FMDV中和表位在HBc上的展示及其嵌合蛋白在重组腺病毒中的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
口蹄疫(Foot-and-mouth disease, FMD)是主要感染偶蹄动物的一种急性、高度接触性传染病。该病以其流行广、传播快、危害大的特点成为威胁偶蹄动物的首位传染病。鉴于口蹄疫所带来的严重的经济和社会影响,国际兽医局(OIE)将其列为必须通报的疾病之一,我国也将其列为一类动物传染病的第一位。口蹄疫的病原为口蹄疫病毒(Foot-and-mouth disease Virus, FMDV),是小核糖核酸病毒科口蹄疫病毒属的唯一成员,共包括O、A、C、SAT1、SAT2、SAT3、Asia1型七个血清型,不同血清型间无交叉保护。该病毒的高度变异性是口蹄疫难于防控的主要原因。
     在我国,疫苗接种是防控FMD的主要手段。虽然目前广泛应用的全病毒灭活苗具有免疫原性强,保护力好等优点,但在应用过程中,也发现其具有免疫期短、副反应强及存在安全隐患等诸多缺陷,这使FMDV新型疫苗成为当今的研究热点,其中,利用病毒样颗粒展示FMDV抗原表位表位展示疫苗,因其具有天然的抗原递呈特征、安全性好等优势而展现出广阔的开发前景。
     本研究选择乙肝核心抗原(Hepatitis B Virus core antigen, HBc)蛋白骨架作为载体,将Asia1型和O型FMDV的中和表位设计成特定的展示结构插入其中,由此构建的嵌合蛋白以pcDNA3.1(+)载体在真核细胞中瞬时表达,利用HBc的自组装特性,使特定结构的表位展示于病毒样颗粒的表面,通过间接免疫荧光试验检测展示表位的抗原活性。结果显示,将Asia1型FMDV模拟表位展示于HBc的N末端、将O型FMDV的真实表位单独展示在HBc的MIR区和N末端时,与表位相应的单克隆抗体呈现强反应,说明设计的表位结构已经得到正确的展示。随后,本研究又构建了在HBc的MIR区和N端同时插入FMDV表位的双表位展示载体以及表达该嵌合蛋白的重组腺病毒,结果表明,利用重组腺病毒表达双表位表位-HBc嵌合蛋白不但实现了理想的表达效果、嵌合蛋白与相应单抗也呈现较强的反应活性。
     本研究通过在HBc上展示FMDV的中和表位,以及将表位与HBc嵌合蛋白在腺病毒载体中表达,为FMDV表位展示疫苗的研制建立了理论与实验基础。
Foot-and-mouth disease (FMD) is an acute and highly contagious disease affecting cloven-hoofed animals and is characterized by widespread epidemicity, rapid transmission and great harm. Severe economic and social impacts make FMD to be a first disease listed by the World Organisation for Animal Health (OIE). In our country, it is also listed as the first one of Class I animal infectious diseases. The foot-and-mouth disease virus (FMDV) is the prototype member of the genus Aphthovirus within the family Picornaviridae. Seven distinct serotypes of the virus have been defined (O, A, C, Asial and SAT-1,2 and 3) and there is no cross-protection among serotypes.The variability of this genome is the main reason why it is difficult to prevent and control FMD.
     In China, vaccination is the main means of preventing and controlling FMD. Nowadays, genetically engineered vaccine become a research focus, because inactivated whole-virus vaccines that are widely used have some defects such as short duration of immunity, serious side effects and potential safety hazard. Alternative approaches have been investigated to control the disease in which vaccines based on epitopes displayed on the Virus-like Particles were expected to overcome present defects and showed bright prospects.
     In this study, Hepatitis B Virus core antigen (HBc) was choosed as skeleton carrier to display the neutralizing epitopes of FMDV by specific structures. Recombinant HBc spontaneously assembled into Virus-like Particles and the epitopes displayed on the surface of particles through expressing the chimeric protein in eukaryocyte. Then the reactivity of displayed epitope was detected by immunofluorescence assay (IFA). The experimental results indicated that the the best immunoreactive mimotope of Asial-type FMDV inserted in the N-terminal of HBc had high reactivity with McAb, and the neutralizing epitope of O-type FMDV inserted on MIR or N-terminal of HBc also had high reactivity with McAb. These results showed that the epitopes were display on the surface of HBc with correct conformation. Then the chimeric proteins of double epitopes and HBc were expressed well by recombinant advenvirus and had high reactivity with McAb.
     All the research above laid the theoretical and experimental foundation for research of epitope-displaying vaccine.
