高等级公路半刚性基层材料的抗裂性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在分析半刚性基层裂缝形成机理的基础上,提出了通过改善基层材料本身性能来提高半刚性基层抗裂性的措施,即在水泥稳定碎石中掺加聚丙烯纤维。通过大量试验,对聚丙烯纤维水泥稳定碎石的各种力学性能和抗裂性能进行了系统的研究,主要内容包括:
     (1)推导了半刚性基层收缩应力的计算公式,对影响最大收缩应力的各种因素及半刚性基层收缩裂缝产生的规律进行了分析,提出了相应的路面裂缝防治措施。
     (2)通过聚丙烯纤维水泥稳定碎石击实试验,确定了每组配合比试件的最大干密度和最佳含水量;根据规范中圆柱体标准试件成型的原理,自行设计了一套钢制梁式试模以及试件脱模方法。试验表明,所设计的试模及试件成型、脱模方法能较好地保证试件的最大干密度。
     (3)在大量试验的基础上分析了试验龄期、纤维掺量、水泥掺量对聚丙烯纤维水泥稳定碎石抗压强度、劈裂抗拉强度、抗压回弹模量、抗弯拉强度和抗弯拉弹性模量等的影响,并得出了相应的影响规律。结果表明:聚丙烯纤维的掺入对水泥稳定碎石的各种强度影响不大,但使回弹模量和抗弯拉弹性模量有显著的降低。
     (4)采用千分表机测法及应变片电测法分别对聚丙烯纤维水泥稳定碎石的干缩及温缩性能进行了测试。研究分析了试验龄期、纤维掺量、水泥掺量对聚丙烯纤维水泥稳定碎石平均干缩系数和温缩系数的影响。结果表明:聚丙烯纤维的掺入可以有效地减小水泥稳定碎石的干缩系数和温缩系数。
     (5)采用三点弯曲试验方法对水泥稳定碎石和聚丙烯纤维水泥稳定碎石的断裂性能进行了大量的试验研究,测得了试件的最大荷载、跨中挠度、预制裂缝嘴张开位移和裂缝尖端张开位移,并由此计算出了材料的断裂韧度和断裂能。试验结果表明:聚丙烯纤维的掺入对水泥稳定碎石的断裂韧度和断裂能均有提高,对水泥稳定碎石的临界裂缝嘴张开位移和临界裂缝尖端张开位移有略微的增大,但对极限裂缝嘴张开位移和极限裂缝尖端张开位移有明显的增大。聚丙烯纤维对水泥稳定碎石的裂后行为有很大改善,并且可以改善水泥稳定碎石的裂缝尖端位移场分布,能有效地增强水泥稳定碎石的断裂韧性。
     (6)采用灰色关联分析法对几种常用的抗裂性评价指标体系进行了对比分析,结果表明,评价半刚性基层材料抗裂性的最佳指标是干缩能抗裂系数和温缩能抗裂系数。通过试验,得出了聚丙烯纤维的掺入可以使水泥稳定碎石的干缩能抗裂系数和温缩能抗裂系数有明显的增大,显著地增强了其抗裂性。
     (7)运用纤维间距理论和乱向不连续纤维复合材料理论以及断裂力学的相关知识对聚丙烯纤维对水泥稳定碎石的增强抗裂机理进行了分析。得出影响聚丙烯纤维对水泥稳定碎石阻裂效应的因素主要有两个,即纤维与水泥稳定碎石基体之间的粘结力和水泥稳定碎石中纤维间距的大小。
     (8)在叶信高速公路铺筑了试验路段,并对试验路段进行了跟踪观测。由观测和取芯调查的结果可知,聚丙烯纤维对水泥稳定碎石基层的强度有一定的提高,使基层裂缝产生的数量减少、平均间距增大、裂缝率减小,显著地提高了基层抵抗收缩裂缝产生和发展的能力,从而有效地减少了沥青路面裂缝的产生。
On the base of analyzing the forming mechanism of semi-rigid base course, this thesis presents a measure to advance the anti-cracking performance of semi-rigid base course by improving the properties of base materials, which is mixing polypropylene fiber into cement stabilized macadam. According to a great deal of tests, each mechanics property and anti-cracking performance of polypropylene fiber cement stabilized macadam were investigated systemically. The main content includes:
     (1) The formulae of shrinkage stresses of semi-rigid base course were deduced. This thesis analyzed each influencing factor of the maximum value of shrinkage stress and the cracking rule of semi-rigid base course. At the same time, the corresponding prevention measures of the cracks were presented.
     (2) According to the compaction test of polypropylene fiber cement stabilized macadam, the maximum dry density and optimum moisture content of each mix proportion were obtained. Based on the shaping principle of standard specimen in the criterion, a suite of steel beam models and the corresponding liftout method of the specimen were designed. The tests indicate that the designed model, shaping and liftout method can ensure the maximum dry density of the specimens.
     (3) On the base of large amount of tests, this thesis analyzes the impacts of testing period, fiber dosage and cement dosage upon the compressive strength, splitting tensile strength, compressive resilient modulus, flexural strength and flexural elastic modulus of polypropylene fiber cement stabilized macadam, and the corresponding impact rule was found. The results show that the addition of polypropylene fiber has little impact on each strength of cement stabilized macadam, but it can reduce the compressive resilient modulus and flexural elastic modulus evidently.
     (4) By adopting the method of millesimal gauges, the dry shrinkage property was measured, and by adopting the method of resistance strain gauge, the thermal shrinkage property was measured. The impacts of testing period, fiber dosage and cement dosage upon the average dry shrinkage coefficient and average thermal shrinkage coefficient of polypropylene fiber cement stabilized macadam. The results show that the addition of polypropylene fiber can reduce the dry shrinkage coefficient and thermal shrinkage coefficient of cement stabilized macadam effectively.
     (5) Adopting three-point-bending method, a large amount of experimental researches was carried on the fractural properties of cement stabilized macadam and polypropylene fiber cement stabilized macadam. During the course of the testing, the maximum load, mid-span deflection, crack mouth opening displacement, crack tip opening displacement was measured. Therefore, the fracture toughness and fracture energy of the material were calculated. The testing results indicate that the addition of polypropylene fiber can increase the fracture toughness and fracture energy of cement stabilized macadam. The fiber can increase the critical crack mouth opening displacement and critical crack tip opening displacement appreciably, buy it can increase the ultimate crack mouth opening displacement and ultimate crack tip opening displacement of cement stabilized macadam evidently. Polypropylene fiber can improve the property after the cracking of cement stabilized macadam and it also can extensively improve the strain filed ahead of the crack tip. The addition of polypropylene fiber improves the fracture parameters of cement stabilized macadam.
