高寒地区沥青路面行为特性与设计方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于沥青路面完全暴露于自然环境之中,长期承受着车辆荷载的反复作用和外界自然环境的直接影响,导致路面性能衰减和破损的因素错综复杂。鉴于我国目前沥青路面结构形式还较为单一化,路面破损模式与设计指标之间存在脱节现象,以及路面材料设计体积参数与路用性能指标相关关系不明确,因此,积极开展有关考虑气候环境和交通特征、以路面使用性能为目标的沥青路面结构与材料设计方法研究具有十分重要的意义。
     基于此,本文以交通部西部交通建设科技项目“高原湿地郎川公路修筑及环境保护技术研究”(项目编号:200431800054)为支撑,以高寒地区沥青路面为研究对象,在广泛搜集国内外相关文献与研究成果的基础上,进行了路面破损现场实地调研,探讨了有关沥青路面结构分析基础理论问题。采用理论与实践相结合的手段,并充分考虑外界环境因素、交通荷载以及路面结构与材料的自身特性,对高寒地区沥青路面结构组成与行为特性、沥青混合料材料构成与性能特性、以及与之相适应的路面结构与材料设计方法等内容进行了较系统、深入的研究。主要研究工作和研究成果有:
     (1)通过对四川与西藏高寒地区部分公路沥青路面的现场调研,确定了高寒地区沥青路面的6类主导破损形式,分析了破损规律与形成机理,其中路面开裂中的温缩裂缝、反射裂缝是由于路面结构与材料自身原因而产生的最主要破损类型。
     (2)基于ABAQUS软件平台,深入探讨了有关沥青路面结构分析基础理论中的层间状态、车辆荷载作用方式、多因素综合作用等问题,分析了各种单因素或多因素作用对路面性能关键力学指标的影响规律。指出以接触模型分析路面的力学响应更符合路面的实际工作状态,接触模型更能体现水平荷载对路面力学行为的影响,掌握了层间状态对高、低温环境下的沥青路面行为特性的影响规律,确定了高温与车辆荷载综合作用时路面性能严重恶化的层间接触摩擦系数的临界值,给出了高寒地区特殊环境下沥青路面结构分析的力学模型与外荷载组合方式的合理建议。
     (3)总结了新型沥青路面结构概念及其所包含的结构类型,针对高寒低温地区的新型沥青路面结构型式,考虑沥青混凝土的感温特性,进行了基于层间接触模型的路面大温差温度行为、温度与荷载耦合行为、抗开裂行为等系统理论分析。指出全厚式结构(文中的类型三)和倒装式结构(文中的类类型五)具有更好的抗环境变化能力和抗开裂性能。由于大温差、水平与竖向荷载的联合作用,导致路面力学行为产生显著变化,与竖向荷载单独作用相比,不仅力学响应大小不同,而且响应极值出现位置也不同。
     (4)以AC-13酸性花岗岩沥青混凝土材料组成优化设计研究为例,充分考虑项目依托工程高寒低温和重载交通的要求,引用正交法设计思想,进行了大量室内试验,系统分析了级配类型、压实温度、成型方法、沥青用量及改善措施等因素对沥青混合料的各种性能的影响及其相关关系。以试验结果为基础,确定了项目依托工程AC-13沥青混合料的低温压实临界温度值,给出了确定各影响因素优化组合的试验方法。在此基础上,明确了高寒地区沥青混凝土材料组成设计原则与材料要求,提出了特殊环境下基于抗冻融稳定性、以体积和性能双参数作为过程控制的沥青混凝土材料组成实用优化设计方法。
     (5)以现场试验路实测数据为基础,系统研究了各新型沥青路面结构的温度行为特性、抗开裂性能及弯沉特点等问题。应用光纤光栅式温度传感器对高、低温季节路面温度行为的测试结果,得到了各类型路面在不同环境温度、不同时段气温、路表温度与路面内部温度场的变化规律,建立了高寒地区特殊环境下沥青路面各结构层位的分季节、分时段性的路面温度通用预估模型。应用现场开裂调查结果,描述了开裂的形态特征,评价了各新型结构的抗裂效果。应用现场弯沉测试结果,明确指出了对设计弯沉值要求过高的弊端。综合理论分析与现场试验结果,明确了高寒地区沥青路面设计原则与设计要求,推荐了高寒地区适宜沥青路面结构形式,建立了结构设计力学模型,初步提出了结构设计计算方法,提出了基于路面使用性能的分状态(高、低温状态)、分指标(应力、应变指标)的高寒地区特殊环境沥青路面结构设计与行为分析方法。
Asphalt pavements exposed to adverse conditions such as application of heavy repeated vehicle loading and direct influence of external environment factors for a long period of time may exhibit unique structural behavior leading to inadequate service levels and/or premature distress. After rapid expansion of pavement construction for the last 20 years, the theory and practice of pavement engineering witnessed great achievement, especially in asphalt pavements. However, there still exist several aspects of asphalt pavements which should be addressed to advance asphalt pavement technology in China. First of all, the asphalt pavement structure types are still comparatively fixed at present and semi-rigid structural dominated design in practice. Secondly, there exist some disjoint phenomenon between the distress patterns and design indexes. Thirdly, the volumetric design parameters of asphalt mixture and pavement performance indexes are still not clear. Therefore, it is very important to study the design methods of asphalt pavement and materials based on consideration of the climate environmental factors and traffic characteristic as well to produce sound design.