引文
1.毕应佐.口蹄疫.广州:广东科技出版社,2005.
    2.弗朗西斯科·索布林那,埃斯特班·多明戈.口蹄疫现状与未来(朱彩珠,张强,卢永干,译).北京:中国农业科学技术出版社,2009.
    3.乔纳森.佩夫斯纳主编,孙之荣主译。生物信息学与功能基因组学.北京,化学工业出版社,2006.
    4.邵军军,常惠芸.口蹄疫多表位疫苗的研究进展.中国兽医科学.2008,38(11):1009-1012
    5.谢庆阁.口蹄疫.北京:中国农业出版社,2004.
    6.徐为燕,兽医病毒学.北京:中国农业出版社,1993.
    7.殷震,刘景华.动物病毒学(第二版).北京:科学出版社,1997.
    8.于永忠.口蹄疫病毒单克隆抗体制备及其抗原表位研究 [博士学位论文].哈尔滨:哈尔滨师范大学,2009.
    9.张春媛.O型口蹄疫病毒泛亚谱系一个线性中和表位的鉴定和精确作图.[硕士学位论文]哈尔滨:东北农业大学,2009.
    10.张中旺,张永光.抗原表位的研究方法及口蹄疫病毒抗原表位的研究进展.微生物学通报.2008,35(8):1302-1310.
    11.赵磊.抗口蹄疫病毒单克隆抗体的制备和抗原模拟表位的筛选.[硕士学位论文].合肥:安徽农业大学,2008.
    12.周光炎.免疫学原理.上海:上海科学技术出版社,2007.
    13. Acharya, R., Fry, E., Stuart, D., Fox, G., Rowlands, D., & Brown, F. The three-dimensional structure of foot-and-mouth disease virus at 2.9 A resolution. Nature,1997,337:709-716.
    14. Amexis, G.,&Young, N. Parvovirus B19 empty capsids as antigen carriers for presentation of antigenic determinants of dengue 2 virus. J. Infect. Dis.2006,194:790-794.
    15. Beard, C., Ward, G., Rieder, E., Chinsangaram, J., Grubman, M.J., & Mason, P.W. Development of DNA vaccines for foot-and-mouth disease, evaluation of vaccines encoding replicating and non-replicating nucleic acids in swine. Journal of Biotechnolog 1999; 73:243-249.
    16. Beesley, K.M., Francis, M.J., Clarke, B.E., Beesley, J.E., Dopping-Hepenstal, P.J., Clare, J.J., et al. Expression in yeast of ami-no-terminal peptide fusions to hepatitis B core antigen and their immunological properties. Biotechnology (NY).1990,8:644-649.
    17. Bittle, J.L., Houghten, R.A., Alexander, H., Shinnick, T.M., Sutcliffe, J.G., Lerner, R.A., et al. Protection against foot-and-mouth disease by immunization with chemically synthesized peptide predicted from the viral nucleotide sequence. Nature,1982,198 (5869):30-33.
    18. Borschukova, O., Skrastina, D., Dislers, A., Petrovskis, I., Ose, V., Zamurujeva, I., et al. (1997) in: Vaccines-97(Brown, F., Burton, D., Doherty, P., Mekalanos, J. and Norrby,E., Eds.), pp.33-37, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY.
    19. Brown, F. Use of peptides for immunization against foot-and-mouth disease. Vaccine,1988,
    6(2):180-182.
    20. Butchaiah, G., & Morgan, D.O. Neutralization antigenic sites on type Asia-1 foot-and-mouth disease virus defined by monoclonal antibody-resistant variants. Virus Res,1997,52:183-194.
    21. Carroll, A.R., Rowlands, D. J., & Clarke, B. E. The complete nucleotide sequence of the RNA coding for the primary translation product of foot and mouth disease virus. Nucleic Acids Res,1984, 12:2461-2472.
    22. Clarke, B.E., Newton, S.E., Carroll, A.R., Francis, M.J., Appleyard, G., & Syred, AD. Highfield P.E., Rowlands DJ, Brown F:Improved immunoge-nicity of a peptide epitope after fusion to hepa-titis B core protein. Nature,1987,330:381-384.
    23. Chambers, M.A., Dougan, G., Newman, J., Brown, F., Crowther, J., Mould, A.P., et al. Chimeric hepatitis B virus core particles as probes for studying peptide-integrin interactions. J Virol.1996,70: 4045-4052.
