合成宽带信号处理及宽带阵列雷达若干关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分辨距离像反映了沿雷达径向目标后向散射密度的几何结构分布,较之于二维或三维所成像,高分辨距离像需要更少的计算量,因而更容易获取。基于此,距离维高分辨雷达是提供全天候情况下的目标识别及战场情况感知能力的最佳候选。
     为了获得高分辨距离像,雷达系统必须拥有处理大带宽信号的能力。但在目前,宽带雷达在宽带信号产生、目标运动补偿、空域自适应处理等方面的相关理论尚不成熟。本文在前人工作的基础上,着重对高分辨合成距离像及其时域及空域的处理作了较深入的研究,并提出了一些创新的算法。这些算法在多组仿真的基础上进行了验证。归纳起来,本文的主要内容包括以下几个方面:
     1.合成宽带波形处理研究
     在分析了多种合成宽带信号特性的基础上,构建了处理合成宽带波形的通用结构,并提出了一种衡量合成宽带距离像失真度的误差准则和一种误差分析方法。同时,针对不同的合成宽带信号形式,改进了它们的具体处理结构。
     2.合成宽带信号的时域处理研究
     构建了合成宽带信号时域处理的统一结构。提出了一种基于合成宽带信号和传统多普勒滤波器组(使用FFT)的成像系统并对其性能进行了详细地分析。理论分析和仿真结果表明,由于多普勒散布效应,随着目标速度的增大,目标的合成距离像将会产生失真,失真包括距离移动和幅度变形。与此同时,两个与距离移动和幅度变形有关的理论公式被推导出,它们能够分别计算出距离的移动值及评估合成距离像的幅度变形程度,并由此得到了最大临界速度;当目标径向速度小于最大临界速度时,目标的幅度失真是在一个可接受的范围内。
     提出了一种基于速度门的合成宽带滤波器组结构,通过理论分析,获得了该滤波器组成立的临界条件。分析结果进一步表明,为了得到运动目标的可接受失真度的合成距离像,目标径向速度必须小于合成宽带雷达系统中最小的最大不模糊速度。同时,基于这种合成宽带滤波器组结构,一种新的解速度模糊方法被提出。
     提出了一种子带间变PRF(Pulse Repetition Frequency)方法的合成宽带滤波器组结构。通过合理的参数设置,它不但能在任何速度下保证合成距离像的失真度在可接受范围内,并且还可通过FFT形式来实现,以便获得计算的高效性。
     3.合成宽带信号的空域自适应处理技术研究
     构建了合成宽带空域自适应处理的统一结构。提出了一种基于合成宽带信号和传统的干扰+噪声协方差估计值的合成成像系统并对其性能进行了详细地分析。理论分析和仿真结果表明,由于每一个协方差矩阵在每一个子带内是分别独立估计的,目标的合成距离像将会在整个距离范围内产生随机距离旁瓣,其主要是由于噪声方差估计值在不同的子带随机变动而引起的。基于此,提出了两种减轻和消除随机距离旁瓣的方法,一种是对角加载方法,另一种是正交子空间投影法。提出了一种段自适应处理技术,以便简化系统结构和减少计算量;同时,对其性能进行了理论分析。
     提出了一种变采样率自适应处理方法,并在理论上推导出它的具体实现方式。
     4.一种使用LFM波形的宽带数字阵列相对时延测量方法
     提出了一种使用LFM波形的宽带数字阵列相对时延测量方法并对其性能进行了深入的分析。基于Dechirping技术和数字抽取方法,所提出的测量系统能够工作在低的数据率,从而减小了计算量和降低了硬件复杂度。更进一步,通过合理的参数设定和独特的设计结构,能够在一次测量过程中得到多个T/R(Transmit/receive)组件的相对延时值。分析结果表明,测量误差由噪声误差和系统误差组成,它们分别由组件热噪声和多个共存的LFM信号的相互作用而引起,并从理论上推导出该系统的测量精度公式,从而可对一些重要的参量进行评估。基于此,不但可定出测量系统的最优参数,还可预测其性能。
The high-range resolution profile (HRRP) represents a target's radial backscattering intensity, which can reflect potentially discriminative information about the target's geometry and structure. As compared to a two-dimensional or three-dimensional radar image, the HRRP is easier to generate due to the lower computational cost. As a result, the high-range resolution radar has become a leading candidate to provide all weather target recognition and battle sense.
     In order to acquire high-range resolution profile, radar must have the ability to process the wideband signals. There are only immature theories available of the wideband radar in the generation of wideband radar signal, target motion compensation, adaptive processing and so on. Based on the previous work, this dissertation is focused on the synthetic range profile (SRP), the temporal and space adaptive processing of the wideband radar system using synthetic wideband waveforms. Some new methods are presented, and all of which are evaluated on simulated data.
