地、海杂波建模及目标检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了地、海杂波建模与仿真及目标检测若干技术。
     首先回顾了杂波建模与仿真技术、海杂波混沌特性分析与目标检测的发展历史和研究现状,分析了目前存在的主要问题,介绍了论文研究的内容。
     第二章首先研究了几种典型杂波模型的统计特性及零记忆非线性变换法(ZMNL,Zero Memory Nonlinearity)仿真方法,然后,针对以往的杂波模拟仿真中,都没有考虑线性滤波器的物理可实现性问题,引入最小相位特性与复倒谱技术,给出了一种物理可实现的滤波器产生方法,在此基础上,详细阐述了典型杂波随机序列产生的方法。广义复合杂波模型(Generalized Compound Probability Density Function,GC-PDF)适用范围比较广泛,论文第二章给出了该杂波模型取不同参数时与经典杂波模型的联系,深入分析了其统计特性,研究了最小二乘参数估计方法,进而以参数解耦和充分利用杂波序列信息为突破点,提出了一种新的参数解耦估计算法。该算法将一个四维非线性最优化问题转化为一个一维线性最优化问题,降低了计算量和所需样本数,提高了估计性能。仿真结果验证了上述算法的准确性与有效性。
     第三章首先研究了近海岸环境的特点,提出了一种新的近海岸复合杂波幅度分布模型,随后研究了其统计特性,推导得到了相关高斯序列与近海岸杂波分布序列相关系数间的非线性关系,这是基于ZMNL方法进行杂波仿真的重要前提。在此基础上,提出了一种近海岸复合杂波随机序列产生的方法。最后,分析了对LFM信号具有时频聚集性这一特点,给出了近海岸复合杂波背景下基于WVD (Wigner Ville Distribution)变换的LFM (Linear Frequency Modulation)信号目标检测方法。基于实测数据的仿真结果验证了杂波模型准确、检测算法对杂波具有较强的抑制能力。
     第四章首先研究了混沌基本理论,分析了混沌时间序列判决方法。然后研究了基于RBF神经网络与基于记忆库的预测方法,并对各自性能进行了比较,得出了有意义的结论。其后,引入分形布朗运动模型,基于实测的S波段雷达数据,计算了该分形模型的海杂波Hurst指数,随后求得了其分形维数。并计算得到了其Lyapunov指数,从而证实了S波段实测海杂波的混沌分形特性。随后,提出了一种基于最小二乘支持向量机(LS-SVM Least Squares Support Vector Machines)的海杂波混沌时间序列预测方法。最后,基于实测数据,进行了计算机仿真实验,验证了算法与结论的有效性。
     第五章给出了一种改进径向基核函数(RBF,Radial Basic Function)的支持向量机分类方法,并比较了该方法与模糊K-近邻法(FKNN,Fuzzy K-Nearest Neighbor)、模糊最小最大神经网络方法(FMMNN,Fuzzy Min-Max Neural Network)的分类性能。进而分析了实测海杂波与目标回波信号的盒维数的差异,提出了一种基于海杂波分形特性的目标检测方法。然后,基于目标回波信号与海杂波预测信息的差异,引入改进核函数的SVM分类器,提出了一种海杂波背景下的目标检测方法。基于实测数据的仿真结果证明了上述方法具有较高的检测精度与抗噪性能。
     第六章首先对扩展目标的一维距离像进行了离散建模,然后给出了扩展目标调频步进雷达回波信号的数学模型。通过深入分析径向运动对一维距离像的影响,推导得到了一次相位项与二次相位项的运动补偿精度要求。在此基础上,研究了时域相关法与最小脉组误差函数准则,给出了适合工程需要的运动补偿算法。最后,进行了计算机仿真实验,证明了本章的结论。
     第七章是结束语,总结了本文主要工作,指出需进一步研究和解决的问题。
The dissertation is focused on the modeling and simulation of coastal clutter as well as radar target detection.
     Chapter 1 introduces the main problem of current modeling and simulation of the sea clutter and radar target detection techniques and proposes the solution.
     In chapter 2, a physical realizable filter that adopts minimum phase feature and complex cepstrum technology is presented. The method of generating general random clutters sequences is described in detail. The relationship between the classical clutter models and GC-PDF model is also analyzed which deduces the method of least mean squares parameter estimation. Furthermore, a new model parameter estimation algorithm is brought out through the parameter decoupling and fully using the information contained in the clutter sequences. This new estimation method translates four dimension nonlinear optimization problem to one dimension linear optimization problem, which can not only improve the estimation performance, but also depress the calculation quantity and the necessarily clutter sample numbers. The simulation is processed and the results prove the validity and veracity of the method proposed in this chapter.
     Chapter 3 proposes a novel coastal compound distributed model of the clutter amplitude. Then the technique of generating the random coastal compound clutter sequences is presented with deduction of the nonlinear relation of autocorrelation function between the coastal compound clutter random sequences and the correlated Gaussian random sequences based on the research on the statistic characteristic, which is the important precondition for the clutter simulation based on the ZMNL. In the end, a new approach is presented with WVD based on the signal detection in the ocean whereas WVD has the time-frequency local characteristic for LFM signal. The simulation result with the observed data shows veracity and validity for the clutter mode and significant clutter suppression with the detection algorithm.
     In chapter 4, the chaos basic theories are studied and the methods to define chaotic time series are analyzed at first. Then, two prediction technologies based on the RBF neural networks and memory-based predictor are analyzed with their performance comparation, which gives the analytical results. By adopting the model of fractional Brownian motion (FBM), the Hurst exponent is deduced based on the observed data of the S band radar. Furthermore, the fractal dimension of the S-band sea clutter is also deduced. Then the largest Lyapunov exponent is obtained by Rosenstein method, which proves its chaos and fractal characteristic. It turns out to be a novel method of chaotic time series prediction based on LS-SVM. Based on the observed data of S-band radar, the computer simulation is processed and the results prove the validity and veracity of the conclusion proposed in chapter 4.