    24. Chen, EW., Wong, HT., Cheng, SC. An immuno-globulin G based chimeric protein induced foot-and-mouth disease specific immune response in swine. Vaccine,2000,19 (4/5):538-546.
    25. Crowther, J.R., Farias. S., Carpenter, W.C., & Samuel, A.R. Identification of a fifth neutralizable site on type O foot-and-mouth disease virus following characterization of single and quintuple monoclonal antibody escape mutants. J. Gen. Virol,1993,74 (8):1547-1553.
    26. Dale, C., Liu, X., De Rose, R., Purcell, D., Anderson, J., Xu, Y., et al. Chimeric human papilloma virus-simian/human immunodeficiency virus virus-like-particle vaccines:immunogenicity and protective efficacy inmacaques. Virology 2002,301:176-187.
    27. Delval, M., Schlicht, H.J., Volkmer, H., Messerle, M., Reddehase, M.J., & Koszinowski, U.H. Protection against lethal cytomegalovirus infection by a recombinant vaccine containing a single nonameric T-cell epitope. J Virol.1991,65:3641-3646.
    28. Deml, L., Speth, C., Dierich, M., Wolf, H., & Wagner, R., Recombinant HIV-1 Pr55gag virus-like particles:potent stimulators of innate and acquired immune responses. Mol. Immunol.2005,42, 259-277.
    29. DiMarchi, R., Brooke, G., Gale, C., Cracknell, V., & Doel, T. Mowat N. Protection of cattle against foot-and-mouth disease by a synthetic peptide. Science,1986,232:639-641.
    30. Doan, L., Li, M., Chen, C., & Yao, Q. Virus-like particles as HIV-1 vaccines. Rev.Med. Virol. 2005,15:75-88.
    31. Doel, T.R. FMD vaccines. Virus Res,2003,91 (1):81-99.
    32. Doel, T.R., Gale, C., Do Amaral, C.M., Mulcahy, G., & Dimarchi, R. Heterotypic protection induced by synthetic peptides corresponding to three serotypes of foot-and-mouth disease virus. J Virol,1990,64:2260-2264.
    33. Du, Y., Li, Y., He, H., Qi, J., Jiang, W., Wang, X., et al. Enhanced immunogenicity of multiple-epitopes of foot-and-mouth disease virus fused with porcine interferon alpha in mice and protective efficacy in guinea pigs and swine. J Virol Methods,2008,20:1-9.
    34.. Eduardo, A., Scodeller, Sergio, G., Tisminetzky, Fabiola Porro, Monica Schiappacassi., et al. A
    new epitope presenting system displays a HIV-1 V3 loop sequence and induces neutralizing antibodies. Vaccine,1995, Vol.13, No.13. pp.1233-1239.
    35. Florian Krammera, Theresa Schinkoa, Paul Messnerb, Dieter Palmbergera, Boris Ferkoc, & Reingard Grabherra.(in press). Influenza virus-like particles as an antigen-carrier platform for the ESAT-6 epitope of Mycobacterium tuberculosis. Journal of Virological Methods.
    36. Fry, E. E., Lea, S.M., Jackson, T., Newman, J. W., Ellard, F.M., Blakemore, W. E., Abu-Ghazaleh, R., Samuel, A., King, A.M., & Stuart, D. I. The structure and function of a foot-and-mouth disease virus-oligosaccharide receptor complex. EMBO J.1999,18:543-554.
    37. Gershoni, J.M., Stem, B., & Venisova, G. Combinatorial libraries, epitope structure and the prediction of conformations. Immunol Today,1997,18 (5):108-110.
    38. Geysen, H.M., Rodda, S.J., & Mason, T.J. A priori delineation of a peptide which mimics a discontinuous antigenic determinant. Mol Immunol,1986,23:709-715.
    39. Grazioli, S., Fallacara, F., & Brocchi E. Mapping of neutralizing sites on FMD virus type Asia 1 and relationships with sites described in other serotypes. Report of the Session of the Research Group of the Standing Committee of the European Commission of Foot and Mouth Disease,2003, Appendix 44, pp.277-287.
    40. Grubman, M.J., & Baxt, B. Foot-and-mouth disease. Clin. Microbiol. Rev,2004,17:465-93.
    41. Grubman, M.J., Robertson, B.H., Morgan, D.O., Moore, D.M., & Dowbenko, D. Biochemical map of polypeptides specified by foot-and-mouth disease virus. J. Virol,1984,50(2):579-586.