     (6) This thesis evaluates some kinds of common evaluation indices of anti-cracking performance applying grey relational analysis. The result shows that the optimal evaluation indices of anti-cracking performance of semi-rigid base course are dry shrinkage energy anti-cracking coefficient and thermal shrinkage energy anti-cracking coefficient. By the test, a conclusion is drawn that the addition of polypropylene fiber can improve dry shrinkage energy anti-cracking coefficient and thermal shrinkage energy anti-cracking coefficient of cement stabilized macadam, furthermore the anti-cracking performance is improved.
     (7) Applying fiber distance theory, disorder discontinuous fiber composite theory and the corresponding knowledge of fracture mechanics, the strengthening and anti-cracking mechanism of polypropylene fiber was analyzed. There are two main influencing factors of anti-cracking effect of polypropylene fiber on cement stabilized macadam, which are the bond strength between cement stabilized macadam and the fiber, and the fiber distance.
     (8) A length of test road was constructed in Ye-Xin expressway and the following observation was conducted. The observation and investigation of the core samples indicate that polypropylene fiber can increase the compressive strength to some extent. And it can decrease the number of cracks of base courses, enlarge the average distance between two cracks and decrease the crack ratio. The addition of polypropylene fiber can obviously improve the resistance to the forming and expanding of shrinkage cracks, and thus the cracks of asphalt pavements were restricted effectively.
引文
[1] 沙庆林.高等级公路半刚性基层沥青路面.北京:人民交通出版社,1999.
    [2] 曹建新.重载交通下级配碎石基层材料组成结构与动力特性的研究:(硕士学位论文).哈尔滨:哈尔滨工业大学,2001.
    [3] 萧赓.水泥稳定级配碎石基层路用结构性能及改善措施研究:(硕士学位论文).西安:长安大学,2001.
    [4] 蒋应军.水泥稳定碎石基层收缩裂缝防治研究:(硕士学位论文).西安:长安大学,2001.
    [5] 张嘎吱.考虑抗裂性的水泥稳定类材料配合比设计方法研究:(硕士学位论文).西安:长安大学.2001.
    [6] Epps A. Design and analysis system for thermal cracking in asphalt concrete. Journal of Transportation Engineering, 2000, 126 (4):300-307.
    [7] Epps A L. A comparison of measured and predicted low temperature cracking conditions. Journal of the Association of Asphalt Paving Technologists, 1996 (65):277-310.
    [8] Bahia H U, Zeng M, Nam K. Consideration of strain at failure and strength in prediction of pavement thermal cracking. Journal of the Association of Asphalt Paving Technologists, 2000 (69):497-539.
    [9] Sharrock M J, Dongre R, Rowe G M et al. Predicting thermal cracking of pavements from binder properties: Theoretical basis and field validation. Journal of the Association of Asphalt Paving Technologists, 2000 (69):455-496.
    [10] Kandhal P S, Dongre R, Malone M S. Prediction of low-temperature cracking of pennsylvania project using superpave binder specification. Journal of the Association of Asphalt Paving Technologists, 1996 (65):491-513.
    [11] 焦新海,周行春.半刚性路面反射裂缝防治措施研究综述.重庆交通学院学报,1998,17(1):52-57.
    [12] 蒋应军,戴经梁,陈忠达.半刚性基层裂缝产生机理分析及防治措施.重庆交通学院学报,2002,21(2):54-57.
    [13] 胡龙泉,蒋应军,陈忠达等.骨架密实型水泥稳定碎石路用性能.交通运输工程学报,2001,1(4):37-40.
    [14] 黄晓明,吴少鹏等.沥青与沥青混合料.南京:东南大学出版社,2002.
    [15] 张登良.沥青与沥青混合料.北京:人民交通出版社,1993.
    [16] 张登良.沥青路面.北京:人民交通出版社,1999.
    [17] 杨涛.半刚性基层沥青路面反射裂缝的产生机理及防治措施:(硕士学位论文).武汉:武汉理工大学,2005.
    [18] 陆文学,陈崇驹,丛林.半刚性基层养护期干缩开裂发展过程的分析.公路,2002(12):132-135.
    [19] 程英伟,汤捷.高等级公路半刚性基层沥青路面开裂的机理分析及防治.公路交通技术,2004(6):39-42.
    [20] 杨成忠,陈万祥.基于半刚性基层的沥青路面反射裂缝分析与防治.公路,2002(4):85-88.
    [21] 徐希娟,郭克清,杨健.半刚性基层沥青路面开裂机理研究.西北公路,2001(3):15-17.
    [22] 马培建,张所新,姜福香.半刚性基层沥青路面施工期开裂分析及预测.青岛建筑工程学院学报,2003,24(3):5-8.
    [23] George K P. Shrinkage cracking of soil-cement base, theoretical and model studies. Highway Research Record, 1971 (35):115-133.
    [24] George K P. Viscoelastic shrinkage stress in soil-cementbase. Journal of the Soil Mechanics and Foundations Division, 1972, 98 (SM12):1375-1391.
    [25] George K P. Mechanism of shrinkage cracking of soil-cement bases. Highway Research Record, 1973 (442):1-10.
    [26] Lallbedi P B, Khanna S K, Banerjee B N. Shrinkage characteristics of soil-cement base courses. Indian Highway, 1976, 4 (11):31-43.
    [27] Rawlings R E. Drying shrinkage of cement treated paving materials, 1988, 11 (4):245-252.
    [28] 吴传海.高等级公路二灰碎石基层材料路用性能综合评定及合理配合比研究:(硕士学位论文).西安:长安大学,2001.
    [29] 蔡飞.水泥综合稳定砂砾基层材料抗裂性能研究:(硕士学位论文).西安:长安大学,2003.
    [30] 张登良,郑南翔.半刚性基层材料收缩抗裂性能研究.中国公路学报,1991,4(1):16-22.
    [31] 杨锡武,梁富权.养生条件对半刚性路面基层收缩特性的影响研究.重庆交通学院学报,1995,14(3):53-56.
    [32] 杨锡武.半刚性路面基层材料收缩规律的研究.华东公路,1994(3):74-76.
    [33] 谭鹰.正交法在二灰碎石基层干缩试验研究中的应用.中外公路,2002,22(2):68-70.
