高速运动目标ISAR成像方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
成像雷达能够全天时、全天候、远距离地提供高分辨率雷达图像,在军用和民用领域得到了越来越广泛的应用。利用成像雷达对高速运动目标如导弹、卫星、空间碎片等进行成像具有重要的军事和科研价值。
     本论文主要研究了高速运动目标的ISAR成像方法,分析了根据低速运动目标模型补偿高速运动目标回波引起的补偿误差及其影响;对线性调频步进信号的处理方法进行了深入研究;作为成像雷达的应用,提出了海面目标顶空检测与成像方法。具体工作概括如下:
     1.总结了雷达信号处理中经常采用的三种回波模型:回波的精确模型、一阶近似模型和“stop-go”模型。根据雷达成像的特点推导了线性调频信号的一阶近似模型和“stop-go”模型的适用条件。
     2.提出了基于“运动”参考去调频的高速目标高分辨ISAR成像的运动补偿方法。该方法的主要步骤为:首先估计目标的平动轨迹,并将回波补偿成以该轨迹为参考去调频的信号,从而完成目标距离像的脉冲内补偿和回波相干化;然后利用keystone变换消除散射点的越距离走动;再利用相位聚焦消除高阶运动参数补偿误差的影响;最后用RD算法或瞬时成像算法得到目标的ISAR像。这种方法的关键是目标运动轨迹的拟合,而拟合精度与积累脉冲数有关,给出了补偿精度与拟合脉冲数的关系。
     3.研究了线性调频步进信号的合成距离像法以及基于合成距离像法的高速运动目标ISAR成像方法。为了克服合成距离像法中传统目标抽取算法存在的伪峰、抽取损失和多普勒耦合时移等问题,提出了基于距离像最大1范数搜索的移位抽取算法,并给出了应用该算法系统参数需要满足的条件和系统参数的设计方法。在此基础上,提出了线性调频步进雷达ISAR成像的分步补偿法。推导了成像过程中雷达回波的一阶近似模型和“stop-go”模型的适用条件。
     4.研究了线性调频步进信号的合成带宽法(时域合成带宽法和频域合成带宽法)以及基于合成带宽法的高速运动目标ISAR成像方法。提出了利用时域合成带宽法和频域合成带宽法处理高速运动目标回波时的运动补偿方法,并对传统的频域合成带宽法进行了改进,拓宽了频域合成带宽法的应用范围。分析了根据“stop-go”模型和一阶近似模型补偿回波引入的补偿误差。针对目标运动参数的精确估计问题,将SAR成像运动补偿中的多普勒中心估计算法引入到ISAR成像中,根据ISAR目标回波的特点对传统的多普勒中心估计算法进行了修正,使运动参数估计的精度达到带宽合成和ISAR成像的要求。
     5.研究了相位编码信号的高速运动目标成像方法。分析了相位编码信号的“stop-go”模型和一阶近似模型的适用条件。提出了相位编码信号ISAR成像的运动补偿方法,即采用宽带相位编码信号和窄带线性调频信号结合的方式,窄带信号用来完成目标检测和测速,宽带信号用来提高测速精度和成像。
     6.深入研究了海面目标顶空检测与成像问题。分析了海面目标顶空检测的难点,提出顶空情况下对目标和海面同时ISAR成像,再在图像中分离海杂波是解决这个问题有效途径。给出了顶空成像的海面监视范围。重点讨论了顶空成像的运动补偿方法、距离弯曲校正方法和图像分割方法。给出了利用单脉冲测角获得目标三维图像的方法和步骤。
Imaging radar is being more and more widely used in military and civil fields, which can work all-weather, day/night and long range and provide high resolution radar image. To image the high speed moving target such as missile, satellite, space debris with the image radar has important military and scientific research value.