     In chapter 5, the pattern classification method of SVM is analyzed with an ameliorated RBF kernel function, contrasted whose classification performance with those of FKNN and FMMNN. By analyzing the box dimension difference between the observed sea clutter and the target echo signal, the method of target detection is proposed based the fractal property of the sea clutter. Also by adopting the SVM classifiers of the ameliorated RBF kernel function, a novel method of target detection in the background of sea clutter is presented based on the predictive information difference between the observed sea clutter and the target echo signal. Based on the observed data, the computer simulation is processed and the results prove the effective detection performance and noise tolerance.
     In chapter 6, a discrete model is set up for high resolution profile of an extended target, and then the math model of echo signal is presented from an extended target produced by stepped chirp radar. The effect of target motion on a range profile is analyzed in deep, and then precision necessitation is derived for motion compensation. Studies on the method of time field correlation and the rule based on the least burst error; the motion compensation arithmetic is presented which suits the project requirement. Finally the result of a cyber-emulation proves the conclusion.
     Chapter 7 is the summary of the paper and points out the problems which need further research.
引文
[1] 刘福声, 罗鹏飞. 统计信号处理. 长沙:国防科技大学出版社. 1999.
    [2] 黄培康. 雷达目标特征信号[M]. 北京:电子工业出版社. 2005.
    [3] 赵宏钟. 毫米波多卜勒制导雷达信号处理方法研究[D]. 长沙:国防科技大学. 2003.
    [4] Jackman, E. On the statistics of K-distributed noise[J]. Journal of Physics, A Math. Gen. 1980, 13: 31~48.
    [5] Middleton, D. New physical-statistical models and methods for clutter and reverberation: KA distributions[C], Proceedings IEEE International Symposium on Information Thoety, MIT, Cambridge, MA USA, 1998:301-301
    [6] Ward , K D. Compound representation of high resolution sea clutter[J]. Electron Letter. 1981, 17(16): 561~563.
    [7] David A, Shnidman. Generalized radar clutter model[J]. IEEE Trans on AES. 1999, 35(3): 857-865.
    [8] V Anastassopoulos, George A. Lampropoulos. A generalized compound model for radar clutter[C], Proceedings of the IEEE National Radar Conference, Atlanta, 1994:29-31
    [9] V Anastassopoulos, G.A.Lampropoulos. High resolution radar clutter statistic[J]. IEEE Trans on AES. 1999, 35(1): 43-59.
    [10] V Anastassopoulos, Lampropoulos G. A. High resolution radar clutter classification [C], Proceedings of the IEEE National Radar Conference, Washington, DC, 1995:662-667
    [11] Hirose. Maximum likelihood estimation in the 3-parameter Weibull distribution. A look through the generalized extreme-value distribution [J]. IEEE Trans on Dielectrics and Electrical Insulation. 1996, 3(1): 43-55.
    [12] Ian R.Joughin, Domald B Percival, Dale P.Winebrebber. Maximum likelihood estimation of K-distribution parameters for SAR data[J]. IEEE Trans on Geoscience and Remote Sensing. 1993, 31(5): 989-999.
    [13] Kuruoglu. Modeling SAR images with a generalization of the Rayleigh distribution [J]. IEEE Trans on Image Processing. 2004, 13(4): 527-533.
    [14] M.Guida. Biparameter CFAR procedures for lognormal clutter[J]. IEEE Trans on AES. 1993, 29(3): 541-544.
    [15] Pei-Jung Chung, Roberts. Recursive K-distribution parameter estimation[J]. IEEE Trans on SP. 2005, 53(2): 397-402.
    [16] A.Farina, A. Russo, F. A. Studer. Coherent Radar Detection in Lognormal Clutter[J]. Proceedings of IEE. 1986, 133(1): 39-54.
    [17] Branson. J, Wooding, S, Dawber W.N. Modeling of the littoral environment for real-timeradar performance assessment[C]. Radar 2002 (Conf. Publ. ). 2002, 1(1): 41-46.
    [18] C.J.Oliver, R.J.A.Tough. The simulation of correlated K-distributed random clutter [J]. Optica Acta. 1986, 33(3): 223-250.
    [19] Castella, F.R, Moore, J.R. Improved target detection in a littoral environment[C]. Radar 97 (Conf. Publ). 1997, 1(1): 429- 433.
    [20] D.Blacknell. New method for the simulation of correlated K-distributed clutter[J],IEE Proc-Radar. Sonar Navigation. 1994, 141(1): 53-58.
    [21] D.G. Money, J. Branson, M. Hooker. Radar littoral environment predictions and measurements[C], IEE Radar 97 (Conf. Publ. No. 449), 1997:164-168.
    [22] Dawber, W.N. Harwood, N.M. Comparison of doppler clutter cancellation techniques for naval multi-function radars[J]. Radar, Sonar and Navigation, IEE Proceedings. 2003, 2(2): 37-40.
    [23] Neelakanta, P.S, DeGroff, D, Sudhakar, R. Low-altitude target detection by coastline operated marine radar[J]. IEEE Trans on AES. 1992, 28(1): 217-222.
    [24] Tveit. E, SIMSON. A Tool for simulation and analysis of ASW sonar performance in littoral waters[J]. Oceans Proceedings. 2003, 1(1): 439-444.