    [34] 申爱琴,李祝龙,王江帅等.稳定砂土类半刚性材料温缩性能研究.公路,2000(3):68-73.
    [35] 李彬.二灰碎石基层材料温缩性能试验研究.中外公路,2002,22(2):70-72.
    [36] 姜蓉,尹敬泽,顾安全.半刚性基层材料强度与收缩性能的试验研究.公路,2002(12):107-110.
    [37] 朱云升,郭忠印,陈崇驹等.半刚性基层材料干缩和温缩特性试验研究.公路,2002(6):145-148.
    [38] 吴赣昌,凌天清.半刚性基层温缩裂缝的扩展机理分析.中国公路学报,1998,11(1):20-28.
    [39] 吴赣昌.半刚性路面的温度应力分析.北京:科学出版社,1995.
    [40] 吴赣昌.半刚性基层沥青路面温度场的解析理论.应力数学和力学,1997,18(2):169-172.
    [41] 吴赣昌,张淦生.沥青路面温缩裂缝的应力强度分析.中国公路学报,1996,9(1):37-44.
    [42] 岳福青,杨春风,魏连雨.半刚性基层沥青路面反射裂缝形成扩展机理与防治.河北工业大学学报,2004,33(1):70-74.
    [43] Jiwon K, William G B. Analysis of reflective crack control system involving reinforcing grid over base-isolating interlayer mixture. Journal of Transportation Engineering, 2002, 128 (4):375-384.
    [44] 彭妙娟,张登良,夏永旭.半刚性基层沥青路面的断裂力学计算及其应用.中国公路学报,2003,16(1):114-118.
    [45] 梁乃兴,萧赓.水泥粉煤灰碎石基层力学性能对沥青路面结构的影响分析.中国公路学报,2003,16(3):18-22.
    [46] Ramsamooj D V,Lin G S.Stress at joints and cracks in highway and airport pavements.Engineer Fracture Mechanics,1999,60(6):507-518.
    [47] 郑健龙,张起森.半刚性路面反射裂缝及其应力强度因子的有限元分析.岩土工程学报,1990,12(3):22-31.
    [48] 刘善平,周任.半刚性基层沥青路面反射裂缝的空间有限元分析.湖南大学学报,1992,19(4):76-88.
    [49] 白琪峰,陈荣生,杜骋.半刚性基层沥青混凝土路面反射裂缝模拟试验及有限元分析.公路,2004(8):97-101.
    [50] 岳福青,杨春风.半刚性基层沥青路面温缩裂缝的有限元分析.桂林工学院学报,2004,24(1):52-54.
    [51] 胡珊,任瑞波,栾海等.具有柔性过渡层的沥青混凝土路面半刚性基层顶部温度状况的理论模拟.公路,2003(12):62-65.
    [52] 谭智军.沥青路面温缩裂缝的应力强度因子分析.科学技术与工程,2004,4(10):884-886.
    [53] 任瑞波,钟岱辉,李海芝等.柔性基层改善沥青路面半刚性底基层温度状况分析.哈尔滨工业大学学报,2004,36(9):1280-1282.
    [54] Seed H B, Chen C K and Lee C E. Resilience characteristics of sub-grade soil and their relation to fatigue failures in asphalt pavement. Proceeding of Internal Conference on the Structural Design of Asphalt Pavement. University of Michigan, 1968:611-636.
    [55] Lee C E. The determination of pavement deflections under repeated load applications: [dissertation]. Berkeley: Univ. of California, 1962.
    [56] Mitry F G. Determination of the modulus of resilient deformation of untreated base course material: [dissertation].Berkeley: Univ. of California, 1964.
    [57] Sousa J B, Taylor R and Tanco A J. Analysis of some laboratory testingsystems for asphalt aggregate mixtures. Presented at the 70th Annual Meeting of the Transportation Research Board, Washington D.C., 1991:1035-1046.
    [58] Haque M E, Zaman M, Soltani A A. Cracking characteristics of model continuously reinforced concrete pavement, TRR, 1998 (1629):90-98.
    [59] 钱章久.水泥基层的开裂控制.国外公路,1998(4):19-21.
    [60] 郝培文,胡长顺,张炳乾等.半刚性基层材料抗冲刷性能的研究.西安公路交通大学学报,2000,20(2):9-11.
    [61] 滕旭秋,陈忠达,任伟.二灰碎石混合料抗冲刷性能试验研究.公路交通科技,2005,22(10):27-30.
    [62] 沙爱民,胡力群.半刚性基层材料抗冲刷性能试验方法研究.中国公路学报,2002,15(2):4-7.
    [63] 支喜兰,韩冰.土工格栅加筋半刚性基层材料的抗弯拉及疲劳性能试验分析.重庆交通学院学报,2005,24(4):62-66.
    [64] 王亚玲,张尚昆,颜祖兴等.土工格栅加筋水泥稳定碎石材料的疲劳试验.长安大学学报(自然科学版),2006,26(2):18-21.
    [65] 丛林,郭忠印,暨育雄等.半刚性基层材料性能参数的试验研究.建筑材料学报,2001,4(4):385-390.
    [66] 习应祥.儿种常用半刚性基层材料路用性能试验研究及应用.长沙交通学院学报,1994,10(1):20-32.
    [67] 朱梦良,习应祥.路面半刚性基层材料抗压应力应变全曲线特性.长沙交通学院学报,1996,12(2):48-54.
    [68] 王宏畅,黄晓明,傅智.半刚性基层材料路用性能的试验研究.公路交通科技,2005,22(10):45-49.
    [69] 程新春,章志明,张亚平等.二灰稳定碎石半刚性基层性能的试验研究.合肥工业大学学报(自然科学版),2004,27(3):294-298.
    [70] 李立寒,谈至明,姜爱峰.二灰碎石强度特性影响因素试验研究.同济大学学报(自然科学版),2003,31(4):424-427.
    [71] 王元纲,李强明,柯洁铭等.二灰碎石的抗拉性能.南京林业大学学报(自然科学版),2001,25(6):27-29.
    [72] 王保龙,崔吉淦,方永禄等.二灰碎石基层材料抗冻性研究.混凝土与水泥制品,2001(1):9-11.
    [73] 况小根.细集料含量对二灰碎石基层材料性能影响的研究:(硕士学位论文).南京:南京林业大学:2002.
    [74] 刘红瑛.骨架密实型二灰稳定碎石基层配合比设计方法及路用性能研究:(硕士学位论文).西安:长安大学,2001.