     The main research in the paper is the inverse synthetic aperture radar (ISAR) imaging method for the high speed moving target. The compensation error and its effect caused by using the model of low speed moving target to compensate the high speed moving target echo is analyzed. The processing method of the linearly modulated stepped frequency (LMSF) signal has been further studied. The top areial detection and imaging method for the sea surface target are proposed as the application of imaging radar. The concrete contents are as follows:
     1. The three echo models often adopted in the radar signal processing are summarized, which are the precise echo model, the first order approximate model and 'stop-go' model. Based on the characteristic of the radar imaging, the application conditions of the linear frequency modulation (LFM) signal's first order approximate model and 'stop-go' model have been analyzed.
     2. A novel method for high speed moving targets ISAR imaging based on 'moving' reference dechirp signal is presented. The main steps are as follows. Firstly target translational track is estimated and based on which, the echo is compensated for the dechirping signal, accordingly, the internal-pulse compensation of the target echo and the coherent processing of the echo are accomplished. Then Keystone transform is applied to eliminate the scattering points migration through resolution cells (MTRC), and utilizing the phase focusing to banish effect of the high order motion parameter compensation error. Finally using the RD algorithm or instantaneous imaging algorithm to achieve the target ISAR image. The key point of the method is the target motion track fitting. Moreover the fitting precision is related with the number of the fitting pulses, so the relationship between the fitting precision and number of the fitting pulses is presented.
     3. The method of synthetic range profile for LMSF signal and the high speed moving target ISAR imaging algorithm based on the synthetic range profile are studied. To avoid spurious peaks, extracting loss and Doppler-coupling shift which exist in the traditional extracting algorithm in the method of the synthetic range profile, the paper describes a shift-extracting algorithm, which based on searching the maximum norm 1 of the range profile. Moreover the paper analyses the application condition of this searching algorithm, and gives the design method for system parameters. After that, the stepped compensation method of the LMSF radar ISAR imaging is presented. The application conditions of the first order approximate model and 'stop-go' model have been deduced in the process of imaging.
     4. The method of synthetic bandwidth (temporal synthetic bandwidth method and frequency synthetic bandwidth method) for LMSF signal and the high speed moving target ISAR imaging algorithm based on the synthetic bandwidth are studied. The motion compensation method for high speed moving target using the temporal synthetic bandwidth method and frequency synthetic bandwidth method are presented. The traditional frequency synthetic bandwidth is improved, and the application condition of the frequency synthetic bandwidth method is widened. The compensation error caused by the 'stop-go' model and the first order approximate model is analyzed. Focusing on the problem of precise estimation of the motion parameters, Doppler center estimation method in the SAR imaging motion compensation is introduced in the ISAR imaging. According to the characteristic of target echo in ISAR, the original method of Doppler center estimation is ameliorated, so that the precision level of the motion parameter estimation satisfies that of the synthetic bandwidth and ISAR imaging.
     5. The high speed moving target imaging method of phase coding signal is studied. The 'stop-go' model of the phase coding signal and the application conditions of the first approximate order model have been analyzed. The motion compensation method of the ISAR imaging of the phase coding signal is presented, which combining the wideband phase coding signal with the narrowband LSFM signal, and the narrowband signal is used to detect the target and measure the speed, the wideband signal to improve the precision measurement and the imaging.
     6. The top aerial detection and imaging method for the sea surface target have been further studied. The difficulty of the top aerial detection is analyzed, and the effective method that imaging the sea surface and target at one time, then eliminating the sea clutter from the image is presented. The monitor range of the imaging from the top air over the sea surface is given. The discussion is centred on the motion compensation method for top aerial imaging, correction method for range curvature and image division. Moreover, the methods and procedure of three-dimensional image is acquired by monopulse angle measurement approach.
引文
[1]W.G.Carrara,R.S.Goodman,R.M.Majewski,Spotlight Synthetic Aperture Radar Signal Processing Algorithms,Artech House,1995.
    [2]J.C.Curlander,R.N McDonough,Synthetic Aperture Radar:Systems and Signal Processing,John Wiley & Sons,Inc,1991.
    [3]保铮,邢孟道,王彤,雷达成像技术,电子工业出版社,2005。
    [4]马长征,雷达目标三维成像技术研究,西安电子科技大学博士论文,1999。
    [5]董庆,郭华东,合成孔径雷达海洋遥感,科学出版社,2005。
    [6]MA Richards,Fundamentals of Radar Signal Processing,McGraw-Hill,New York,2005.