     In general, this dissertation is composed of the following parts:
     1. The research on the synthetic wideband waveform processing
     Based on the analysis of the characteristics of multiple synthetic wideband waveforms, a general structure model of obtaining synthetic range profile (SRP), together with a new error criterion of the SRP and a new analytical method, is established on the analysis of the characteristics of multiple synthetic wideband waveforms. At the same time, for the different synthetic wideband waveforms, their improved realization structures are proposed.
     2. The research on the temporal processing of the synthetic wideband waveform
     A general structure model of the synthetic wideband waveform's temporal processing is established. A wideband imaging architecture based on synthetic wideband waveform and conventional Doppler filter bank structure using FFT is developed and followed by a detailed analysis of its performance. Both the theoretical analysis and simulation results show that owing to Doppler dispersion effect, the target’s SRP, with an increase in velocity, produces distortion, including range shift and shape deformation. At the same time, two related theoretical formulas are deduced for the calculation of the range shift value and evaluation of the amplitude deformation extent of a moving target's SRP formed by the proposed imaging architecture, and thereby the maximum critical velocity is derived. When target velocity is less than the maximum critical velocity, a moving target’s SRP with acceptable amplitude distortion can be obtained.
     A new synthetic wideband filter bank based on the velocity bin structure is proposed, and the critical conditions of obtaining a SRP with acceptable distortion are achieved. Furthermore, the theoretical analysis results show that in order to obtain the SRP with acceptable distortion, target radial velocity must be less than the minimum subband maximum unambiguous radial velocity. Meantime, based on this proposed synthetic wideband filter bank architecture, a new method for resolving velocity ambiguity is proposed.
     A new synthetic wideband filter bank based on the variable PRF among subbands is proposed. By setting parameters reasonably, this new synthetic wideband filter bank architecture not only can provide a moving target’s SRP with acceptable distortion at any target velocity, but also can be implemented through a fast Fourier transform (FFT) for computational efficiency.
     3. The research on the space adaptive processing of the synthetic wideband signals
     A general structure model of the synthetic wideband signal's space adaptive processing is established. A wideband imaging architecture based on synthetic wideband signal and conventional adaptive processing using estimated interference-plus-noise covariance matrix is developed with a detailed analysis of its performance. The theoretical analysis and simulation results show that owing to the independent estimation of the covariance matrix in each subband, the target’s SRP produces random range sidelobes across entire range domain, which are mainly caused owing to the noise's variance estimation varying at random from subband to subband. Two methods are proposed to relieve and eliminate the random range sidelobes. One is diagonal loading method and the other is orthogonal subspace projection method.
     A segment adaptive processing is proposed in order to simplify the subband adaptive processing architecture and at the same time, its performances are analyized in theory.
     A variable space sampling rate adaptive processing method is proposed to lower the computation complexity and its implemented method is deduced in theory.
     4. An efficient relative delay measurement method for digital wideband array radar with LFM waveform