    [25] W.J.Szajnowski. The generation of correlated weibull clutter for signal detection problems[J]. IEEE Trans on AES. 1977, 13(5): 536-540.
    [26] 王颖, 毛二可, 韩月秋. 相关 K 分布的建模与仿真[J].信号处理. 1997, 13(2): 141-146.
    [27] 蒋咏梅, 陆铮. 相关非高斯分布杂波的建模与仿真[J].系统工程与电子技术.1999, 21(10): 27-30.
    [28] Leung, Henry. Detection of small objects in clutter using a GA-RBF neural network[J]. IEEE Trans on AES. 2002, 38(1): 98-118.
    [29] N.He, S.Haykin. Chaotic modelling of sea clutter[J]. Electronics Letters. 1992, 28(22): 2066-2077.
    [30] S.Haykin. Radar clutter attractor: implications for physics, signal processing and control[J]. IEE Proc.-Radar, Sonar, Navig. 1999, 146(4): 177-188.
    [31] S.Haykin, Li Xiaobo. Detection of signal in chaos [J]. Proceedings of IEEE. 1995, 83(1): 95-122.
    [32] S.Haykin, S.Puthusserypady. Chaotic dynamics of sea clutter:An experimental study[C], IEE Radar 97, 1997:75-79.
    [33] P.Beckmann, A.Spizzichino. The scattering of electromagnetic waves from rough surface[M]. Norwood, MA: Artech House. 1987.
    [34] F.D.Hastings, J.B.Schneider , S.L.Broschat. A Monte-Carlo FDTD technique for rough surface scattering[J]. IEEE Trans on AP. 1995, 43(11): 1183-1191.
    [35] J.I.Butterfield. Fractal interpolation of radar signatures for detecting stationary targets inground clutter[J]. IEEE Trans on AES. 1991, 25(6): 10-14.
    [36] R.L.Wagner, J.Song , W.C.Chew. Monte Carlo simulation of electromagnetic scattering from two-dimensional random rough surfaces[J]. IEEE Trans on AP. 1997, 45(2): 235-245.
    [37] M.W.朗. 陆地和海面的雷达波散射特性[M]. 北京:科学出版社. 1981.
    [38] M.I.斯科尔尼克. 雷达系统导论[M]. 北京:国防工业出版社. 1992.
    [39] 曹晨,王小谟. 关于雷达杂波性质的若干问题的研究[J]. 现代雷达. 2001, 23(5): 1-5.
    [40] J.B.Billingsley. Low-angle radar land clutter[M]. William Andrew Publishing. 2002.
    [41] E..Nathanson, Fred. Radar design principles[M]. SciTech. 1999.
    [42] 张有为,李少洪. 雷达系统分析[M]. 北京:国防工业出版社. 1981.
    [43] 米切尔. R L.雷达系统模拟[M]. 北京:科学出版社. 1982.
    [44] M.M.Horst,F.B.Dyer,M.T.Tuley. Radar sea clutter model[C], IEE Conf pub int.Conf.on Antennas and propagation, 1978
    [45] 汤明等.裸地散射特性分析[J]. 电波科学学报. 1994, 9(4): 69-75.
    [46] 汤明等.植被散射实验数据的特性分析[J].电波科学学报.1996,11(1): 89-95.
    [47] 温芳茹. 水稻、小麦后向散射特性的实验研究[J]. 电波科学学报. 1994, 9(1): 36-47.
    [48] 罗贤云,吉健康,张忠治. 雷达地杂波功率谱模型[J]. 电波科学学报. 1992, 7(4): 35-40.
    [49] F.T.Ulaby, M.C.Dobson. Handbook of radar scattering statistics for terrain[M]. London: Artech House.1989.
    [50] W.C, Morchin. Airborne early warning radar[M]. London:Artech House. 1990.
    [51] 张长隆. 杂波建模与仿真技术及其在雷达信号模拟器中的应用[D]. 长沙:国防科技大学: 2004.
    [52] M.Sekine, T.Musha. Weibull-distributed sea clutter[J].IEE Prceedings-F.1983,130(5): 471.
    [53] D.W.J.Sten. Computing K-clutter-plus Gauss distribution[C], IEE Radar 97 1997:194-198
    [54] Denny, Mark. Simulating sea clutter via the compound K-distribution[J]. Radar System Modelling ,IEE Colloquium on. 1998, 16: 1-5.
    [55] Denny, W M. K-distributeed sea clutter:Performance predictons made easy[C], IEE Radar97(Conf. Publ. No. 449), GEC Marconi Avionics, UK, 1997:209-213.
    [56] Denny, W M. K-distributeed sea clutter:small target processing[C], IEE Radar(Conf. Publ. No. 449), GEC Marconi Avionics, UK, 1997:594-595.
    [57] Moreau, Isabelle. Study and simulation of sea clutter. IEEE Signal Processing Workshop on Higher-Order Statistics. 1993: 178-181.
    [58] Arabas, A.Jakubiak,J. Radar clutter classification using Kohonen neural network[C], Radar 97 (Conf. Publ. No. 449), Warsaw Univ. of Technol, Poland, 1997:185-188.
    [59] D.Blacknell. Comparison of parameter estimators for K-distribution[J]. IEE Proc Radar Sonar Navig. 1994, 141(1): 45-52.
    [60] Iskander, D.R,Zoubir, A.M. Estimation of parameters of the k distribution using higher order and fractional moments[J]. IEEE Trans on AES. 1999, 35(4): 1453-1457.
    [61] P.Lombardo. Estimator of texture parameters in K-distributed clutter[J]. IEE Proc Radar Sonar Navig. 1994, 141(4): 196-204.