    42. Hahon N, ed. Selected Papers on Virology. Englewood Cliffs, NJ:Prentice-Hall; 1964:64-68.
    43. Hehir, K.M., Armentano, D., Cardoza, L.M., Choquette, T.L., Berthelette, P.B., White, G.A., et al. Molecular characterization of replication-competent variants of adenovirus vectors and genome modifications to prevent their occurrence. J Virol.1996,70(12):8459-8467.
    44. Hernandez, J., Martinez, M.A., Rocha, E., Domingo, E., & Mateu, M.G. Generation of a subtype-specific neutralization epitope in foot-and-mouth disease virus of a different subtype. J. Gen. Virol,1992,73(1):213-216.
    45. Jegerlehner, A., Tissot, A., Lechner, F., Sebbel, P., Erdmann, I., Kundig, T., et al. Amolecular assembly systemthat renders antigens of choice highly repetitive for induction of protective B cell responses. Vaccine 2002,20:3104-3112.
    46. Kleid, D.G., Yansura, D., Small, B., Dowbenko, D., Moore, D.M., et al. Cloned viral protein vaccine for foot-and-mouth disease:response in cattle and swine. Science,1981,214 (4525): 1125-1129.
    47. Koletzki, D., Biel, S.S., Meisel, H., Nugel, E., Gel-derblom, H.R., Kruger, D.H., et al. HBV core particles allow the insertion and surface exposure of the entire potentially protective region of Puumala hantavirus nucleocapsid protein. Biol Chem.1999,380:325-333.
    48. Kupper, H., Keller, W., Kurz, C., Forss, S., Schaller, H., Franze, R., et al. Cloning of cDNA of major antigen of foot and mouth disease virus and expression in E.coli. Nature,1981,289:555-559.
    49. Leippert, M., Beck, E., Weiland, F., Pfaff, E. Point mutations with in the G-H loop of
    foot-and-mouth disease virus OIK affect virus attachment to target cells. J.Virol,1997,71: 1046-1051.
    50. Lieber,A., He, C.Y., Kirillova, I., Kay, M.A. Recombinant adenoviruses with large deletions generated by cre-mediated excision exhibit different biological properties compared with first generation vectors in vitro and in vivo. J Virol.1996,70:8944-8960.
    51. Logan, D., Abu-Ghazaleh, R., Blakemore, W., Curry, S., Jackson, T., King, A., Lea, S., Lewis, R., Newman, J., Parry, N., Rowlands, D., Stuart, D., & Fry, E. Structure of a major immunogenic site on foot-and-mouth disease virus. Nature,1993,362:566-568.
    52. Loeffler, F. & Frosch, P. Report of the Commission for Research on foot-and-mouth disease. In:
    53. Lusky, M., Grave, L., Dieterle, A., Dreyer, D., Christ, M., Ziller, C., et al. Reuglation of adenoviurs-mediaeted transgene expression by the viral E4 gene Porudcts:requierment for E4 ORF3. Jounral of Viorlogy.1999,73:8308-8319.
    54. Marquardt, O., Rahman, M.M., & Freiberg, B. Genetic and antigenic variance of foot-and-mouth disease virus type Asial. Arch. Virol,2000,145:149-157.
    55. Mason, P.W., Rieder, E., & Baxt B. RGD sequence of foot-and-mouth disease virus is essential for infecting cells via the natural receptor but can be bypassed by an antibody-dependent enhancement pathway. Proc. Natl. Acad. Sci. U S A,1994,91:1932-1936.
    56. Mateu, M.G., Valero, M.L., Andreu, D., & Domingo, E. Systematic replacement of amino acid residues within an Arg-Gly-Asp-containing loop of foot-and-mouth disease virus and effect on cell recognition. J. Biol. Chem,1996,271:12814-12819.
    57. Morral, N., O'Neal, W., Rice, K., Leland, M., Kaplan, J., Piedra, P.A., et al. Piedra PAAdministration of helper-dependent adenoviral vectors and Sequential delivery of different vector serotype for long-term liver directd gene transfer in baboons. Poreeedings of the Natinoal Academy of Seiences.1999,12816-12821.
    58. Morsy, M.A., Gu, M., Motzel, S., Zhao, J., Lin, J., Su, Q., et al. An adenoviral vector deleted for all viral coding sequences results an enhancde safety and extended expression of a leptin transgene. Proc Natl Acad Sci USA.1998,95:7866-78711
    59. Nekrasova, O.V., Boichenko, V.E., Boldyreva, E.F., Borisova, G.P., Pumpen, P., Perevozchikova, N.A., et al. Bacterial synthesis of immunogenic epitopes of foot-and-mouth disease virus fused either to human necrosis factor or to hepatitis B core antigen (in Russian).Bioorg Khim 1997,23: 118-126.