     A relative delay measurement method for digital wideband array radar using linear frequency modulation (LFM) waveform is put forward along with a deep investigation of its basic aspects. Based on Dechirping processing technique and applying digital decimation method, the proposed measurement system can work at low processing rates, thus effectively reducing the computation and lowering hardware complexity. Moreover, by means of reasonable parameter setting and unique design construction, relative delay values among multiple digital transmit/receive (T/R) modules can be measured at one single measurement process. Their measurement accuracy is deduced in a theoretical way, while some significant factors are evaluated thereafter. It is shown that measurement error, resulting from the module thermal noise and the interaction of multiple co-existing LFM pulses respectively, consists of noise error and systematic error. Based on these analysis results, parameters of the measurement system can be optimized and its performances are predicted.
引文
[1]贾玉贵.现代对空情报雷达.北京:国防工业出版社,2004
    [2] Skolnik M, Linde G, Meads K. Senrad:an advanced wideband air-surveillance radar.IEEE Transactions on Aerospace and Electronic Systems,2001,37(4):1162-1175
    [3] Shirman Y D, Leshchenko S P, Orlenko V M. Wideband radar(advantages and problems). Ultrawideband and Ultrashort Impulse Signals Proceedings,2004,71-76
    [4] Becker A, Chevalier L F. Wideband coherent airborne radar system:performances for moving target detection.CIE International Conference of Radar Proceedings,2001,146-149
    [5]王小谟,张光义.雷达与探测.北京:国防工业出版社,2000
    [6]李海鹰,杨汝良.超宽带雷达的发展、现状及应用.遥感技术与应用,2001,16(3):178-182
    [7]赵国庆.雷达对抗原理.西安:西安电子科技大学出版社,1999
    [8]马骏声.NMD-GBR地基雷达初样型的技术功能.航天电子对抗,2002,23(3):1-6
    [9]姚晖,吴瑛.宽带波束空间恒模阵列.系统工程与电子技术,2010,(32)2:266-268
    [10]陈德莉,张聪,卢焕章.存在阵列模型误差情况下的宽带DOA估计.航空学报,2009,(30)2:325-331
    [11] Immoreev I Y. Ultra-wideband radars:features and ways of development.Radar Conference, European,2005,97-100
    [12] Nag S, Barnes M. A moving target detection filter for an ultra-wideband radar.IEEE National Radar Conference,2003,147-153
    [13]王晓红.基于STK的升级丹麦眼镜蛇雷达系统性能分析.现代雷达,2009,31(1):1-8
    [14]陈立,潘谊春,郑凯.相控阵雷达的发展.舰船电子工程,2009,29(5):13-17
    [15]曹正林,杨向忠,刘卫华.机载相控阵雷达TAS方式的实现.电子与信息学报,2009,31(5): 1136-1139
    [16] Tarran C, Mitchell M, Howard R. Wideband phased array radar with digital adaptive beamforming.IEE Colloquium(Digest),1999,1-7
    [17]石星.毫米波相控阵雷达及其应用发展.电讯技术,2008,(48)1:6-12
    [18]向敬成,张明友.雷达系统.北京:电子工业出版社,2001
    [19] William W C, Joseph T M, Robert M. Wideband Radar for Ballistic Missile Defense and Range-Doppler Imaging of Satellites.Lincoln Laboratory Journal,2000,12(2):267-280
    [20] Dai F, Liu H, Wu S. Subband implementation for wideband radar clutter suppression and target HRRP enhancement.Chinese Journal of Electronics,2010,(19)2:381-385
    [21] Malas J A. Automatic target classification of slow moving ground targets using space-time adaptive processing:[Ph.D.Dissertation].Dayton:University of Dayton,2002
    [22] Guerci J R. Space-Time Adaptive Processing for Radar.Norwood,MA:Artech House,2003
    [23] Ward J. Spact-time adaptive processing for air-borne radar.Technical report,1015,MIT Lincoln Laboratory,1994
    [24] Klemm R. Spact-time adaptive processing, Principle and Application.London:IEE Press,1998
    [25] Upton L O, Thurman L A. Radars for the Detection and Tracking of Cruise Missiles.Lincoln Laboratory Journal,2000,12(2):355-366
    [26] Guo Q L, Jian L. Moving target detection via airborne HRR phased array radar. IEEE Transactions on Aerospace and Electronic Systems,2001,37(3):914-924
    [27]王晓红,金林,高俊姣.频率步进雷达距离扩展目标检测算法研究.现代雷达,2009,31(5): 35-38
    [28]高昭昭,邢孟道,张守宏等.基于线性调频步进信号的高速目标ISAR成像.电子与信息学报,2008,30(12):2813-2817