    [62] P.Lombardo, C.J.Oliver, R.J.A.Tough. Effect of noise on order parameter estimation for K-distributed clutter[J]. IEE Proc Radar Sonar Navig. 1995, 142(1): 33-40.
    [63] P.Lombardo,CJ.Oliver. Estimating the correlation properties of K-distributed SAR clutter[J]. IEE Proc Radar Sonar Navig. 1995, 167(4): 167-178.
    [64] R.S.Raghavan. A method for estimating parameters of K-distributed clutter[J]. IEEE Trans on AES. 1991, 27(2): 238-246.
    [65] Smolikova, R, Mark P.Wachowiak,Jacek M.Zurada. A neural network approach for estimating large K-distribution parameters[C], Neural Networks, Proceedings. IJCNN '01. International Joint Conference on, 2001:2139-2143.
    [66] 苏菲,谢维信,董进.分形几何在雷达杂波分析中的应用[J].信号处理.1998, 14(1): 82-86.
    [67] 谢文录,陈彦辉,谢维信.雷达杂波的分形特性研究[J].系统工程与电子技术.1999, 21(1): 41-44.
    [68] 陈彦辉,谢维信.地海杂波的随机分形模型[J].电子科技大学学报. 2000, 29(3): 239-242.
    [69] F.Berizzi, E.Dallemese, G.Pinelli. A two-dimensional fractal model of the sea surface and sea apectrum evaluation[C], IEE Radar97, 1997:189-193.
    [70] Shifeng Kang, Zhongzhi Zhang. Chaotic characteristics of radar scattering from ground and sea[C], Proceedings of APMC2001, 2001:577-580.
    [71] H.Leung, S.Haykin.Is there a radar clutter attractor[J].Appl.Phys. Lett. 1990, 30(6): 23-29.
    [72] A.J.Palmer, et al. Signatures of deterministic chaos in radar sea clutter and ocean surface winds[J]. IEEE on AES. 1995, 5(3): 613-616.
    [73] 董华春,宗成阁,权太范. 高频波段雷达海洋回波信号的混沌特性研究[J].电子学报. 2002, 28(3): 25-28.
    [74] 康士峰. 地海面微波散射和传播特性研究及其在雷达和遥感中的应用[D]. 西安:西安电子科技大学. 2000.
    [75] 朱灿焰,毛二可. 相关杂波的 AR 谱模型以及研究[J]. 现代雷达. 1998, 20(5): 36-43.
    [76] Peyton z, Peebles. The generation of correlated Lognormal clutter for radar simulation [J]. IEEE Trans on AES. 1971, 37(6): 1215-1217.
    [77] W.J.Szajnowski. Generation of correlated Lognormal clutter samples[J]. Electronics Letters. 1976, 12(19): 497-498.
    [78] E.Conte, M.Longe. Modelling and simulation of non-rayleigh radar clutter[J]. IEE Proceedings-F. 1991, 138(2): 121-130.
    [79] Gang.Li, Kai-Bor Yu. Modelling and simulation of coherent Weibull clutter[J]. IEEProceedings-F. 1989, 136(1): 2-12.
    [80] L.James Marier, Jr. Correlated K-distributed clutter generation for radar detection and track[J]. IEEE Trans on AES. 1995, 31(2): 568-580.
    [81] Muralidhar Rangaswamy, Donald Weiner, Aydin Ozturk. Computer generation of correlated non-Gaussian radar clutter[J]. IEEE Trans on AES. 1995, 31(1): 106-115.
    [82] G.D.Dockery, J.R.Kuttler. An improved impedance-boundary algorithm for Fourier split-step solutions of the parabolic wave equation[J]. IEEE Trans on AP. 1996, 44(12): 1592-1599.
    [83] G.Pelosi, S.Selleri, R.D.Graglia. The parabolic equation model for the numerical analysis of the diffraction at an impedance wedge: skew incidence case[J]. IEEE Trans on AP. 1996, 44(2): 267-268.
    [84] K.H.Craig. Impact of numerical methods on propagation modelling[J]. Modern Radio Science. 1996:
    [85] M.F.Levy. Transparent boundary conditions for parabolic equation solutions of radio-wave propagation problems[J]. IEEE Trans on AP. 1997, 45(1): 66-72.
    [86] G.D.Dockery. Modeling electromagnetic wave propagation in the troposphere using the parabolic equation[J]. IEEE Trans on AP. 1988, 36(10): 1464-1470.
    [87] J.P.Reilly , C.C.Lin. A radar land clutter model and its verification[C], Geoscience and Remote Sensing Symposium, IGARSS '94, Appl. Phys. Lab., Johns Hopkins Univ., Laurel, MD, USA, 1994:2319-2321.
    [88] C.A.Darrah, D.W.Luke. Site-specific clutter modeling using DMA digital terrain elevation data (DTED), digital feature analysis data (DFAD), and Lincoln laboratory five frequency clutter amplitude data, IEEE National Radar Conference, 1996.
    [89] G.Le.Hellard, J.Ph. Henry, E. Agnesina, M.Moruzzis. Ground clutter simulation for surface-based radars[C]. IEEE International Radar Conference, 1995:579-582.
    [90] 王永良, 魏进武, 陈建文. 双基地机载预警雷达空时二维杂波建模及杂波分析[J]. 电子学报. 2001, 29(12): 1940-1943.
    [91] 王炎,吴曼青,陈学全. 空载双基地雷达地杂波模拟[J]. 系统工程与电子技术. 2000, 22(3): 23-26.
    [92] Armand Pierre, Vidal-Madjar Daniel. Synthetic aperture radar simulation on radar terrain clutter, Geoscience and Remote Sensing Symposium, IGARSS '92. International, 1992:189-191.