    [7]Skolnik M I,Wetzel L B,Radar Handbook(SE),The McGraw-Hill Companies Inc.,1990.
    [8]李宗武,“直升机机载雷达抗海杂波技术研究,”现代雷达,2000,22(1):10-14。
    [9]Melvin W.L.,"A STAP Overview," IEEE Aerospace and Electronic Systems Magazine,19(1):19-35.
    [10]J.H.G.Ender,"Space-time processing for multichannel synthetic aperture radar,"IEE Electronics & Communication Engineering Journal,1999,11(1):29-38.
    [11]李春升,陈杰,周荫清,“机载多通道天线SAR自适应杂波抑制,”电子学报,2000,28(3):93-94。
    [12]张直中,“SAR动目标简介,”电子科学技术评论,2004,3:1-7。
    [13]李真芳,保铮,王彤,廖桂生,“基于实测数据的地面慢速动目标检测,”电子学报,2003,31(9):1437-1440。
    [14]C.A.Wiley,"Synthetic Aperture radar," IEEE Trans.on AES,1985,21(3):440-443.
    [15]S.I.Tsunoda,F.Pace,etc,"Lynx:A high-resolution Synthetic aperture radar,"Aerospace conference Proceeding,2000 IEEE,Vol.5,pp51-58.
    [16]J.H.G.Ender,A.RBerens,etc,"Multi channel SAR/MTI system development at FGAN:From AER to PAMIR," IEEE Geoscience and Remote Sending Symposium,2002,IGARSS'02,Vol.3,pp:1607-1701.
    [17]J.H.G.Ender,A.R.Brenner,"PAMIR—a wideband phased SAR/MTI system,"IEE Proc.of Radar Sonar Navigation,2003,Vol.150(3):165-172.
    [18]G.R.Sloank,D.F.Dubbert,Affordable,"miniaturized SAR for tactical UAV application," Proc.Of SPIE,2004,Vol.5409,pp:74-83.
    [19]M.Bashkansky,R.L.Lucke,E.Funk,L.J.Rickard,etc,"Two-dimensional synthetic aperture imaging in the optical domain," Optics Letters,2002,Vol.27(22):1983-1985.
    [20]L.C.Graham,"Synthetic interferometer radar for topographic mapping," Proc.IEEE,1974,62:763-768.
    [21]H.A.Zebker,R.M.Goldstein,"Topographic mapping from interferometric synthetic aperture radar observations," J.Geophys.Res.,April 1986,91(B5):4993-4996.
    [22]S.Hensley,Rosen P,Gurrola E,"The SRTM topographic mapping processor,"Geoscience and Remote Sensing Symposium,2000.Proceedings,IGARSS 2000,IEEE 2000 International,Volume:3,2000,pp.1168-1170.
    [23]D.A.Ausherman,A.Kozma,J.L.Walker,et al,"Developments in radar imaging," IEEE Transaction on Aerospace and Electronic System,1984,20(4):363-400.
    [24]D.R.Bromaghim,J.R Perry,"A Wideband Linear FM Ramp Generator for the Long-Range Imaging RADAR," IEEE Transactions on Microwave Theory and Techniques,1978,26(5):322-325.
    [25]C.C.Chen,H.C.Andrews,"Traget motion induce radar imaging," IEEE Transaction on Aerospace and Electronic System,1980,16(1):2-14.
    [26]K.K.Eerland,"Application of ISAR on aircraft," IEEE Int.Radar Conf.,1984,pp.618-623.
    [27]B.D.Steinberg,"Microwave imaging of aircraft," Proc.IEEE,1988,76(12):1578-1592.
    [28]B.D.Steinberg,"Experimental localized radar cross section of aircraft," Proc.IEEE,1989,77(5):663-669.
    [29]R.Voles,"Resolving revolutions:imaging and mapping by modem radar," IEE Proc.-F,1993,140(1):1-11.
    [30]V.C.Chert,S.Qian,"Joint time-frequency analysis for radar range-Doppler imaging," IEEE Trans.AES,1998 34(2):486-499.
