol H.I., Entrapment of Helicoverpaarmigera (Hübner)(Lepidoptera: Noctuidae) on glandular trichomes of Lycopersicon species.Australian Journal of Entomology2004,43(2):196-200
    152. Simmons A.T., Gurr G.M., McGrath D., Nicol H.I., Martin P.M., Trichomes of Lycopersicon spp.and their effect on Myzus persicae (Sulzer)(Hemiptera: Aphididae). Australian Journal ofEntomology2003,42(4):373-378
    153. Slocombe S.P., Schauvinhold I., McQuinn R.P., Besser K., Welsby N.A., Harper A., Aziz N., Li Y.,Larson T.R., Giovannoni J., Transcriptomic and reverse genetic analysesof branched-chain fattyacid and acyl sugar production in Solanum pennellii and Nicotiana benthamiana. Plant Physiology2008,148(4):1830-1846
    154. Snyder J., Simmons A., Thacker R., Attractancy and ovipositional response of adult Bemisiaargentifolii (Homoptera: Aleyrodidae) to type IV trichome density on leaves of Lycopersiconhirsutum grown in three day-length regimes. Journal of Entomological Science1998,33(3):270-281
    155. Suinaga F.A., Casali V.W.D., Pican o M.C., da Silva D.J.H., Capacidade combinatória de setecaracteres de resistência de Lycopersicon spp. àtra a do tomateiro. Hortic. bras2004,22(2):243-248
    156. Suinaga F.A., Casali V.W.D., Silva d.J.H., Pican o M.C., Dissimilaridade genética de fontes deresistência de Lycopersicon spp. a Tuta absoluta (Meyrick,1917)(Lepidoptera: Gelechiidae).Revista Brasileira de Agrociência2003,9(4):371-376
    157. Taiz L., Zeiger E., Secondary metabolites and plant defense. Plant Physiology. SunderlandMassachusetts: Sinauer Associates, Inc.,2006:283
    158. Thaler J.S., Farag M.A., Paré P.W., Dicke M., Jasmonate-deficient plants have reduced direct andindirect defences against herbivores. Ecology Letters2002,5(6):764-774
    159. Tooker J., Peiffer M., Luthe D.S., Felton G.W., Trichomes as sensors: Detecting activity on the leafsurface. Plant signaling&behavior2010,5(1):73-75
    160. Van Den Boom C.E.M., Van Beek T.A., Posthumus M.A., De Groot A., Dicke M., Qualitative andquantitative variation among volatile profiles induced by Tetranychus urticae feeding on plantsfrom various families. Journal of Chemical Ecology2004,30(1):69-89
    161. Van Der Hoeven R.S., Monforte A.J., Breeden D., Tanksley S.D., Steffens J.C., Genetic control andevolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L. hirsutum. The PlantCell Online2000,12(11):2283-2294
    162. Van Der Meijden E., Klinkhamer P.G., Conflicting interests of plants and the natural enemies ofherbivores. Oikos2003,89(1):202-208
    163. Walling L.L., Avoiding effective defenses: strategies employed by phloem-feeding insects. PlantPhysiology2008,146(3):859-866
    164. Walling L.L., The myriad plant responses to herbivores. Journal of Plant Growth Regulation2000,19(2):195-216
    165. Wang G., Tian L., Aziz N., Broun P., Dai X., He J., King A., Zhao P.X., Dixon R.A., Terpenebiosynthesis in glandular trichomes of hop. Plant Physiology2008,148(3):1254-1266
    166. Wang S., Wang J.-W., Yu N., Li C.-H., Luo B., Gou J.-Y., Wang L.-J., Chen X.-Y., Control of planttrichome development by a cotton fiber MYB gene. The Plant Cell Online2004,16(9):2323-2334
    167. Werker E., Trichome diversity and development. Advances in Botanical Research2000,31:1-35
    168. Weston P., Johnson D., Burton H., Snyder J., Trichome secretion composition, trichome densities,and spider mite resistance of ten accessions of Lycopersicon hirsutum. J. American Sociaty.Hortculture Science1989,114:492-498
    169. Weston P.A., Snyder J.C., Thumbtack bioassay: a quick method for measuring plant resistance totwospotted spider mites (Acari: Tetranychidae). Journal of Economic Entomology1990,83(2):500-504
    170. Wilkens R.T., Shea G.O., Halbreich S., Stamp N.E., Resource availability and the trichomedefenses of tomato plants. Oecologia1996,106(2):181-191
    171. Wu J., Baldwin I.T., New insights into plant responses to the attack from insect herbivores. AnnualReview of Genetics2010,44:1-24
    172. Yang C., Li H., Zhang J., Luo Z., Gong P., Zhang C., Li J., Wang T., Zhang Y. and Ye Z., Aregulatory gene induces trichome formation and embryo lethality in tomato. Proceedings of theNational Academy of Sciences2011,108(29):11836-11841
    173. Yu G., Nguyen T.T., Guo Y., Schauvinhold I., Auldridge M.E., Bhuiyan N., Ben-Israel I., Iijima Y.,Fridman E., Noel J.P., Enzymatic functions of wild tomato methylketone synthases1and2. PlantPhysiology2010,154(1):67-77
    174. Zhao J., Davis L.C., Verpoorte R., Elicitor signal transduction leading to production of plantsecondary metabolites. Biotechnology Advances2005,23(4):283
    175. Zhao M., Morohashi K., Hatlestad G., Grotewold E., Lloyd A., The TTG1-bHLH-MYB complexcontrols trichome cell fate and patterning through direct targeting of regulatory loci. Development2008,135(11):1991-1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700