    [93] C.D.Hawkes, S.Haykin. Modeling of clutter for coherent pulse radar[J]. IEEE Trans on AP. 1986, 31(8): 1013-1023.
    [94] 曹治国,张志勇,张天序. PRC-CW 雷达地杂波分布特性模型分析[J]. 华中理工大学学报. 1998, 26(6): 13-14.
    [95] 曹治国,张志勇,张天序,袁挺,王克宇. PRC-CW 雷达地杂波相关特性分析[J]. 电子学报. 1986, 27(12): 92-94.
    [96] 张志勇,曹治国,张天序. X 波段伪码调相连续波雷达地杂波分布特性仿真与分析[J]. 1999, 27(3): 70-73.
    [97] 林茂庸, 柯有安. 雷达信号理论[M]. 北京:国防工业出版社, 1984.
    [98] Bisciglie, Maurizio di. CFAR detection of extended objects in high-resolution SAR images[J]. IEEE Trans on Geoscience and Remote Sensing. 2005, 43(4): 833-843.
    [99] Yuanwei Jin, Friedlander. A CFAR adaptive subspace detector for second-order Gaussian signals[J]. IEEE Trans on SP. 2005, 53(3): 871-884.
    [100] Anastassopoulos V, Lampropulos G.A. Optimal CFAR detection in Weibull clutter[J]. IEEE Trans on AES. 1995, 31(1): 52-64.
    [101] Conte E, Lops M,Ricci G. Radar detection in K-distributed clutter [J]. IEEE Proc 1994, 141(2): 116-118.
    [102] De Miguel Vela G, Casar.CJR. Double-parameter CFAR detector for Weibull clutter [C], In:Proc. of IEEE International Radar Conference,Alexandria,Virginia, 1995:680-685.
    [103] 何友, 彭应宁.雷达自动目标检测与恒虚警处理[M].北京:清华大学出版社. 1999.
    [104] Garcia, Jaramillo. Two parameter CFAR detector for weibull clutter based on a combination of tail extrapolation and importance sampling techniques[C], European Radar Conference, 2004:253~256.
    [105] Thomas, J B. Non-parametric detection[J]. IEEE Proceedings. 1970, 58(5): 623~631.
    [106] De Maio, A; Foglia, G.; Conte.E. CFAR behavior of adaptive detectors: an experimental analysis[J]. IEEE Trans on AES. 2005, 41(1): 233-251.
    [107] Kalson, S. Z. Adaptive array CFAR detection[J]. IEEE Trans on AES. 1995, 31(2): 534-542.
    [108] B.D.Carlson, E.D.Evans, S.L.Wilson. Search radar detection and track with the Hough transform[J]. IEEE Trans on AES. 1994, 30(1): 102-124.
    [109] K.Gerlach. A comparision of two adaptive detection schemes[J]. IEEE Trans on AES. 1994, 30(1): 30-39.
    [110] N.Ma, D.Vray and PDelachanxe. Time-frequency representation of multi-component chirp signals[J]. IEEE Trans.on SP. 1997, 56(2): 149-155.
    [111] S.Barbarossa. Analysis of multicomponent LFM signals by a combined Wignal-Hough transform[J]. IEEE Trans on SP. 1995, 43(6): 1511-1515.
    [112] Wickerhauser, N. H. Nielsen and M.V. Wavelets and time-frequency analysis[J]. Proceedings of the IEEE. 1996, 84(4): 523-540.
    [113] 张贤达. 非平稳信号分析与处理[M]. 北京:国防工业出版社. 2001.
    [114] D.L.Jones, R.G.Baraniuk and. Signal-dependent time-frequency analysis: a radicallyGaussian kernel[J]. Signal Processing. 1993, 23(2): 263-284.
    [115] L.科恩著,白居宪译. 时-频分析:理论与应用[M]. 西安:西安交通大学出版社. 2000.
    [116] Chakravarthi, P.R. Radar target detection in chaotic clutter[C], IEEE National Radar Conference, 1997:367-371.
    [117] 何伍福, 王国宏, 刘杰. 海杂波环境中基于混沌的目标检测[J]. 系统工程与电子技术. 2005, 27(6): 1016-1120.
    [118] 刘瑞平, 沈福民. 混沌时间序列预测与目标检测[J].雷达科学与技术.2005,3(6): 327-341.
    [119] 杨向锋. 混沌在水中目标识别中的应用[D]. 西安:西北工业大学. 2005.
    [120] N H Packard, J P Crutchfield, J D Farmer et a1. Geometry from a time series[J]. Physics Review Letters. 1980: 712-716.
    [121] 丁涛. 混沌理论在径流预报中的应用研究[D]. 大连:大连理工大学. 2004.
    [122] 计明军. 若干随机性全局优化算法的研究[D]. 大连:大连理工大学. 2004.
    [123] F.Takens. Detecting strange attractor in turbulence.Dynamical Systems and Turbulem. Lecture Notes in Mathematics, Springer-Verlag. 1981: 366-381.
    [124] Rosenstein M T, Collins J J, De L C J. A practical method for calculating largest Lyapunov exponents from small data sets[J]. Physic D. 1993, 65: 117-134.
    [125] Sivakumar B, Jayawardena A W. Fernando TMKG River flow forecasting: use of phase-space econstruction and artificial neural networks approaches[J]. Journal of Hydrology. 2002, 265(4): 225-245.
    [126] Wolf, et al. Determining Lyapunov exponents from a time series[J]. Physic D.1985: 285-317.
    [127] 王鼐. 非线性动力学方法在时间序列分析中的应用[D]. 2004.