    [31]F.Berizzi,E.Dalle Mese,M.Martorella,"ISAR imaging of oscillating targets by range-instantaneous-doppler technique." The Record of the IEEE 2000 International, 2000, pp.475-480.
    [32] Xiaojian Xu and Ram M. Narayanan. "Enhanced Resolution in SAR/ISAR Imaging Using Iterative Sidelobe Apodization," IEEE Transactions on image processing, 2005, 14(4):537-547.
    [33] I. J. Gupta, "High-resolution radar imaging using 2-D linear prediction," IEEE Trans. Antennas Propag., 1994, 42(1) 31-37.
    [34] K. M. Cuomo, J. E. Piou, J. T. Mayhan, "Ultrawide-band coherent processing," IEEE Trans. Antennas Propag., 1999,47(6): 1094-1107.
    [35] S. L. Borison, S. B. Bowling, and K. M. Cuomo, "Super-resolution methods for wideband radar," Lincoln Lab. J., 1992, 5(3): 441-461.
    [36] H. J. Li, N. H. Farhat, Y. S. Shen, "A new iterative algorithm for extrapolation of data available in multiple restricted regions with applications to radar imaging," IEEE Trans. Antennas Propag., 1987,35(5):581-588.
    [37] S. R. Degraaf, "Parametric estimation of complex 2-D sinusoids," in Proc. 4th IEEE ASSP Soc. Annu.Workshop on Spectrum Estimation and Modeling, Minneapolis, MN, Aug. 1988, pp. 391-396.
    [38] M. W. Tu, I. J. Gupta, E. K. Walton, "Application of maximum likelihood estimation to radar imaging," IEEE Trans. Antennas Propag., 1997, 45(1):20-27.
    [39] J. Li and P. Stoica, "Efficient mixed-spectrum estimation with applications to target feature extraction," IEEE Trans. Signal Process., 1996, 44(2):281-295.
    [40] Z. Bi, J. Li, Z. Liu, "Super resolution SAR imaging via parametric spectral estimation methods," IEEE Trans. Aerosp. Electron. Syst, 1999, 35(1): 267-281.
    [41] R. Wu, J. Li, P. Stoica, "SAR image formation via semiparametric spectral estimation," IEEE Trans. Aerosp. Electron. Syst., 1999,35(4):1318-1333.
    [42] S. R. DeGraaf, "SAR imaging via modern 2-D spectral estimation method," IEEE Trans. Image Process., 1998, 7(5): 729-761.
    [43] J. W. Odendaal, E. Bernard, C. W. I. Pistorius, "Two dimensional supperresolution radar imaging using the MUSIC algorithms," IEEE Trans. Antennas Propag., 1994, 42(10):1386-1391.
    [44] G. R. Benitz, "High-definition vector imaging for synthetic aperture radar," in Proc. 31st Asilomar Conf. Systems, Signals and Computers,Pacific Grove, CA, Nov. 1997, pp. 1204-1209.
    [45] J. Li , P. Stoica, "An adaptive filtering approach to spectral estimation and SAR imaging," IEEE Trans. Signal Process., 1996, 44(6): 1469-1484.
    [46]M.R.Palsetia,J.Li,"Using APES for interferometric SAR imaging," IEEE Trans.Image Process.,1998,7(9):1340-1353.
    [47]S.R.DeGraaf,"Sidelobe reduction via adaptive FIR filtering in SAR imagery,"IEEE Trans.Image Process.,1994,3(5):729-761.
    [48]H.C.Stankwitz,R.J.Dallaire,J.R.Fienup,"Nonlinear apodization for sidelobe control in SAR imagery," IEEE Trans.Aerosp.Electron.Syst.,1995,31(1):267-279.
    [49]H.C.Stankwitz,M.R.Kosek,"Super-resolution for SAR/ISAR RCS measurement using spatially variant apodization(super-SVA)," in Proc.17th Meeting Symp.Antenna Measurement Techniques Association,Williamsburg,VA,Nov.1995,pp.251-256.