    [29] Schimpf H, Wahlen A. High range resolution by means of synthetic bandwidth generated by frequency-stepped chirps.IEE Electronics Letters,2003,39(18):1346-1348
    [30]任丽香,龙腾,远海鹏.HPRF脉冲多普勒频率步进雷达信号处理与参数设计.电子学报, 2007,35(9):1630-1636
    [31] French A. Improved high range resolution profiling of aircraft using stepped-frequency waveforms with an S-band phased array radar.IEEE Radar Conference,2006,69-75
    [32]文树梁,袁起,何佩坤等.宽带线性调频雷达信号多普勒效应分析与处理.系统工程与电子技术,2005,27(4):573-577
    [33]吴晓芳,刘阳,王雪松,卢焕章.基于频率步进雷达时间-距离像的宽带微动特征提取.电子学报,2009,37(7):1416-1421
    [34]雷文,龙腾,韩月秋.调频步进雷达运动目标信号处理的新方法.电子学报,2000,28(12): 34-37
    [35]沈吉,向锦武等.目标运动对步进频率毫米波雷达图像匹配识别的影响研究.电子学报, 2003,31(3):345-348
    [36]姜斌,黎湘,陈行勇等.调频步进雷达扩展目标运动补偿研究.信号处理, 2006,22(6):873-878
    [37]刘峥,张守宏.步进频率雷达目标的运动参数估计.电子学报,2000,28(3):43-45
    [38]蒋楠稚,王毛路,李少洪等.频率步进脉冲距离高分辨一维成像速度补偿分析.电子科学学刊,1999,21(5):665-670
    [39] Abatzoglou T J, Gheen G O. Range,radial velocity,and acceleration MLE using radar LFM pulse train.IEEE Transactions on Aerospace and Electronic Systems,1998,34(4):1070-1084
    [40] Berizzi F, Martorella M, Cacciamano A, et al. A Contrast-Based Algorithm For Synthetic Range-Profile Motion Compensation.IEEE Transactions on Geoscience and Remote Sensing, 2008,48(10):3053-3062
    [41] Ferreras J M, Perez M F. On the doppler spreading effect for the range-instantaneous doppler technique in inverse synthetic aperture radar imagery.IEEE Geoscience and Remote Sensing Letters,2010,7(1):180-184
    [42] Mun K L. Stepped Frequency Imaging Radar Simulation.Technical report,AD-A379137, Naval Postgraduate School,2000
    [43] Abraham P. High Radar Range Resolution with the Step Frequency Waveform.Technical report,A116482,Naval Postgraduate School,1994
    [44]史仁杰.雷达反导与林肯实验室.系统工程与电子技术,2007,29(11):1781-1799
    [45] Schimpf H, Wahlen A. High range resolution by means of synthetic bandwidth generated by frequency stepped chirps.IEE Electronics Letters Online,2003,39(18):1-2
    [46]罗迎,张群,柏又青,朱丰.线性调频步进信号雷达微多普勒效应分析及目标特征提取.电子学报,2009,37(12):2741-2746
    [47]李亚超,梁毅,邢孟道,保铮.基于线性调频步进ISAR参数估计和成像算法研究.电子学报,2008,36(12):2464-2472
    [48] Temple M A, Sitler K L, Raines R A, et al. High range resolution (HRR) improvement using synthetic HRR processing and stepped-frequency polyphase coding.IEE Proceedings:Radar, Sonar and Navigation,2004,151(1):41-47
    [49]王飞,龙腾.一种新的步进频率雷达信号目标抽取算法.弹箭与制导学报,2006,26(2): 135-137
    [50]李眈,龙腾.步进频率雷达目标去冗余算法.电子学报,2000,28(6):60-63
    [51] Green S D, Kingsley S P. Improving the range/time sidelobes of large bandwidth discontinuous spectra HF radar waveforms.IEE Proceedings of the 7th International Conference on HF Radio Systems and Techniques,1997,246-250
    [52] Khan H A, Tarique Z, Edwards D J, Stevens C J. On the merits of using spatial and waveform diversity for target detection in ultra wideband radars.2nd European Radar Conference,2005, 153-156
    [53]熊俊志,杨子杰,周辉林.非连续谱FMCW雷达信号分析与处理.电波科学学报,2006,21(3): 377-381
    [54]熊俊志,杨子杰,王勤.基于内插/外推的非连续谱高频雷达二维处理.电波科学学报, 2006,21(5):735-739
    [55] Walbridge M R, Chadwick J. Reduction of range ambiguities by using irregularly spaced frequencies in a synthetic wideband waveform.IEE Colloquium on High Resolution Radar and Sonar,1999,Vol.2:1-6
    [56] Li H, Zhang Y, Wu J. Sidelobes and grating lobes reduction of stepped-frequency chirp signal. IEEE International Symposium on Microwave,Antenna,Propagation and EMC Technologies for Wireless Communications,2005,Vol.2:1210-1213
    [57] Levanon N, Mozeson E. Nullifying ACF grating lobes in stepped-frequency train of LFM pulses.IEEE Transactions on Aerospace and Electronic Systems,2003,39(2):694-703
    [58] Dong P Z, Xing Z L. Range sidelobes suppression for wideband randomly discontinuous spectra OTH-HF radar signal.IEEE National Radar Conference,2004,577-581
    [59] Lim B G, Kim Y S. Simultaneous reduction of sidelobes and grating lobes by realising nonlinear synthetic wideband waveforms in SAR processing.Electronics Letters,2008,(44)24: 1427-1428