    [128] 王利, 张双成, 李亚红. 动态灰色预测模型在大坝变形监测及预报中的应用研究[J]. 西安科技大学学报. 2005, 25(3): 328-342.
    [129] 胡玉霞, 高金峰. 一种预测混沌时间序列的模糊神经网络方法[J]. 物理学报. 2005, 54(11): 5034-5038.
    [130] 张葛祥, 荣海娜, 金炜东. 支持向量机在雷达辐射源信号识别中的应用[J]. 西南交通大学学报. 2006, 41(1): 25-30.
    [131] 杨立才, 贾磊, 孔庆杰. 基于粗集的正交小波网络预测模型研究[J]. 系统工程与电子技术. 2005, 27(8): 1462-1466.
    [132] A Potapove, M K Ali Robust chaos in neural networks[J]. Physics Letters A. 2000, 277(6): 310-322.
    [133] 江涛, 何明浩, 翟卫俊. 小波神经网络在雷达信号分选中的应用[J]. 雷达科学与技术. 2004, 2(6): 341-344.
    [134] 李军, 刘君华. 一种新型广义 RBF 神经网络在混沌时间序列预测中的研究[J]. 物理学报. 2005, 54(10): 4570-4578.
    [135] 修春波, 刘向东, 张宇河. 一种新的混沌神经网络及其应用[J]. 电子学报. 2005, 33(5): 868-870.
    [136] 席建辉. 混沌时间序列的长期预测方法研究[D]. 大连:大连理工大学. 2005.
    [137] Suykens J A K, Vandewalle J. Least squares support vector machine classifiers [J]. Neural Processing Letters. 1999, 9(3): 293-300.
    [138] Vapnik 著, 张学工译. 统计学习理论的本质[M]. 北京:清华大学出版社. 2000.
    [139] Henry Leung, Titus Lo. Chaotic radar signal processing over the sea [J]. IEEE Journal of Oceanic Engineering. 1993, 18(3): 287-295.
    [140] Henry, Leung. Small target detection in clutter using recursive nonlinear prediction[J]. IEEE Trans on AES. 2000, 36(2): 713-718.
    [141] Nan Xie, Henry Leung, Hing Chan. A multiple-model prediction approach for sea clutter modeling[J]. IEEE Trans on Geo-science and Remote Sensing. 2003, 41(6): 1491-1502. [142 Henry, Leung. Nonlinear clutter cancellation and detection using a memory-based predictor[J]. IEEE Trans on AES. 1996, 32(4): 1229-1256.
    [143] 马晓岩, 黄晓斌, 张贤达.海杂波中基于混沌预测的目标检测方法改进[J].电子学报. 2003, 31(6): 907-910.
    [144] 王永诚,吴小飞. 海杂波的分数维测量在对海面目标探测中的应用研究[J].现代雷达. 2000, 22(5): 28-32.
    [145] 杜干. 目标检测的分形方法及应用[D]. 西安:西安电子科技大学. 2000.
    [146] 杜干, 张守宏. 分形模型在海上雷达目标检测中的应用[J]. 电波科学学报. 1998,13( 4): 377-381.
    [147] 杜干, 张群, 张守宏. 分形噪声中的雷达目标检测方法[J]. 西安电子科技大学学报. 1999, 26(6): 724-727.
    [148] 杜干, 张守宏. 基于分维特征的舰船目标的检测[J]. 西安电子科技大学学报. 1999, 26(4): 498-501.
    [149] 杜干,张守宏.高阶分形特征在雷达信号检测中的应用[J].电子学报.2000,28(3): 90-92.
    [150] 陈彦辉. 雷达信号检测的分形方法研究[D]. 西安:西安电子科技大学. 2000.
    [151] 谢红梅. 基于混沌理论的信号处理方法研究[D]. 西安:西北工业大学. 2003.
    [152] 申玉,陶然,单涛.相关对数正态分布雷达杂波的建模与仿真[J].火控雷达技术.2001, 30(4): 1-5.
    [153] 张志勇, 曹治国, 张天序. 相关 Weibull 分布雷达杂波的模拟[J]. 华中理工大学学报. 1998, 26(1): 93-95.
    [154] H.C.Chen. Radar sea-clutter at low grazing angles[J]. Radar and Signal Processing, IEE Proceedings F. 1990, 137(2): 102-112.
    [155] 贺志毅, 汤斌, 郝祖全. 脉内调频、脉间步进跳频雷达信号的模糊函数[J].电子学报.2000, 31(7): 1118-1120.
    [156] 方学立. 相关雷达杂波的仿真与识别[硕士学位论文]. 武汉:空军雷达学院. 2001.
    [157] 李侠,董鹏曙. 现代雷达技术[M]. 武汉:武汉空军雷达学院. 1998.
    [158] 马晓岩, 向家彬等. 雷达信号处理[M]. 长沙:湖南科学技术出版社. 1999.
    [159] A.V.奥本海姆, R.W.谢弗. 离散信号处理[M]. 北京:科学出版社. 2000.
    [160] K.D.Watts, C.JBaker , S.Watts. Maritime surveillance radar. Radar scattering from the ocean surface[C], IEE Proc, Pt.F, 1990:Part 1,37(2):51-62.
    [161] 周月梅. 特殊函数概论[M]. 北京:北京大学出版社. 2000.
    [162] Scholefield, P.H.R. Statistical aspects of ideal radar targets[J]. IEEE Proceedings.1967, 55(5): 557-589.
    [163] 袁俊泉, 皇埔堪. 海洋环境中基于 WVD 的 LFM 信号检测方法[J]. 国防科大学报. 2002, 24(4): 73-76.