    [50]邢孟道,保铮,“一种逆合成孔径雷达成像包络对齐的新方法,”西安电子科技大学学报,2000,27(1):93-96。
    [51]邢孟道,保铮,郑义明,“用整体最优准则实现ISAR成像的包络对齐,”电子学报,2001,29(12):1807-1811。
    [52]王根原,保铮,“逆合成孔径雷达运动补偿中包络对齐的新方法”,电子学报,1998,26(6):5-8。
    [53]保铮,叶炜,“ISAR成像聚焦算法的改进,”电子学报,1996,24(9):74-79。
    [54]叶炜,保铮,“逆合成孔径自聚焦的新方法——局域特显点综合法,”中国科学(E辑),1997,27(5):424-429。
    [55]Bao Zheng,Wang Genyuan,Luo Lin,"Inverse Synthetic Aperture Radar Imaging of Maneuvering Targets," Optical Engineering,1998,37(5):1582-1588.
    [56]Bao Zheng,Sun Changyin,Xing Mengdao,"Time-frequency approaches to ISAR imaging of maneuvering targets and their limitations," IEEE Transaction on Aerospace and Electronic Systems,2001,37(3):1091-1099.
    [57]Wang Genyuan,Bao Zheng,"Inverse synthetic aperture radar imaging of maneuvering targets based on chirplet decomposition," Optical Engineering,1999,38(9):1534-1541.
    [58]张群,干涉式目标三维成像及其三维运动补偿技术,西安电子科技大学博士论文,2001。
    [59]邢孟道,保铮,“外场实测数据的舰船目标ISAR成像”,电子与信息学报,2001,23(12):1271-1277。
    [60]雷杰,邢孟道,保铮,“一种基于钟摆模型的舰船目标成像方法,”电子与信息学报,2006,28(1):1-6。
    [61]Camp William W,Mayhan Joseph T,O'Donnell Robert M,"Wideband radar for ballistic missile defense and range-Doppler imaging of satellites," Lincoln Laboratory Journal,2000,12(2):267-280.
    [62]刘爱芳,朱晓华等,“基于解线调处理的高速运动目标ISAR距离像补偿,”宇航学报,2004,25(5):541-545。
    [63]黄小红,邱兆坤,许人灿,“空间轨道目标ISAR成像方法,”数据采集与处理,2005,20(2):203-207。
    [64]黄小红,陈曾平等,“空间目标高分辨距离像运动参数估计,”宇航学报,2004,25(3):269-272。
    [65]黄小红,邱兆坤,王伟,“目标高速运动对宽带一维距离像的影响及补偿方法研究,”信号处理,2002,18(6):487-490。
    [66]M.Xing,R.Wu and Z.Bao,"High resolution ISAR imaging of high speed moving targets," IEE Proc.-Radar Sonar Navig.,2005,152(2):58-67.
    [67]P.Berens,"SAR with Ultra-High Range Resolution Using Synthetic Bandwidth",IEEE Geoscience Remote Sensing Symposium 1999,IGARSS' 99Proceedings,1752-1754.
    [1]丁鹭飞,耿富录,雷达原理,西安:西安电子科技大学出版社,1995。
    [2]MA Richards,Fundamentals of Radar Signal Processing,McGraw-Hill,New York,2005.
    [3]保铮,邢孟道,王彤,雷达成像技术,电子工业出版社,2005。
    [4]邢孟道,保铮,郑义明,“用整体最优准则实现ISAR成像的包络对齐,”电子学报,200l,29(12):1807-1811。
    [5]C.C Chen,H.C.Andrews,"Target-motion-induced radar imaging," IEEE Trans.AES,1980,16(1):2-14.
    [6]G.Y Delisle,H.Q Wu,"Moving target imaging and trajectory computation using ISAR," IEEE Tran.AES,1994,30(3):887-8.
    [7]王根原,保铮,“逆合成孔径雷达运动补偿中包络对齐的新方法,”电子学报,1998,26(6):5-8。
    [8]邢孟道,保铮,“一种逆合成孔径雷达成像包络对齐的新方法,”西安电子科技大学学报,2000,27(1):93-96。
    [9]保铮,叶炜,“ISAR成像聚焦算法的改进,”电子学报,1996,24(9):74-79。
    [10]J.S.Son,B.C.Flores,S.Tariq,"An efficient target motion compensation method for stepped frequency ISAR signatures," SPIE Vol.3161,1997,pp.20-28.