    [75] 李雨晖.水泥粉煤灰稳定碎石混合料性能的试验研究:(硕士学位论文).南京:南京林业大学,2004.
    [76] 张北瑞,熊尚谱.粉煤灰—水泥稳定碎石基层力学特性的试验研究.石家庄铁道学院学报,1999,12(3):70-73.
    [77] 孙兆辉,许志鸿,吴美发.考虑收缩因素的水泥稳定碎石级配组成设计研究.公路交通科技,2006,23(3):15-19.
    [78] 覃建龙,田盛鼎.水泥稳定碎石矿料级配优化试验研究.公路交通科技,2005,22(11):50-53.
    [79] 梅传江,牛朋.水泥稳定碎石基层路用性能研究.公路交通科技,2002,19(3):35-37.
    [80] 邓云潮,郝建中,李俊超.水泥稳定砂砾材料特性及厚度的研究.西安科技学院学报,2001,21(1):30-35.
    [81] 邢俊堂,高玉翠,王行耐.水泥稳定砂砾无侧限抗压强度的影响因素分析.济南交通高等专科学校学报,2000,8(3):44-46.
    [82] 杨红辉.掺膨胀剂及纤维水泥稳定碎石抗裂性能研究:(硕士学位论文).西安:长安大学,2003.
    [83] 杨红辉,陈忠达,戴经梁.掺纤维水泥稳定碎石基层材料配合比研究.公路交通科技,2006,23(3):20-23.
    [84] 黄煜镔,吕伟民,徐建达等.减缩剂在水泥稳定碎石基层中的应用.同济大学学报(自然科学版),2005,33(8):1047-1050.
    [85] 黄煜镔,吕伟民,徐建达等.减水剂对水泥稳定碎石物理力学性能的影响.建筑材料学报,2005,8(3):311-315.
    [86] 曾宇彤,陈湘华,王端宜.美国永久性路面结构.中外公路,2003,23(3):59-62.
    [87] Bullen D F, Mangan D P A. Conceptual designs for long-life, heavy duty asphalt pavements. Proceedings of the 1998 19th ARRB Conference, Sydney, 1998:165-179.
    [88] Scherocman J. Construction factors for long-lasting asphalt pavements. Asphalt, 2004, 19 (1):14-16.
    [89] Merrill D, Van D A, Gaspar L. A revies of practical experience throughout Europe on deterioration in fully-flexible and semi-rigid long-life pavements. International Journal of Pavement Engineering, 2006, 7 (2):101-109.
    [90] Cheneviere P, Ramdas V. Cost bevefit analysis aspects related to long-life pavements. International Journal of Pavement Engineering, 2006, 7 (2):145-152.
    [91] Ferne B. Long-life pavements-A European study by ELLPAG. International Journal of Pavement Engineering, 2006, 7 (2):91-100.
    [92] Haas R, Tighe S L, Cower F L. Determining returen on long-life pavements investments. TRR, 2006 (1974):10-17.
    [93] Lee H J, Lee J H, Park n M. Performance evaluation of high modulus asphalt mixtures for long life asphalt pavements. Construction and Building Materials, 2007, 21 (5):1079-1087.
    [94] 张争奇,胡长顺.纤维加强沥青混凝土几个问题的研究和探讨.西安公路交通大学学报,2001,21(1):29—32.
    [95] 李炜光,张争奇,张登良等.纤维加强沥青路面的研究.西安公路交通大学学报,1998,18(3B):235—238.
    [96] 姚丽.纤维绳对沥青混凝土路面抗裂作用的探讨.东北公路,1999,22(2):25-28.
    [97] 孙雅珍,赵颖华.新型纤维增强沥青路面的研究.华东公路,2002(2):63-66.
    [98] 陈华鑫,张争奇,胡长顺.纤维沥青路用性能机理.长安大学学报,2002,22(6):5-7.
    [99] 杨红辉,袁宏伟,郝培文等.木质素纤维沥青混合料路用性能研究.公路交通科技,2003,20(4):10-12.
    [100] 邢爱萍,孔永健.纤维加强沥青路面在我国的应用.东北公路,2003,26(2):27-30.
    [101] 陈文,廖卫东,薛永杰等.聚合物纤维改性高性能沥青混凝土的研究.武汉理工大学学报,2003,25(12):44-46.
    [102] 徐至钧,汤胜宁.聚酯纤维在热沥青混凝士路面上的应用.建筑技术,2004,35(1):36.
    [103] 郭乃胜,赵颖华,李刚.聚酯纤维沥青混凝十的低温抗裂性能分析.沈阳建筑工程学院学报(自然科学版),2004,20(1):1-3.
    [104] 董苏波,王元纲,吴育琦等.玻纤对二灰碎石基层的力学性能影响试验.苏州科技学院学报(工程技术版),2004,17(2):30-33.
    [105] 陈晔.沥青路面纤维半刚性材料的抗裂设计研究.长沙交通学院学报,1992(6):75-78.
    [106] 徐剑.格网碎片加固水泥稳定土基层材料的应用研究:(硕士学位论文).长沙:长沙交通学院,2000.
    [107] 黄卫.南京机场高速公路半刚性基层特性研究.北京:人民交通出版社,1998:86-87.
    [108] 蒋应军,陈忠达,彭波等.密实骨架结构水泥稳定碎石路面配合比设计方法及抗裂性能.长安大学学报(自然科学版),2002,22(4):9-12.
    [109] 黄学文,张正锋.HNF-6高效缓凝阻裂剂在水泥稳定碎石基层中的应用研究.公路交通科技,2001,18(2):13-15.
    [110] 黄学文,张正锋,王旭东.HF-Ⅱ缓凝减水阻裂剂在水泥稳定碎石基层中的应用研究.公路,2001(4):59-62.
    [111] 张晓冰.半刚性基层沥青混凝土路面裂缝出现原因分析及防治措施.河南交通科技,1999,19(2):13-14.
    [112] 汤勇.半刚性基层预切缝防止反射裂缝的试验研究:(硕士学位论文).沈阳:东北大学,2003.
    [113] 徐江萍,张磊.水泥粉煤灰稳定碎石基层沥青路面防裂措施研究.中外公路,2005,25(3):43-46.
    [114] 周继业,林绣贤.沥青路面的预锯缝和缝距计算.中国公路学报.1994,7(1):14-19.
    [115] 蒋应军,薛航,薛辉等.半刚性基层预锯缝及铺土工布的路面防裂措施.长安大学学报(自然科学版),2006,26(2):6-9.