    [164] S, Barbarossa. Analysis of nonlinear FM signals by pattern recognition of their time-frequency representation[ J]. IEEE Signal Processing Letters. 1996, 3(2): 112-115.
    [165] 梁国龙, 生雪莉. 基于 WVD-HT 的宽带调频信号检测技术研究[J]. 电子学报. 2004, 32(12): 1941-1944.
    [166] 张延东. 海面电磁与光散射特性研究[D]. 西安:西安电子科技大学. 2004.
    [167] 林三虎, 朱红, 赵亦工.海杂波的混沌特性分析[J].系统工程与电子技术. 2004, 26(2): 178-180.
    [168] Guo Lixin, Jiao Licheng and Wu Zhensen. Electromagnetic scattering from two-dimensional rough surface using the Kirchhof approximation[J]. China. Phys.Lett. 2001, 18(1): 214-216.
    [169] 郭立新,吴振森. 二维导体粗糙面电磁散射的分形特征研究[J]. 物理学报. 2000, 49(6): 1064-1069.
    [170] T.Li, J.A.Yorke. Amer.Math.Monthly. 1975, 82: 985.
    [171] 刘剑,赵艳丽,罗鹏飞.基于海杂波混沌特性的目标检测[J].现代雷达.2004,26(2): 56-60.
    [172] J.Doyne.Farmer, John.JSidorowich. Predicting of chaotic time series [J]. Physics Review Letters. 1987, 59(8): 845-848.
    [173] 林嘉宇,黄芝平,王跃科.语音信号相空间重构中时间延迟选择的改进的平均位移法[J]. 国防科技大学学报. 1999, 21(3): 59-62.
    [174] Abarbanel HDI, Masuda N, Rabinovich M I,Turner E. Distribution of mutual information[J]. Physics Letters. 2001, 281(5-6): 368-373.
    [175] 田玉楚. 混沌时间序列的时滞判定[J]. 物理学报. 1997, 46(3): 442-447.
    [176] 林嘉宇, 王跃科, 黄芝平. 语音信号相空间重构中时间延迟的选择一复自相关法[J]. 信号处理. 1999, 15(3): 220-225.
    [177] Luis, A. A nonlinear correlation function for selecting the delay time in dynamical reconstructions[J]. Physics Letters A. 1995, 203(1): 88-94.
    [178] 董华春. 高频地波雷达混沌信号处理研究[D]. 哈尔滨:哈尔滨工业大学. 2002.
    [179] Brown R, Bryant P, Abarbanel H D. Computing the Lyapunov exponents of a dynamical system from observed time series[J]. Phys. Rev. 1991, 4(3): 2787-2806.
    [180] Fxison, T W. Chaos in ocean ambient noise[J]. J. Acoust. Soc. 1996, AM 99(3): 1527-1539.
    [181] 甘建超, 肖先赐. 混沌的可加性[J]. 物理学报. 2003, 52(5): 1085-1090.
    [182] 李天云, 刘自发. 电力系统负荷的混沌特性及预测[J]. 中国电机工程学报. 2000:
    [183] Lorenz. Deterministic nonperiodic flow[J]. J Atmos Sci 1963, 20(4): 130-141.
    [184] 格莱克著.张淑誉译. 混沌:开创新科学[M]. 上海:上海译文出版社. 1990.
    [185] 黄润生. 混沌及其应用[M]. 武汉:武汉大学出版社. 2000.
    [186] Chen S, C F N Cowan, P M Grant. Orthogonal least squares learning algorithm for radial basis function networks[J]. IEEE Trans on NN. 1991, 2(2): 302-309.
    [187] Martin, T Hagan 等著.戴葵等译. 神经网络设计[M]. 北京:机械工业出版社. 2002.
    [188] 张玉瑞, 陈剑波. 基于 RBF 神经网络的时间序列预测[J]. 计算机工程与应用. 2005:
    [189] 许东等著. 基于 MATLAB6.X 系统分析与设计一神经网络[M]. 西安:西安电子科技大学出版社. 2002.
    [190] S.Haykin, C.Deng. Classification of radar clutter using neural networks [J]. IEEE Trans on NN. 1991, 2(6): 589-600.
    [191] 谢文录, 谢维信. 时间序列中的分形分析和参数提取[J].信号处理.1997,13(2): 35-43.
    [192] 熊刚, 赵惠昌, 张淑宁. 引信海洋回波信号的分形特性研究[J]. 兵工学报. 2005, 26(1): 26-31.
    [193] S.Haykin, S.Puthusserypa. Chaos sea clutter and neural network[C], Signals, Systems & Computers,Conference Record of the Thirty-First Asilomar Conference,1997: 1224-1227.
    [194] 姜彦儒,韩臻,魏学业.基于分形维数的 FSK 信号检测[J].铁道学报.2001,23(5): 50-53.
    [195] 滕丽娜,陈兆能,佟德纯.非线性时间序列的最优相关维数估计[J].上海交通大学学报. 2002, 36(8): 1214-1217.
    [196] 朱炬波, 梁甸农. 组合分形 Brown 运动模型[J]. 中国科学. 2000, 30(4): 312-319.
    [197] 黎湘. 非线性方法在雷达目标识别中的应用研究[D]. 长沙:国防科技大学: 1998.
    [198] 张学工.关于统计学习理论与支持向量机[J]. 自动化学报. 2000, 26(1): 32-42.
    [199] 杨金芳, 翟永杰, 王东风. 基于支持向量回归的时间序列预测[J].中国电机工程学报. 2005, 25(17): 15-20.
    [200] 朱家元,杨云,张恒喜.基于优化最小二乘支持向量机的小样本预测研究[J].航空学报. 2004, 25(6): 565-568.