    [11]J.S.Son,B.C.Flores,S.Tariq,"An efficient target motion compensation method for stepped frequency ISAR signatures," SPIE Vol.3161,1997,pp.20-28.
    [12]T.J.Abatzoglou,G.O.Gheen,"Maximum likelihood estimation of range,velocity and acceleration using a linear FM train radar waveform," SPIE Vol.3161,1997,pp60-69.
    [13]T.J.Abatzoglou,G.O.Gheen,"Range,radial Velocity,and acceleration MLE Using Radar LFM Pulse Train," IEEE Trans.AES,1998,34(4):1070-1084.
    [14]马长征,雷达目标三维成像技术研究,西安电子科技大学博士论文,1999
    [15]刘铮,步进频率体制雷达成像技术,西安电子科技大学博士论文,2000.
    [16]张群,张涛,张守宏,“基于拉伸信号的ISAR成像运动补偿新方法,”西安电子科技大学学报,2001,28(1):83-87。
    [17]F.Berizzi,G.Corsini,"Maximun-likelihood ISAR image autofocusing technique based on instantaneous frequency estimation," IEE.Proc.Radar Sonar Navi.1997,144(5):284-292.
    [18]张涛,马长征,张群,“基于线性调频步进信号的ISAR成像技术研究,”电
    子与信息学报, 2001, 23(3) :268-274.
    [19] L C Trintinalia, Hao Ling, "Joint time frequency ISAR using adaptive processing," IEEE Transactions on Antennas and Propagation, 1997, 45(2): 221-227.
    [20] V C Chen, R Lipps, "ISAR imaging of small craft with roll, pitch and yaw analysis," Radar Conference, 2000, The Record of the IEEE 2000 International, pp.493-498.
    
    [21] Bao Zheng, Wang Genyuan, Luo Lin, "Inverse Synthetic Aperture Radar Imaging of Maneuvering Targets," Optical Engineering, 1998,37(5): 1582-1588.
    [22] F Berizzi, E D Mese, et al, "High-resolution ISAR imaging of maneuvering targets by means of the range instantaneous Doppler technique: modeling and performance analysis ," IEEE Transactions on Image Processing, 2001, 10(12): 1880-1890.
    [23] Bao Zheng, Sun Changyin, Xing Mengdao, "Time-frequency approaches to ISAR imaging of maneuvering targets and their limitations," IEEE Transaction on Aerospace and Electronic Systems, 2001, 37(3):1091 -1099.
    [24] Wang Genyuan, Bao Zheng, "Inverse synthetic aperture radar imaging of maneuvering targets based on chirplet decomposition," Optical Engineering, 1999, 38(9): 1534-1541.
    [25] Xing M, Wu R, et al., "Migration through resolution cell compensation in ISAR imaging," IEEE Geoscience and Remote Sensing Letters, 2004, 1(2): 141-144.
    [26] Wang Genyuan, Xia XiangGen, "An Adaptive Filtering Approach to Chirp Estimation and ISAR Imaging of Maneuvering Targets ," Radar Conference, 2000, The Record of the IEEE 2000 International, pp.481-486.
    [27] Liu ZhengShe, Wu Renbiao, Li Jian, "Complex ISAR imaging of maneuvering targets via the Capon estimator," IEEE Transactions on Signal Processing, 1999, 47(5): 1262-1271.
    [68] J.C. Curlander, R.N McDonough, Synthetic Aperture Radar: Systems and Signal Processing, John Wiley & Sons, Inc, 1991.
    [28] Meta A, Hoogeboom P, "Development of signal processing algorithms for high resolution airborne millimeter wave FMCW SAR," Radar Conference, 2005 IEEE International, pp.326-331.
    [29] Wit J J M d, Meta A, Hoogeboom P., "Modified Range-Doppler Processing for FM-CW Synthetic Aperture Radar," IEEE Geoscience and Remote sensing Letters, 2006, 3: 83-87.