    60. Notka, F., Stahl-Hennig, C., Dittmer, U.,Wolf, H.,& Wagner, R., Construction and characterization of recombinant VLPs and Semliki-Forest virus live vectors for comparative evaluation in the SHIV monkey model. Biol. Chem.1999,380:341-352.
    61. Oem, J.K., Chang, B.S., Joo, H.D., Yang, M.Y., Kim, GJ., Park, J.Y., et al., Development of an epitope-blocking-enzyme-linked immunosorbent assay to differentiate between animals infected with and vaccinated against foot-and-mouth disease virus. J Virol Methods,.2007,142(1-2): 174-181.
    62. Pacheco, J. M., Rapid protection of cattle from direct challenge with foot-and-mouth disease virus (FMDV) by a single inoculation with an adenovirus-vectored FMDV subunit vaccine. Virology. 2005,337(2):205-209.
    63. Paul Pumpens, Elmars Grens. HBV Core Particles as a Carrier for B Cell/T Cell Epitopes. Intervirology,2001,44:98-114.
    64. Paul Pumpens, Elmars Grens. Hepatitis B core particles as a universal display model:a structure-function basis for development. FEBS Letters,1999,442:1-6.
    65. Ruiz-Jarabo, C. M., Sevilla, N., Davila, Gomez-Mariano, M.G., Baranowski, E., & Domingo, E. Antigenic properties and population stability of a foot-and-mouth disease virus with an altered Arg-Gly-Asp receptor recognition motif. J. Gen. Virol,1999,80:1899-1909.
    66. Rweyemamu, M.M., Booth, J.C., Head, M., Pay, T.W. Micro neutralization tests for serological typing and subtyping of foot and mouth disease virus strains. J. Hygiene (Lond.),1978,81(1), 107-123.
    67. Sanyal, A., Venkataramanan, R., & Pattnaik, B. Antigenic features of foot-and-mouth disease virus serotype Asial as revealed by monoclonal antibodies and neutralization-escape mutants. Virus Res, 1997,50:107-117.
    68. Sanz-Parra, A., Vazquez, B., Sobrino, F., Cox, S.J., Ley, V., & Salt, J.S. Evidence of partial protection against foot-and-mouth disease in cattle immunized with a recombinant adenovirus vector expressing the precursor poly peptide (P1)of foot-and-mouth disease virus capsid proteins.J Gen Virol,1999,80:671-679.
    69. Sedlik, C., Dadaglio, G., Saron, MF., Deriaud, E., Rojas, M., Casal, S.I., In vivo induction of a high-avidity, highfrequency cytotoxic T-lymphocyte response is associated with antiviral protective immunity. J Virol.2000,74:5769-75.
    70. Sedlik,C., Dridi, A., Deriaud, E., Saron, MF., Rueda, P., Sarraseca, J., et al. Intranasal delivery of recombinant parvovirus-like particles elicits cytotoxic T-cell and neutralizing antibody responses. J Virol 1999,73:2739-44.
    71. Sedlik, C., Saron, M., Sarraseca. J., & Casal, I., Recombinant parvovirus-like particles as an antigen carrier:a novel nonreplicative exogenous antigen to elicit protective antiviral cytotoxic T cells. Proc Natl Acad Sci USA 1997,94:7503-8.
    72. Slupetzky, K., Shafti-Keramat, S., Lenz,P.,Brandt, S., Grassauer, A., Sara, M. & Kirnbauer, R., Chimeric papillomavirus-like particles expressing a foreign epitope on capsid surface loops. J. Gen. Virol.2001,82:2799-2804.
    73. Takahashi, R., Kanesashi, S., Inoue, T., Enomoto, T., Kawano, M., Tsukamoto, H., et al. Presentation of functional foreign peptides on the surface of SV40 virus-like particles. Biotechnol. 2008,135,385-392.
    74. Wilmott, R.W., Amin, R.S., Perez, C.R., Wert, S.E., Keller, G., Boivin, G.P., et al. Safety of adenovirus-mediated transfer of the human cystic fibrosis transmembrane conductance regulator cDNA to the lungs of nonhuman primates. Hum Gene Ther.1996,7(3):301-318.
    75. Yoshikawa, A., Tanaka, T., Hoshi, Y., Kato, N., Tachibana, K., Iizuka, H., et al. Chimeric hepatitis B virus core particles with parts or copies of the hepatitis C virus core protein. J. Virol.1993,67: 6064-6070.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700