    [116] 蔡喜棉.旧水泥混凝土路面上的罩面.华东公路,2000(4):3-7.
    [117] Swamy R, Hussin M W. Continuous woven polypropylene mat reinforced cement composites for applications in building construction. Textile Composites in Building Construction, Part 1, 1990:57-67.
    [118] Peled A, Bentur A, Yankelevsky D. Flexural performance of cementitious composites reinforced by woven fabrics. Materials in Civil Engineering, 1999(11):325-330.
    [119] Kruger M, Ozblot J, Reinhardt H W. A new 3D discrete bond model to study the influence of bond on structure performance of thin reinforced and prestressed concrete plates. Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC4), Proceeding of the 4th International RILEM, Ann Arbor, 2003(6):49-63.
    [120] Meyer C. and Vilkner G., Glass concrete thin sheets prestressed with aramid fiber mesh. Workshop on High Performance Fiber Reinforced Cement Composites (HPFRCC4), Proceeding of the 4th International RILEM, Ann Arbor, 2003(6):325-336.
    [121] 凌旭初.土工织物控制沥青路面反射裂缝的试验研究.华东公路,1990(6):12-15.
    [122] Peter S P. Development in highway pavement engineering. London: Applied Science Publishers Ltd, 1982.
    [123] Richard D B. Performance of asphalt concrete pavement. Transportation Engineering Journal, 1977(1):142-151.
    [124] Safwan K. Deformation characteristics of granular base course in flexible pavements. TRR, 1043:100-110.
    [125] Binh V. Influence of density and moisture content on dynamic stress-strain behavior of a low plasticity crushed rock. Road & Transport Research, 1992, 1 (2):45-54.
    [126] Coetzee N F, Monismith C L. Analytical study of Minimization of reflection cracking in asphalt concrete overlays by use of a rubber-asphalt interlayer. TRR, 1981 (700):101-108.
    [127] Monismith C L, Coetzee NF. Reflection cracking: Analysis, laboratory state and design considerations. AAPT, 1980 (49):268-313.
    [128] Coetzee N F. Some considerations on reflection cracking in asphalt concrete overlay pavement:[Dissertation]. California: Univ. of California, 1979.
    [129] Francken L, Vanelstraete A. Interface systems to prevent reflective cracking: Model ing and experimental testing methods. Proceedings of the 7~(th) ISAP, 1992 (1) :45-60.
    [130] Marchand J P, Goacolou H. Cracking in wearing course. Proceedings of the 5~(th) ISAP, 1982:741-757.
    [131] Jayqwickrama P W, Simith R E, Lytton R L, et al. Development of asphalt concrete overlay design program for reflective cracking. Proceedings of RILEM Conf, on Reflective Cracking in Pavements, 1989:164-170.
    [132] Majidzadeh K, Sacharieh G. The study of pavement overlay design. Final Report, Ohio State Univ., Columbus, 1977.
    [133] Cheetham A, Haas R. Initial design analysis for elimination of pavement reflection cracking through overlay by use of a composite interlayer. Research Report for Ontario Joint Transportation and Systems Ltd, 1981.
    [134] Joseph P. Low temperature reflection cracking through asphalt overlays: [Dissertation]. Waterloo: Univ. of Waterloo, 1987.
    [135] Chen J A, Vito J A D, Morris G A. Finite element analysis of Arizona' s three layers overlay system of rigid pavements to prevent reflective cracking. AAPT, 1982 (54):150-168.
    [136] Vanealstraete A, Fanken L. Numercial modeling of crack initiation under thermal stress and traffic. Proceedings of the 2~(nd) Int. RILEM Conf. 1993:136-145.
    [137] Molenear A A A. Effects of mix modifications, membrane interlayer and reinforcements on the prevention of reflective cracking of asphalt overlays. Proceedings of Int. RILRM Conf. On Reflective Cracking in Pavements, 1989:225-232.
    [138] 高建虹.玻璃纤维土工格栅在沥青路面上的应用.公路,2002(3):80-82.
    [139] 戚文华,张占军.玻璃纤维土工格栅在沥青道路上的应用.平顶山工学院学报,2003,12(3):10-11.
    [140] Goldfein S. Fibrous reinforcement for Portland cement. Modern Plastics, 1965 (4):156-159.
    [141] 沈荣熹.纤维混凝土.北京:中国建筑工业出版社.1995.
    [142] Houssam A, Toutan J. Properties of polypropylene fiber reinforced silica fume expansive-cement concrete. Construction and Building Materials, 1999 (3):171-177.
    [143] Banthia N, Nandakumar N. Crack growth resistance of hybrid fiber reinforced cement composites. Cement & Concrete Composites, 2003 (25):3-9.
    [144] Toledo F R D, Sanjunan M A. Effect of low modulus sisal and polypropylene fiber on the free and restrained shrinkage of mortars at early age. Cement and Concrete Research, 1999 (29):1547-1604.
    [145] Malhotra V.M. Mechanical properties and durability of polypropylene fiber reinforced high-volume fly ash concrete for shotcrete applications. Fuel and Energy Abstract, 2000 (4):235-241.
    [146] Kayali O, Haque M N, Zhu B. Some characteristics of high strength fiber reinforced lightweight aggregate concrete. Cement and Concrete Composites, 2003 (25):207-213.
    [147] Alhozaimy A M, Soroushian P, Mirza F. Mechanical properties and the effects of Pozzolanic materials, Cement and Concrete Composites, 1996 (18):85-92.
    [148] Manolis G D, Gareis P J, Tsonos A D, et al. Dynamic properties of polypropylene fiber-reinforced concrete slabs, Cement and Concrete Composites, 1997 (19):341-349.
    [149] Bing C, Juanyu L. Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures, Cement and Concrete Research, 2004 (34):1065-1069.
    [150] 曹诚,刘兰强.关于聚丙烯纤维对混凝土性能影响的几点认识.混凝土,2000(9):49-51.
    [151] 刘兰强,曹诚.聚丙烯纤维在混凝土中的阻裂效应研究.公路,2000(6):39-42.
    [152] 华渊,刘荣华,曾艺.纤维增韧高性能混凝土的试验研究.混凝土与水泥制品,1998(3):40-43.
    [153] 戴建国,黄承逵.网状聚丙烯纤维混凝土的试验研究.混凝土与水泥制品,1999(4):35-38.