    [1]保铮,邢孟道,王彤,雷达成像技术,电子工业出版社,2005。
    [2]Xing M,Wu R,et al,"Migration through resolution cell compensation in ISAR imaging," IEEE Geoscience and Remote Sensing Letters,2004,1(2):141-144.
    [3]Wang Genyuan,Bao Zheng,"Inverse synthetic aperture radar imaging of maneuvering targets based on chirplet decomposition," Optical Engineering,1999,38(9):1534-1541.
    [1]龙腾,毛二可,何佩琨,“调频步进雷达信号分析与处理”,电子学报,1998,26(12):84-88.
    [2]毛二可,龙腾,韩月秋,“频率步进雷达数字信号处理”,航空学报,2001,22(6):16-25.
    [3]雷文,龙腾,韩月秋,“调频步进雷达运动目标信号处理的新方法”,电子学报,2000,28(12):34-37.
    [4]Lei Wen,Long Teng,Han Yueqiu,"Moving Targets Imaging for Stepped Frequency Radar",Signal Processing Proceedings,2000.IEEE International Conference,pp1851-1855.
    [5]D.R.Wehner,High Resolution Radar,Artech House Boston London,1995.
    [6]Chaoshu,Jiang Xuegang,Wang Zhuming,"Chirp-Pulse Stepped-Frequency Radar Based on Decorrelation Processing",Radar Conference,2006.The Record of the IEEE 2006 International,pp252-255.
    [7]J.S.Son,B.C.Flores,S.Tariq,"An efficient target motion compensation method for stepped frequency ISAR signatures,"SPIE Vol.3161,1997,pp20-28
    [8]J.S.Son,B.C.Flores,S.Tariq,"An efficient target motion compensation method for stepped frequency ISAR signatures,"SPIE Vol.3161,1997,pp20-28
    [9]T.J.Abatzoglou,G.O.Gheen,"Maximum likelihood estimation of range,velocity and acceleration using a linear FM train radar waveform,"SPIE Vol.3161,1997,pp60-69
    [10]F.Berizzi,G.Corsini,"Maximun-likelihood ISAR image autofocusing technique based on instantaneous frequency estimation",IEE.Proc.Radar Sonar Navi.1997,Vol 144,No.5,pp284-292.
    [11]T.J.Abatzoglou,G.O.Gheen,"Range,radial Velocity,and acceleration MLE Using Radar LFM Pulse Train,"IEEE Trans.AES,Vol.34,No.4,1998,pp1070-1084
    [12]张涛,马长征,张群,“基于线性调频步进信号的ISAR成像技术研究,”电子与信息学报,2001,23(3):268-274.
    [13]马长征,“雷达目标三维成像技术研究,”西安电子科技大学博士论文,1999.
    [14]刘铮,“步进频率体制雷达成像技术,”西安电子科技大学博士论文,2000.
    [15]牛涛,陈卫东.脉冲步进频率雷达的一种运动补偿新方法[J].中国科学技术大学学报,2005,35(2):161-165.
    [16]Chen Hangyong,Liu Yongxiang,el.,"A new approach for synthesizing the range profile of moving targets via stepped-frequency waveforms",IEEE geoscience and remote sensing letters,2006,3(3):406-409.
    [1]R.T.Lord,M.R.Inggs,"High Range Resolution Radar using Narrowband Linear Chirps offset in Frequency",IEEE Communications and Signal Processing,1997,COMSIG '98.Proceedings of the 1997 South African Symposium,pp.9-12.
    [2]R.T.Lord and M.R.Inggs,"High Resolution SAR Processing Using Stepped-frequencies," Proc.IEEE Geoscience Remote:Sensing Symposium 1997,pp.490-492.
    [3]P.Berens,"SAR with Ultra-High Range Resolution Using Synthetic Bandwidth",IEEE Geoscience Remote Sensing Symposium 1999,IGARSS' 99 Proceedings,pp.1752-1754.