    [60] Rabideau D J. Nonlinear synthetic wideband waveforms. IEEE National Radar Conference,2002,212-219
    [61] Ackroyd M H, Ghani F. Optimum mismatched filters for sidelobe suppression.IEEE Transactions on Aerospace and Electronic Systems,1973,(9)2:214-218
    [62] Rohling H,Plagge W. Mismatched-filter design for periodic binary phased signals.IEEE Transactions on Aerospace and Electronic Systems,1989,(25)6:890-897
    [63] Luminati J E, Hale T B, Temple M A, et al. Doppler aliasing artifact filtering in SAR imagery using randomized stepped-frequency waveforms.Electronics Letters,2004,40(22):1447-1448
    [64] Axelsson, Sune R J. Analysis of Random Step Frequency Radar and Comparison With Experiments.IEEE Transactions on Geoscience and Remote Sensing,2007,45(4):890-904
    [65] Axelsson, Sune R J. Noise radar using random phase and frequency modulation.IEEE Transactions on Geoscience and Remote Sensing,2004,(42)11:2370-2384
    [66] Theron I P, Walton E K, Gunawan S, et al. Ultra-band noise radar in the VHF/UHF band.IEEE Transactions on Antennas Propagation,1999,(47)6:1080-1084
    [67] Narayanan R M, Dawood M. Doppler estimation using a coherent ultra wide-band random noise radar.IEEE Transactions on Antennas Propagation,2000,(48)6:868-878
    [68] Axelsson, Sune R J. Noise radar for range/doppler processing and digital beamforming using low-bit ADC.IEEE Transactions on Geoscience and Remote Sensing,2003,(41)12:2703-2720
    [69] Rabinkin D V, Pulsone N B. Subband domain signal processing for radar array systems.Proc SPIE,1999,Vol.3807:174-187
    [70] Gauthier J, Duval L, Pesquet J C. Optimization of synthesis oversampled complex filter banks.IEEE Transactions on Signal Processing,2009,(57)10:3827-3843
    [71]宋秀峰,王飞,禹卫东.过采样子带脉冲压缩系统分析以及在SAR中的应用.中国科学院研究生院学报,2008,(25)5:620-625
    [72]马仑,李真芳,廖桂生.宽带雷达信号的多通道低速率采样方法.系统工程与电子技术, 2007,29(9):1453-1455
    [73] Rabinkin D, Nguyen T. Optimal subband filterbanks design for radar array signal processing with pulse compression. Sensor Array and Multichannel Signal Processing Workshop, Proceedings of the IEEE,2000,315-321
    [74]水鹏朗,保铮.基于频带分割的超宽带雷达脉冲压缩方法.电子学报,1999,27(6):50-53
    [75]石光明.子带滤波器组的设计方法和应用:[博士学位论文].西安:西安电子科技大学, 2001
    [76]陈隽永,徐继麟.超宽带雷达频带分割滤波器设计.系统工程与电子技术,2001,23(2): 1-3
    [77]杨延光,黄晓涛.基于匹配滤波和频带分割的超宽带信号脉冲压缩方法.雷达科学与技术, 2005,(3)6:361-366
    [78]宋岳鹏,柳祥乐,杨汝良.合成孔径雷达成像中频带分割与子带处理技术研究.电子与信息学报,2009,31(1):152-155
    [79] Djigan V I. Linearly constrained adaptive arrays based on a quadratic constant modulus criterion.IEEE EUROCON,2009,1406-1413
    [80] Godara L C. Application of the fast Fourier transform to broadband beamforming. Journal of the Acoustical Society of America,1995,98(7):230-240
    [81]李宁,汤俊,彭应宁.频域宽带波束形成算法.清华大学学报(自然科学版),2008,(48)7: 1127-1130
    [82] Howard M. Adaptive digital beamforming(ADBF)architecture for wideband phased-array. Proceedings of SPIE-The International Society for Optical Engineering,1999,Vol.3704:36-47
    [83] Jankiraman M, Wessels B J, Genderen P V. Design of a multi-frequency FMCW radar. Proceedings of the 28th European Microwave Conference,1998,584-589
    [84] Levanon N. Train of diverse multifrequency radar pulses.Proceedings of the IEEE National Radar Conference,2001,93-98
    [85] Garmatyuk D, Schuerger J, Morton Y, et al. Feasibility Study of a Multi-Carrier Dual-Use Imaging Radar and Communication System.Proceedings of the 37th European Microwave Conference,2007,1473-1476
    [86] Garmatyuk D, Schuerger J. Conceptual design of a dual-use radar/communication system based on OFDM.IEEE Military Communications Conference,2008,1-7
    [87] Lellouch G, Pribic R, Van G P, et al. Agile stepped OFDM waveform for HRR. International Waveform Diversity and Design Conference,2009,90-93