    [154] 戴建国,刘明,黄承逵.聚丙烯纤维混凝土和砂浆的塑性收缩试验研究.沈阳建筑工程学院学报,2000,16(3):195-198.
    [155] 亢景付.水泥混凝土的塑性收缩及聚丙烯纤维阻裂增韧机理探讨.混凝土,2003(1):10-12.
    [156] 陈弘.聚丙烯纤维在混凝土抗裂中的应用.新型建筑材料,2002(6):7-8.
    [157] 都成,黄亚胜,孙伟.聚丙烯纤维对混凝土抗裂防渗性能影响.低温建筑技术,2005(5):55-56.
    [158] 孙道胜,邓敏,唐明述等.聚丙烯纤维增强膨胀混凝土阻裂抗渗性能研究.工业建筑,2004,34(3):49-52.
    [159] 张树光,张向东,祖勇.纤维半刚性基层的响应分析.辽宁工程技术大学学报(自然科学版),2000,19(6):594-595.
    [160] 陈晔,张起森.沥青路面纤维半刚性基层材料的性能分析.长沙交通学院学报,1994,10(1):33-38.
    [161] 张金铭,陈亭.聚丙烯纤维在水泥稳定碎石基层中的应用.哈尔滨商业大学学报(自然科学版),2003,19(5):607-609.
    [162] 董苏波.纤维增强二灰碎石半刚性基层性能的研究:(硕士学位论文).南京:南京林业大学,2003.
    [163] 李国红.寒冷地区聚丙烯加固二灰碎石的研究:(硕士学位论文).长春:吉林大学,2003.
    [164] 王敬飞.半刚性基层沥青路面早期破坏分析及对策.青海交通科技,2005(2):18-20.
    [165] 张维仁,薛玉柱,韩秀梅.半刚性基层沥青路面裂缝成因分析及防治.内蒙古公路与运输,2005(1):31-33.
    [166] 杨成忠,陈万祥.半刚性基层沥青路面反射裂缝形成机理初探.东北公路,2002,25(3):25-27.
    [167] 张登良,郑南翔.半刚性基层材料收缩机理分析—半刚性基层抗裂性能研究之一.西安公路学院学报,1990,10(2):1-7.
    [168] Wang H C, Huang X M, Fu Z. Influence factors on surface crack of semi-rigid base course. Journal of Traffic and Transportation Engineering, 2005, 5 (2):38-41.
    [169] Ashraf M, Abdel R, George K P. Optimum cracking for improved performance of cement-treated bases. Proc. 78th Transportation Research Board, 1999.
    [170] 郑健龙,周志刚等.沥青路面抗裂设计理论与方法.北京:人民交通出版社,2003.
    [171] 王铁梦.工程结构裂缝控制.北京:中国建筑工出版社,1997.
    [172] 光同文.半刚性基层温缩裂缝控制措施的研究.合肥工业大学学报,2003,26(1):127-132.
    [173] 朱照宏,王秉纲,郭大智.路面力学计算.北京:人民交通出版社,1988.
    [174] Caltabiano M A, Brunton J M. Reflection cracking in asphalt overlays. Asphalt paving technology proceedings-Association of Asphalt Paving Technologists Technical Sessions, USA, AAPT, 1991 (60):310-312.
    [175] Sousa J B, Pais J C, Saim R, et al. Mechanistic-empirical overlay design method for reflective cracking. TRR, 2002 (1809):209-217.
    [176] Shatnawi S R. Procedure for evaluating reflective cracking. Proceedings of the materials engineering conference, New York, ASCE, 1999 (2):1429-1438.
    [177] Kim K W, Doh Y S, Lim S. Mode 1 reflection cracking resistance of strengthened asphalt concretes. Construction and Building Materials, 1999, 13(5): 243-251.
    [178] Tighe S, Haas R, Ponniah J. Life-cycle analysis of mitigating reflective crackin. TRR, 2003 (1823):73-79.
    [179] Owusu-Antwi E B, Khazanovich L, Titus-Glover L. Mechanistic-based model for predicting reflective cracking in asphalt concrete-overlaid pavements. TRR, 1998 (1629):234-241.
    [180] 罗俊明.半刚性基层柔性路面裂缝调查报告.湖南交通科技,1992,18(2):34-38.
    [181] 郑健龙,张起森.半刚性基层沥青路面.北京:人民交通出版社,1991.
    [182] Brown N R. Solution for distressed pavements and crack reflection. Eight International Conference on Low-volume Roads 2003. USA, National Research Council, 2003 (1819): 313-317.
    [183] Browns F, Thom NH, Sanders P J. A study of grid reinforced asphalt to combat reflection cracking. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, AAPT, 2002 (70):543-571.
    [184] Gibney A, Lohan G, Moore V. Laboratory study of resistance of bituminous overlays to reflective cracking. TRR, 2002 (1809):184-190.
    [185] Chang D T, Lai R Q, Chang J Y, et al. Effects of geo-grid in enhancing the resistance of asphalt concrete to reflection cracks. ASTM Special Technical Publication, 1998 (1348):39-52.
    [186] Ishai L, Livneh M, Kief O, et al. Experimental and analytical model for the role of reinforced asphaltic membranes in retardation of reflective cracking. Asphalt Paving Technology: Association of Asphalt Paving Technologists-Proceedings of the Technical Sessions, USA, AAPT, 1993 (62):130-149.
    [187] Jiang Y, Mc D, Rebecca S. Application of cracking and seating and use of fibers to control reflective cracking. TRR, 1993 (1388):150-159.
    [188] Srivastava A, Hopman P C, Molenaar S A A. SBS polymer modified asphalt binder and its implications on overlay design. ASTM Special Technical Publication, USA, ASTM, 1991 (1108):309-329.
    [189] Moussa G K. Effect of addition of short fibers of ploy-acrylic and polyamide to asphalt mixtures. AEJ-Alexandria Engineering Journal, 2003, 42 (3):329-336.
    [190] Kirschner R. Asphalt-reinforcing polyester grids in airfields. Airport Forum, 1990, 20 (5):8-10.
    [191] 王建伟.路面半刚性基层横向裂缝的研究.平顶山工学院学报,2003,12(1):70-72.
    [192] 黄煜镔.水泥稳定碎石基层沥青路面裂缝防治研究.上海:同济大学博士后研究工作报告,2004.
    [193] 罗炼,曾波,齐文喆.高等级公路半刚性基层几个问题的讨论.中外公路,2003,23(5):49-52.