    [4]白霞,毛士艺,袁运能,“时域合成带宽法:一种0.1米分辨率SAR技术”,电子学报,2006,34(3):472-477。
    [5]Zhou Lijuan,Xing Mengdao,Sun Haiping,"Synthetic Bandwidth Method Integrated with Characteristics of SAR," IEEE Radar conference,2006,pp.728-731.
    [6]A.J.Wilkinson,R.T.Lord and M.R.Inggs,"Stepped-Frequency Processing by Reconstruction of Target Reflectivity Spectrum," IEEE Communications and Signal Processing,1998.COMSIG '98.Proceedings of the 1998 South African Symposium,pp.101-104.
    [7]W Nel,J.Tait,R.T.Lord,Wilkinson A.,"The use of a frequency domain stepped frequency technique to obtain high range resolution on the CSIR X band SAR system," Africon Conference in Africa,2002.IEEE AFRICON.6th,2002,pp.327-332.
    [8]Zhang Yunhua,Wu Jie,Li Haibin,"Two simple and efficient approaches for compressing stepped chirp signals," Asia-Pacific Conference Microwave Proceedings,2005,pp.327-332.
    [9]姚萍,郑天矗,王贞松,“线性调频步进式合成孔径雷达系统的信号处理[J].系统工程与电子技术”,2006,28(2):159-162。
    [10]张焕颖,张守宏,李强,“调频步进雷达目标抽取算法及系统参数设计”,电子学报,2007,35(6):1153-1158。
    [11]S.N.Madsen,"Estimating the Doppler centroid of SAR data," I EEE Transactions on Aerospace and Electronic Systems,1989,25(2):134-140.
    [12]邢孟道,保铮,“基于运动参数估计的SAR成像,”电子学报,2001,29(12A):1824-1828。
    [1]丁鹭飞,张平,雷达系统,西北电讯工程学院出版社,1984.
    [2]Skolnik M I,Wetzel L B,Radar Handbook(SE),The McGraw-Hill Companies Inc.,1990.
    [3]刘铮,“步进频率体制雷达成像技术,”西安电子科技大学博士论文,2000.
    [4]保铮,邢孟道,王彤,雷达成像技术,电子工业出版社,2005.
    [1]M.I.Skolnik and L.B.Wetzel,Radar Handbook(SE),The McGraw-Hill Companies Inc.,1990.
    [2]W.L.Melvin,"A STAP Overview," IEEE Aerospace and Electronic Systems Magazine,19(1):19-35.
    [3]J.H.G.Ender,"Space-time processing for multichannel synthetic aperture radar,"IEE Electronics & Communication Engineering Journal,1999,11(1):29-38.
    [4]J.H.G.Ender,A.R.Brenner,"PAMIR-a wideband phased array SAR/MTI system," IEE Proc.Radar Sonar Navigation,2003,150(3):165-172.
    [5]J.H.G.Ender,R Berens,A.R.Brenner,et al.,"Multi-channel SAR/MTI system development at FGAN:from AER to PAMIR," Geoscience and Remote Sensing Symposium,2002,IGARSS '02,pp.1697-1701.
    [6]李春升,陈杰,周荫清,“机载多通道天线SAR自适应杂波抑制,”电子学报,2000,28(3):93-94。
    [7]张直中,“SAR动目标简介,”电子科学技术评论,2004,3:1-7。
    [8]李真芳,保铮,王彤,廖桂生,“基于实测数据的地面慢速动目标检测,”电子学报,2003,31(9):1437-1440。
    [9]李强,张守宏,张焕颖,“高掠海角下基于Radon变换的海杂波抑制方法,”电子与信息学报,2007,29(5):1087-1091。
    [10]黄源宝,“机载合成孔径雷达成像算法及运动补偿的研究,”西安电子科技大学博士论文,2005。
    [11]周峰,“机载SAR运动补偿和窄带窄带干扰抑制及单通道GMTI的研究,”西安电子科技大学博士论文,2007。
    [12]马长征,“雷达目标三维成像技术研究,”西安电子科技大学博士论文,1999。
    [13]李宗武,“直升机机载雷达抗海杂波技术研究,”现代雷达,2000,22(1):10-14。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700