    [88] Cheng F, He Z S, Liu H M, et al. The parameter setting problem of signal OFDM-LFM for MIMO radar.International Conference on Communications,Circuits and Systems,2008,876- 880
    [89] Mason S, Berger C R, Zhou S L, et al. Detection,synchronization,and doppler scale estimation with multicarrier waveforms in underwater acoustic communication.IEEE Journal on Selected Areas in Communications,2008,26(9):1638-1649
    [90]熊张亮,是湘全,王志华,赵兆.多载波雷达信号分析.现代雷达,2007,(29)10:35-39
    [91] Levanon N. Multifrequency radar signal.IEEE International Radar conference,2000,683-688
    [92] Prasad N N, Shameem V, Desai U, et al. Improvement in target detection performance of pulse coded Doppler radar based on multicarrier modulation with fast Fourier transform(FFT).IEE Proceedings:Radar,Sonar and Navigation,2004,151(1):11-17
    [93] Levanon N. Multifrequency complementary phase-coded radar signal.IEE Proceedings:Radar, Sonar and Navigation,2000,147(6):276-284
    [94]顾陈,张劲东,朱晓华.基于OFDM的多载波调制雷达系统信号处理及检测.电子与信息学报,2009,31(6):1298-1300
    [95]孟银阔,殷勤业.使用非线性变换降低正交频分复用的峰均比.系统工程与电子技术, 2006,28(2):177-180
    [96] Armstrong J. Peak to average power reduction for OFDM by repeated clipping and frequency domain filtering.Electronics Letters,2002,38(5):246-247
    [97]薄华,马缚龙,焦李成.扩频调制技术在多载波扩频雷达系统中的应用.西安电子科技大学学报(自然科学版),2004,(31)4:526-529
    [98] Mozeson E, Levanon N. Multicarrier radar signals with low peak-to-mean envelope power ratio.IEE Proceedings:Radar, Sonar and Navigation,2003,150(2):71-77
    [99] Levanon N, Mozeson E. Multicarrier Radar Signals Pulse Train and CW.IEEE Transactions on Aerospace and Electronic Systems,2002,38(2):707-720
    [100]顾村锋,缪晨,侯志.多载波补偿相位编码雷达信号的子载波加权优化.探测与控制学报, 2008,(30)4:56-60
    [101]朱永锋,李为民,陈远征,付强.Chirp雷达对高速运动目标有效相参积累的算法研究.系统工程与电子技术,2004,(26)10:1396-1399
    [102]王洪,卢俊华.超宽带信号时域动目标处理方法.电子信息对抗技术,2008,(23)4:4-7
    [103]闫冯军,夏传浩,洪一.基于一维距离像的运动目标相参积累方法.雷达科学与技术,2006,(4)5:309-312
    [104]姜正林,邢孟道,保铮.ISAR成像的越距离单元走动校正.电子与信息学报,2002,24(5): 577-583
    [105] Mengdao X, Renbiao W, Jin Q L, et al. Migration through resolution cell compensation in ISAR imaging.Geoscience and Remote Sensing Letters,2004,1(2):141-144
    [106] Xing M D, Lan J Q, Bao Z, et al. ISAR echoes coherent processing and imaging.IEEE Aerospace Conference Proceedings,2004,Vol.3:1946-1960
    [107] Jiang Z L, Xing M D, Bao Z. Correction of migration through resolution cell in ISAR imaging. CIE International Conference of Radar Proceedings,2001,933-937
    [108]张顺生,曾涛.基于keystone变换的微弱目标检测.电子学报,2005,33(9):1675-1678
    [109]盛蔚,毛士艺.基于keystone变换的地面运动目标检测研究.系统工程与电子技术,2002, 24(11):1-4
    [110]赵建宏,杨建宇,熊金涛,彭卫.回波越距离单元走动的MTD研究.电波科学学报,2007,(22)3:481-485
    [111]王俊,张守宏.微弱目标积累检测的包络移动补偿方法.电子学报,2000,28(12):56-59
    [112] An D X, Huang X T, Zhou Z M. Two-step motion compensation of range migration algorithm for airborne spotlight SAR Imaging.Asia-Pacific Conference on Synthetic Aperture Radar, 2009,350-353
    [113]张军,付强,肖怀铁等.脉冲多普勒雷达对运动目标回波信号的检测.国防科技大学学报,2001,23(6):54-58
    [114]朱永峰,李为民,陈远征等.Chirp雷达对高速运动目标有效相参积累的算法研究.系统工程与电子技术,2004,26(10):1396-1399
    [115] An D X, Huang X T, Zhou Z M. Motion compensation method for low frequency ultra-wideband SAR based on SPGA algorithm.Systems Engineering and Electronics,2010, (32)2: 260-265
    [116]罗斌凤,张群,张涛.强地杂波背景下的步进频率信号雷达成像方法.电子与信息学报, 2003,25(6):784-789
    [117] Shen Y Y, Liu Y T. A step pulse train design for high resolution range imaging with Dopple resolution processing.Chinese Journal of Electronics,1999,8(2):196-199
    [118] Zatman M. How narrow is narrowband. IEE Proceedings:Radar,Sonar,and Navigation,1998, 145(2):85-91
    [119] Wei P, Xue G W, Jian H Z. Methods of eliminating Doppler dispersion in synthetic wideband signal.International Conference on Microwave and Millimeter Wave Technology,2008, Vol.3:1540-1543
    [120]彭卫,汪学刚,赵建宏,吴宏刚.基于常规多普勒滤波器组结构的合成宽带距离像性能分析.航空学报,2009,30(6):1098-1102