    [194] Moussa G K M. The optimum location of geo-textile reinforcement in asphalt layers. AEJ-Alexandria Engineering Journal, 2003,42(1):103-110.
    [195] Dempsey B J. Development and performance of interlayer stress-absorbing composite in asphalt concrete overlays. TRR, 2002 (1809):175-183.
    [196] Cleveland G S, Lytton R L, Button J W. Using strain damage theory to characterize reinforcing benefits of geo-synthetic materials in asphalt concrete overlays. TRR, 2003 (1849):202-211.
    [197] 常魁和,高群.公路沥青路面养护新技术.北京:人民交通出版社,2001.
    [198] 孙秋玉.半刚性基层沥青混凝土路面裂缝的防治与维修.辽宁省交通高等专科学校学报,1999,1(2):21-24.
    [199] 沙庆林.高等级道路半刚性路面.北京:中国建筑出版社,1993.
    [200] 宗荣.聚丙烯纤维混凝土使用性能研究:(硕士学位论文).西安:长安大学,2004.
    [201] JTJ034-2000.公路路面基层施工技术规范.北京:人民交通出版社,2000.
    [202] JTJ014-1997.公路沥青路面设计规范.北京:人民交通出版社,1997.
    [203] GB175-1999.硅酸盐水泥、普通硅酸盐水泥质量标准.北京:中国标准出版社,2001.
    [204] JTGE30-2005.公路工程水泥及水泥混凝土试验规程.北京:人民交通出版社,2005.
    [205] GB/T14684-2001.建筑用砂质量标准.北京:中国标准出版社,2001.
    [206] JTGB058-2005.公路工程集料试验规程.北京:人民交通出版社,2005.
    [207] GB/T14685-2001.建筑用碎(卵)石质量标准.北京:中国标准出版社,2001.
    [208] JTJ057-94.公路工程无机结合料稳定材料试验规程.北京:人民交通出版社,1994.
    [209] 胡力群.半刚性基层材料结构类型与组成设计研究:(博士学位论文).西安:长安大学,2004.
    [210] 张世洲,凌建明,罗志刚.国外未处治粒料与路基土回弹模量试验研究—基本原理与试验方法.公路,2006(11):10-15.
    [211] 胡力群,沙爱民.商开高速公路水泥稳定碎石基层抗裂性研究.中外公路,2005,25(2):25-27.
    [212] 武和平.高等级公路路面结构设计方法.北京:人民交通出版社,2005.
    [213] 杨红辉,唐娴,郝培文等.半刚性基层材料抗裂性评价方法.长安大学学报(自然科学版),2002,22(4):13-15.
    [214] 武和平.高等级公路路面结构设计方法.北京:人民交通出版社,1989.
    [215] 马智英.钢纤维混凝土早期力学性能发展规律试验研究:(硕士学位论文).北京:北京工业大学,2003.
    [216] 吕宏基,杨德福,关英俊等.大体积混凝土.北京:水利电力出版社,1990.
    [217] 刘卫东,王依民.异型聚丙烯纤维混凝土的韧性试验研究.建筑结构,2005,35(4):64-65.
    [218] 王成启,吴科如.不同弹性模量的纤维对高强混凝土力学性能的影响.混凝土与水泥制品,2002(3):36-37.
    [219] 姚武,马一平,谈慕华等.聚丙烯纤维水泥基复合材料物理力学性能研究(Ⅱ)—力学性能.建筑材料学报,2000,3(3):235-239.
    [220] Puertas F, Amat T, Ferna A, et al. Mechanical and durable behaviour of alkaline cement mortars reinforced with polypropylene fibres. Cement and Concrete Research, 2003 (33):2031-2036.
    [221] Song P S, Hwang S, Shou B C. Strength properties of nylon and polypropylent fiber reinforced concretes. Cement and Concrete Research, 2005 (35):1546-1550.
    [222] 王瑞兴,钱春香,丁庆领.聚丙烯纤维对混凝土性能的改善研究.混凝土与水泥制品,2004(1):41—43.
    [223] 邓宗才,李建辉,傅智等.聚丙烯纤维混凝士直接拉伸性能的试验研究.公路交通科技,2005,22(7):45-48.
    [224] 耿飞,钱春香,王瑞兴.南京地铁用模筑聚丙烯纤维混凝土力学性能试验研究.混凝士与水泥制品,2003(2):37-39.
    [225] 朱江.聚丙烯纤维在高性能混凝土中的应用研究.工业建筑,2001,31(1):35-38.
    [226] 孙道胜,邓敏,唐明述等.聚丙烯纤维增强膨胀混凝土阻裂抗渗性能研究.工业建筑,2004,34(3):31-34.
    [227] 王平,肖建庄,陈瑞生等.聚丙烯纤维对高性能混凝土高温后力学性能的影响试验研究.工业建筑,2005,35(11):49-52.
    [228] 庞京春,刘希海.水泥稳定碎石道路基层的试验研究.中国市政工程,2000(2):8-10.
    [229] 陈卫国,陈少幸,张肖宁.正交法在水泥稳定碎石基层配合比设计中的应用.广东公路交通,2004(增刊):15-16.
    [230] 庄少勤,刘朴,孙振平.水泥稳定碎石变形性能及其影响因素.建筑材料学报,2003,6(4):356-363.
    [231] 潘兆平,黄晓明.水泥稳定碎石路面基层材料水泥剂量范围试验.南京建筑工程学院学报,1998(4):21-26
    [232] 郑学钧,张登良.路基路面工程.北京:人民交通出版社,2001.
    [233] 黄国兴,惠荣炎.混凝土的收缩.北京:中国铁道出版社,1990.
    [234] 悉尼.明德斯,J.弗朗西斯.杨著.方秋清等译.混凝土.北京:中国建筑工业出版社,1989.
    [235] 杨文丁.半刚性基层材料收缩性能研究:(硕士学位论文).西安:长安大学,2004.
    [236] 严继民.吸附与凝聚—固体的表面与孔.北京:科学出版社,1986.
    [237] Nemkumar B, Rishi G. Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research, 2006, 36 (7):1263-1267.
    [238] Bayasi Z, Mcintyre M. Application of fibrillated polypropylene fibers for restraint of plastic shrinkage cracking in silica fume concrete. ACI Materials Journal, 2002, 99 (4):337-344.
    [239] Martinez-barrera G, Vigueras-santiago E, Hernandez-lopez S, et al. Mechanical improvement of concrete by irradiated polypropylene fibers. Polymer Engineering and Science, 2005, 45 (10):1426-1431.