    [201] 刘涵,刘丁,任海鹏.基于最小二乘支持向量机的混沌控制[J].物理学报.2005,54(9): 4019-4026.
    [202] 谭龙. 新一代天气雷达系统[J].广西气象. 2003, 24(1): 15-17.
    [203] 边肇奇, 张学工. 模式识别[M] (第二版). 北京:清华大学出版社. 2000.
    [204] F.M.Frattale, Vlasciili. Scale-based approach to hierarchical fuzzy clustering[J]. Signal Processing. 2000, 80: 1001-1006.
    [205] 史忠值.知识发现[M]. 北京:清华大学出版社. 2002.
    [206] Simpson. Fuzzy min-max neural network-part1: classification [J]. IEEE Trans on NN. 1992, 3(5): 776~786.
    [207] 孙德山. 支持向量机分类与回归方法研究[D]. 长沙:中南大学. 2004.
    [208] 聂生东,陈瑛,顾顺德.基于模糊 K 近邻规则的多谱磁共振脑图像分割方法的研究[J]. 中国生物医学工程学报. 2002, 21(5): 471-476.
    [209] Bogdan Gabrys, Andraej Bargiela. General fuzzy Min-Max neural networks for clustering and classification[J]. IEEE Trans on NN. 2000, 11(3): 769-783.
    [210] 李映,白本督, 焦李成.支撑矢量机的分类机理[J].系统工程与电子技术.2001,23(9): 25-27.
    [211] 许秀英,盛卫星.用改进核函数提高 SVM 的雷达目标识别率[J].现代雷达.2005, 27(10): 53-56.
    [212] 卢正鼎, 赵萍. 一种基于支持向量机的 PCA 分析方法[J]. 华中科技大学学报(自然科学版). 2005, 25(10): 25-27.
    [213] 韩萍, 吴仁彪等. 基于 KPCA 准则的 SAR 目标特征提取与识别[J]. 电子与信息学报. 2003, 25(10): 1297-1301.
    [214] Nohara, T.J, S.Haykin. AR-based growler detection in sea clutter[J]. IEEE Trans on SP. 1993, 41(3): 1259-1271.
    [215] Nohara, T.J, S.Haykin. Growler detection in sea clutter with coherent radars [J]. IEEE Trans on AES. 1994, 30(3): 836-847.
    [216] Special Issue on Radar Operation in the Ocean, IEE Proceeding Part F 137(2), April,1990.
    [217] J.S.Baras, S.I.Wolk. Hierarchical wavelet representations of ship radar returns[R], University of Maryland, 1993:93-100.
    [218] R.Hummel , R.Moniot. Reconstruction from zero-crossings in scale space[J]. IEEE Trans Acoust. Speech Signal Processing. 1989, 37(12): 111-130.
    [219] S.Mailat , WL.Hwang. Singularity detection and processing with wavelets[J]. IEEE Trans on IT. 1992, 38(2): 617-643.
    [220] Z.Berman, J.S.Baras. Properties of the multiscale maxima and zero-crossings representations[J]. IEEE Trans on SP. 1993, 41(2): 3216-3231.
    [221] M.L.Glasser, D.M.Dnunheller and. Detection of chi-square fluctuating targets in arbitrary clutter[J]. IEEE Trans on AES. 1997, 33(3): 784-794.
    [222] F.Gini. A cumulant based adaptive technique for coherent radar detection in a mixture of k-distributed clutter and Gaussian distribance[J]. IEEE Trans on SP. 1997, 45(6): 1507-1519.
    [223] S.Haykin, T.K.Bhattacharya. Modular learning strategy for signal detection in a non-stationary environment[J]. IEEE Trans on SP. 1997, 45(6): 1507-1519.
    [224] 王俊. 微弱目标信号积累检测的方法研究[D]. 西安电子科技大学: 1999.
    [225] S.Peleg, B. Friedlander. Multi-component signal analysis using the polynomial phase transform [J]. IEEE Trans on AP. 1996, AP-32(1): 378-387.
    [226] Wehner, DR. High resolution radar [M]. Boston: Artech House. 1995.
    [227] 龙腾,毛二可,何佩琨.调频步进雷达信号分析与处理[J].电子学报.1998, 26(12): 84-88.
    [228] Gill, G s. Step frequency waveform design and processing for detection of moving targets in clutter[C], IEEE International Radar conference, 1995:573-578.
    [229] R.P , Bocker. ISAR motion compensation using the burst derivative measure as a focal quality indicator[J]. Inter Journal of aging and Technology. 1992, 4(1): 285~297.
    [230] 毛二可,龙腾,韩月秋.频率步进雷达数字信号处理[J].航空学报. 2001, 22(增): 17-25.
    [231] 雷文, 龙腾, 韩月秋. 调频步进雷达运动目标信号处理的新方法[J].电子学报. 2000, 28(12): 34-37.
    [232] 刘 峥,张守宏.步进频率雷达目标的运动参数估计[J].电子学报.2000, 28(3): 43-45.
    [233] 黄德双.高分辨雷达智能信号处理技术研究[M]. 北京:机械工业出版社. 2001.
    [234] 陈行勇, 魏玺章, 黎湘.调频步进雷达扩展目标高分辨距离像分析[J]. 电子学报. 2005, 22(5): 1599-1602.
    [235] 韩文勇,王东进.转动对细长体目标一维成像的影响[J].红外与毫米波学报.2001,20(2): 127-132.
    [236] 姜斌,黎湘.王宏强,郭桂蓉.近海岸复合杂波建模及其统计特性研究[J].系统工程与电子技术.2006,28(2):221-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700