    [121] Pillai S U, Li K Y, Guerci J R. Effect of bandwidth on wideband-stap performance. Record-Asilomar Conference on Signals,Systems and Computers,2007,2195- 2198
    [122] Moore T D, Gupta I J. The effect of interference power and bandwidth on space-time adaptive processing.IEEE Antennas and Propagation Society,2003,Vol.1:53-56
    [123] Herbert G M, Richardson P G. Post-adaptive processing time-delay beamforming for clutter suppression in airborne radar.Electronics Letters,2008,(44)5:378-379
    [124] Herbert G M. Space-time adaptive processing(STAP)for wide-band airborne radar.IEEE National Radar Conference,2000,620-625
    [125] Srinivas T, Shanbhag G, Vishwanath V. Mathematical analysis of true time delay for optical beam steering in laser radar.Loughborough Antennas and Propagation Conference,2009,285- 288
    [126] Lee A, Chen L, Song A, et al. Simulation Study of Wideband Interference Rejection using Adaptive Array Antenna.IEEE Aerospace Conference,2005,1-6
    [127] Malas J A, Pasala K M, Westerkamp J J. Wideband radar signal modeling of ground moving targets in clutter.Proceedings of SPIE-The International Society for Optical Engineering, 2002, Vol.4718:324-335
    [128] Mir H, Berkowitz Z. Sub-band STAP for stretch processed systems.IEEE International Conference on Acoustics,Speech and Signal Processing,2009,2025-2028
    [129] Malas J A, Pasala K M, Westerkamp J J. Automatic target classification of slow moving ground targets in clutter.IEEE Transactions on Aerospace and Electronic Systems,2004,40(1): 190-205
    [130] Whelan D A, Filip A, Koss J J, et al. Global space-based ground surveillance:Mission utility and performance of Discoverer II.IEEE Aerospace Conference Proceedings,2000,Vol.5:1-11
    [131]赵永波,水鹏朗,张守宏.基于子带滤波器组的宽带自适应天线旁瓣相消技术.电子学报,2005,(33)3:556-559
    [132]何心怡,蒋兴舟,李启虎.基于子带分解的宽带波束域最小方差无畸变响应高分辨方位估计方法研究.声学学报,2004,(29)6:533-538
    [133]黄龙杨,李梦醒,申滨,程恩,刘泽民.宽带自适应波束形成子带实现方法.北京邮电大学学报,2008,(31)5:88-92
    [134] Hoffman A, Kogon S M. Subband STAP in Wideband radar system.IEEE International Conference on Sensor Array and Multichannel Signal Processing Workshop,2000,256-260
    [135] Steinhardt A O, Pulsone N B. Subband STAP processing, the fifth generation.IEEE Sensor Array and Multichannel Signal Processing Workshop,2000,1-6
    [136] Garrod A. Digital modules for phased array radar.IEEE International Radar Conference,1995, 726-731
    [137]徐海洲,吴曼青.数字阵列雷达系统.合肥工业大学学报(自然科学版),2008,(31)5:718- 720
    [138] Feng J J. Use of DSP and DDS technique in radar signal generator.The 7th International Conference on Signal Processing Proceedings,2004,1950-1952
    [139]张卫清,谭剑美,陈菡.DDS在数字阵列雷达中的应用.雷达科学与技术,2008,(6)6:467- 471
    [140] Garrod A. Digital modules for phased array radar.IEEE International Symposium on Phased Array Systems and Technology,1996,81-86
    [141]吴曼青.收发全数字波束形成相控阵雷达关键技术研究.系统工程与电子技术,2001,23 (4):45-47
    [142] Cantrell B, Graaf J D. Development of a Digital Array Radar(DAR).IEEE Radar Conference, 2001,157-162
    [143]吴曼青,王炎.基于DDS的收发全DBF相控阵技术.高技术通讯,2000,(8):42-44
    [144]李玉伟,朱砂,张洪生.以DDS为核心的数字模块在相控阵雷达中的应用.系统工程与电子技术,2000,(22)9:95-97
    [145]吴曼青,靳学明,谭剑美.相控阵雷达数字T/R组件研究.现代雷达,2001,23(2):57-60
    [146]鲁加国,吴曼青,靳学明.基于DDS的有源相控阵天线.电子学报,2003,31(2):199-202
    [147] Rabideau D J, Galejs R J, Willwerth F G, et al. An S-Band Digital Array Radar Testbed.IEEE International Symposium on Phased Array Systems and Technology,2003,113-118
    [148] Brookner E. Phased Array and Radar Breakthroughs.IEEE International Conference on Radar, 2007,37-42
    [149] Szu H, Stapleton R, Willwerth F. Radar Commercial Applications.IEEE International Radar Conference,2000,717-722
    [150]杨广玉,吴顺君,洪一.两维DBF相控阵雷达的通道误差与通道均衡.雷达科学与技术, 2005,3(6):367-371
    [151]张月,陈曾平,杨剑,唐伟伟.宽带DAR全数字接收与实时处理技术研究.雷达科学与技术,2008,(6)6:435- 439
    [152]於洪标.数字T/R组件中DBF发射技术研究.现代雷达,2001,23(1):77-80