    [240] 邓宗才.高强混凝土的断裂韧度.混凝土,1995(2):3-6..
    [241] 吴智敏,黄承逵,徐世娘.大尺寸混凝土试件的断裂韧度.水利学报,1997,7(6):67-70.
    [242] 黄达海,宋玉普.混凝土起裂韧度与断裂韧度的关系.水力发电学报,2000(1):92-100.
    [243] Carpinteri A, Cornetti P, Barpi F, et al. Cohesive crack model description of ductile to brittle size-scale transition dimensional analysis vs. renorm alization group theory. Engineering Fracture Mechanics, 2003 (70):1809-1839.
    [244] Wu Z M, Wang J L, Xu S L. The effect fracture toughness of concrete based on fictitious crack model. Engineering mechanics, 2000, 17 (1):99-104.
    [245] 栾曙光,David D.混凝土断裂能G_F随龄期、强度的变化规律.水利学报,1999(10):29-32.
    [246] 徐世娘,赵艳华,吴智敏等.楔入劈拉法研究混凝土断裂能.水力发电学报,2003(4):15-22.
    [247] 郭向勇,方坤河,冷发光.混凝土断裂能的理论分析.哈尔滨工业大学学报,2005,37(9):1219-1222.
    [248] Hovarth R, Persson T. The influence of the size of the specimen on the fracture energy of concrete. Report TU BM-5005, Division of Building Materials, Lund Institute of Technology, Lund, Sweden, 1984.
    [249] Ciacco C, Rocco C, Zerbino R. The fracture energy of high strength concretes. Mater. Struct. , 1993 (26):381-386.
    [250] 丁遂栋,断裂力学,北京:机械工业出版社.1997.
    [251] 曹继锋.聚丙烯长纤维混凝土性能研究:(硕士学位论文).大连:大连理工大学,2005.
    [252] 王慧.混凝土及纤维混凝土的断裂分析.合肥工业大学学报(自然科学版),1996,19(4):64-68.
    [253] 单凤枝.聚丙烯纤维混凝土的力学性能及其在桥面铺装中的应用研究:(硕士学位论文).成都:西南交通大学,2005.
    [254] 宗荣.聚丙烯纤维混凝土使用性能研究:(硕士学位论文).西安:长安大学,2004.
    [255] Guo H D, Qian C X, Piet S. Fracture properties of cement composites reinforced with steel-polypropylene hybrid fibres. Journal of Southeast University, 1999, 15 (2):55-62.
    [256] 尚敏.聚丙烯纤维增强的水泥砂浆断裂韧性的研究.合成纤维,2005(6):39-42.
    [257] 刘丽芳,王培铭,杨晓杰.纤维参数对水泥砂浆断裂韧性的影响.混凝土与水泥制品,2006(1):40-43.
    [258] 唐春安,朱万成.混凝土损伤与断裂—数值计算.北京:科学出版社,2002.
    [259] 王占桥.纤维高强混凝土断裂性能的试验研究:(硕士学位论文).郑州:郑州大学,2004.
    [260] 吴智敏,赵国藩.混凝土断裂韧度的尺寸效应研究.工业建筑,1995,25(4):20-23.
    [261] 吴智敏,徐世娘,王金来.三点弯曲梁法研究砼双K断裂参数及其尺寸效应.水力发电学报,2000(4):16-24.
    [262] 吴智敏,徐世娘,刘佳毅.光弹贴片法研究混凝土裂缝扩展过程及双K断裂参数的尺寸效应.水利学报,2001(4):34-39.
    [263] RILEM, TC50-FMC, Fracture mechanics of concrete, in: Determination of fracture energy of mortar and concrete by means of three point bend test on notched beams. Draft RILEM Recommendation, Materials and Structures, 1985 (18):238-296.
    [264] 尹双增.断裂、损伤理论及应用.北京:清华大学出版社,1992.
    [265] 李光伟,杨元慧.聚丙烯纤维混凝土性能的试验研究.水利水电科技进展,2001,21(5):14-17.
    [266] 王新民.合成纤维在混凝土中的效果和机理.市政技术,2003,21(1):38-41.
    [267] Parviz S, Hafez E, Atef T, et al. Mixef-mode fracture properties of concrete reinforced with low volume fractions of steel and polypropylene fibers. Cement and Concrete Composites, 1998 (20):67-78.
    [268] Hillerborg A. The theoretical basis of a method to determine the fracture energy G_F of concrete. Material and Structure, 1996, 18 (6):291-298.
    [269] 项弼.水泥稳定碎石配合比设计方法及抗裂性能研究.工程建设与设计,2005(9):83-85.
    [270] 李文光.水泥稳定集料收缩抗裂性能研究.交通科技与经济,2006(3):7-9.
    [271] 郑南翔,李炜光.二灰碎石抗裂性能研究.重庆交通学院学报,2005,24(1):57-60.
    [272] 沙爱民,张登良.西三公路半刚性基层材料抗裂性试验研究.西安公路交通大学学报.1998,18(1):1-5.
    [273] 杨小芳.半刚性基层混合料收缩性能研究:(硕士学位论文).南京:东南大学,2003.
    [274] 林绣贤.半刚性基层沥青路面.北京:人民交通出版社,1991.
    [275] 陈晔,张起森.纤维加固土路面基层的研究与应用.人民交通出版社,1995.
    [276] 王磊.水泥稳定碎石抗裂性评价方法研究.中国西部科技,2005(8):26-28.
    [277] Chen Y K, Tan X R. Grey relational analysis on serum markers of liver fibrosis, The Journal of Grey System, 1995, 7(1):63-68.
    [278] Liu S F. On measure of grey information, The Journal of Grey System, 1995, 7(2):70-101.
    [279] 邓聚龙.灰色系统基本方法.武汉:华中理工大学出版社,1987.
    [280] Romualdi J P, Batson G B. Mechanics of crack arrest in concrete. Proc. ASCE, 1963,89 (6):147-169.
    [281] Romualdi J P. The structure of concrete. Proc. Int. Conf. London, 1968:190-250.
    [282] 沈荣熹,崔琪,李清海.新型纤维增强水泥基复合材料.北京:中国建材工业出版社.2004.
    [283] Krenchel H. Fiber reinforcement. Akadimisk Forlag, Copehagen, 1964.
    [284] 周卫峰,赵可,王德群等.水泥稳定碎石混合料配合比的优化.长安大学学报(自然科学版),2006,26(1):24-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700