    [153]於洪标.有源相控阵雷达T/R组件稳定性分析设计.电子学报,2005,(33)6:1102-1104
    [154]吴曼青.数字阵列雷达的发展与构想.雷达科学与技术,2008,(6)6:401-405
    [155] Cantrell B. Development of a Digital Array Radar(DAR).IEEE Transactions on Aerospace and Electronic Systems,2002,17(3):22-27
    [156]朱庆明.数字阵列雷达述评.雷达科学与技术,2004,(2)3:136-141
    [157]范占春,李会勇,何子述.基于分数时延的宽带数字阵列波束形成.雷达科学与技术, 2008,(6)6:450-453
    [158]成超,李会勇,何子述.基于子阵时延的数字阵列宽带波束形成.雷达科学与技术,2008, (6)6:459-462
    [159]郭伟,潘仲明,杜金榜,王跃科.基于Lagrange插值的非整数延时滤波器算法.国防科技大学学报,2009,(31)1:90-94
    [160]王敏,吴顺君,杨淑媛.UWB脉冲信号的时域波束形成方法.电波科学学报,2006,(21)2: 238-243
    [161]姜文利,唐白玉,徐可斌等.高频区雷达目标散射模型及其参数估计.电子学报,1998,26 (3):70-74
    [162]廖学军.基于高分辨距离像的雷达目标识别:[博士学位论文].西安:西安电子科技大学, 1999
    [163]黄培康,殷红成,许小剑.雷达目标特性.北京:电子工业出版社,2005
    [164]胡广书.数字信号处理-理论算法与实现.北京:清华大学出版社,2003
    [165] Gerlach K. Spatially distributed target detection in non-gaussian clutter.IEEE Transactions on Aerospace and Electronic Systems,1999,35(3):926-934
    [166] Gerlach K, Michael S. Detection of a spatially distributed target in white noise.IEEE Signal Processing Letters,1997,4(7):198-200
    [167] Chen H Y, Liu Y X, Li X, et al. Mathematics of Synthesizing Range Profile.IEEE Transactions on Signal Processing,2007,(55)5:1950-1955
    [168] Oppenheim A V, Schafer R W. Discrete-Time Signal processing.Englewood Cliffs:Prentice– Hall Inc,2005
    [169] Wang G Y, Xia X G, Victor C C, Fiedler R L. Detection, location, and imaging of fast moving targets using multifrequency antenna array SAR.IEEE Transactions on Aerospace and Electronic Systems,2004,40(1):345-355
    [170]文树梁,袁起,毛二可,何佩琨.宽带相控阵雷达Stretch处理孔径渡越时间数字补偿技术.电子学报,2005,(33)6:961-964
    [171]龚耀寰.自适应滤波(第二版).北京:电子工业出版社,2003
    [172] Pascal F, Harari K H, Larzabal P. The Empirical Likelihood method applied to covariance matrix estimation.IEEE Transactions on Signal Processing,2010,90(2):566-578
    [173] Mestre X, Lagunas M A. Finite sample size effect on minimum variance beamformers optimum diagonal loading factor for large arrays.IEEE Transactions on Signal Processing, 2006,54(1):69-82
    [174]沈风麟,叶中伏,钱玉美.信号统计分析与处理.合肥:中国科学技术大学出版社,2003
    [175] Huang L, Wu S, Feng D, et al. Low complexity method for signal subspace fitting. Electronics Letters,2004,40(14):847- 848
    [176]黄磊,吴顺君,张林让,冯大政.快速子空间分解方法及其维数的快速估计.电子学报, 2005,(33)6:977-981
    [177]黄磊,张林让,吴顺君.一种低复杂度的信号子空间拟合的新方法.电子学报,2005, (33)6:982-986
    [178] Sameni R, Jutten C, Shamsollahi M. A deflation procedure for subspace decomposition.IEEE Transactions on Signal Processing,2010,58(4):2363-2374
    [179] Van T H L. Optimum array processing. New York,NY:Wiley,2002
    [180] Teitelbaum K A. Flexible processor for a digital adaptive array radar.IEEE Transactions on Aerospace and Electronic Systems,1991,(6)5:18-22
    [181] Hudson J E. Adaptive array principles.London: Peter Peregrinnus,1981
    [182]曹运合,刘峥,张守宏.宽带宽角数字阵列雷达发射波束形成技术.雷达科学与技术, 2008,6(6):445-449
    [183]王旭,何佩琨,毛二可.实现频率步进相控阵雷达宽带宽角扫描的一种方法.雷达科学与技术,2007,(5)3:167-170
    [184]罗永健,俞根苗,张守宏,朱敏.基于确知波形的宽带宽角相控阵发射波束形成方法.电子学报,2003,(31)3:358-360
    [185]鲁耀兵,戴开良,陈燕.宽带宽角扫描相控阵雷达技术研究.系统工程与电子技术,2004, (26)3:388-390
    [186]曹运合,尚海燕,张守宏等.时延单元量化误差分析及宽带相控阵数字波束形成.西安电子科技大学学报(自然科学版),2006,(33)6:970-974
    [187]高瑜翔,何子述,徐继麟.光控相控阵列天线瞬时带宽的理论分析与仿真.系统工程与电子技术,2004,(26)10:1344-1347
    [188]金谋平,官伟,郭俊等.一种宽带光控相控阵天线实验系统.电子学报,2006,(34)6: 1127-1129
    [189]张延,黄佩诚.高精度时间间隔测量技术及方法.天文学进展,2006,24(1):1-15
    [190]吴海涛,王丹妮,边玉敬.Cs Sync 1000型罗兰C接收机系统时延的测量方法.电子测量与仪器学报,2002,16(3):22-27
    [191]潘继飞,姜秋喜,毕太平.基于内插采样技术的高精度时间间隔测量方法.系统工程与电子技术,2006,28(11):1633-1636
    [192] Szplet R, Kalisz J, Szymanowski R. Interpolating time counter with 100-ps resolution on a single FPGA device.IEEE Transactions on Instrumentation and Measurement,2000,49(4):879 -883
    [193]万永伦,姒强,汪学刚.超宽带线性调频信号线性度的测量方法.电子测量与仪器学报,2007,21(4):55-58
    [194]林茂庸,柯有安.雷达信号理论.北京:国防工业出版社,1984

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700