     This dissertation reports a comprehensive research on the structure and material characteristics and their design methods in plateau-cold region. This project was supported by the Ministry of Communications' Western Transportation Construction Research Project (NO. 200431800054).
     In this study the following procedures were observed: firstly, a large number of relevant domestic and international literatures and findings were reviewed and the asphalt pavement distresses were investigated on the spot. Secondly, the basic theory problems analysis was discussed. Finally, by means of combining the theory and practice and considering the external environment factors, the traffic loading, as well as the characteristics of pavement structure and highway materials, the asphalt pavement problems in plateau-cold region such as the structure type and structure characteristic, the combination of asphalt mixture and its performance, and the assumed design methods were systemically and deeply investigated. Major remarks and findings of this research are summarized as follows:
     (1) On the basis of the damage investigation data of asphalt pavements collected in Sichuan and Tibet Plateau-Cold Regions, the six major defects found in these regions were accurately defined, analyzed, and summarized; the law and formation mechanism for the low temperature cracking, the reflection cracking, the permanent deformation, and other defect types were studied and presented. Among these, the temperature-shrinking cracking and the reflecting cracking are the most important breaking forms owing to pavement structure and material itself.
     (2) The structural analysis and the basic theories of asphalt pavement structure were discussed deeply based on the software ABAQUS; the interlayer state, the mode of vehicle loading, the synthetical effects of many factors, etc, and the influencing law that one factor or many factors acted on the key mechanics were also analyzed. The results indicate that the mechanics of the contact model is more fitable for the pavement's practical work state largely influenced by horizontal loads action. From the simulation results, the interlayer influence law of asphalt pavement characteristic at high or at low temperature was created and presented; the critical coefficient value of interlayer friction resulted in the pavement performance under the coupled action was confirmed to become worse at high temperature; some reasonable suggestions about the mechanics model and loads combination in asphalt pavement structural analysis in plateau-cold region were given out too.
     (3) The combinations of the concepts and new structure type of asphalt pavement are summarized in this work. Considering the temperature susceptibility of asphalt concrete based on the contact model focused on the new-type asphalt pavement in plateau-cold region, a systemic theoretical analysis such as temperature behavior with large temperature changes, coupled with temperature-loading behavior and anti-cracking behavior, were done. Results indicate that a thick asphalt pavement structure (see type 3) and hyperbatic or combined structure (see type 5) have a better performance in the cold regions and can resist to environment changes and pavement crackings. Because of the coupled action of large temperature changes on structures and vertical and horizontal loads, the pavements mechanics can behave distinctly when compared with vertical loading action; the difference existing between them consist not only on the mechanics responses but also on the position of extremum value of responses.
     (4)Based on the research on optimum design of acidic granite asphalt concrete material AC-13 composition, a lot of laboratory experiments were made with the method of orthogonal design and with the plateau-cold environment and the heavy traffic loads taking into account. A systemic analysis on the influence of asphalt concrete by factors such as the type of gradation, the temperature of compression, the way of compression, the Optimum Asphalt Content (OAC) and improving measures were considered. Based on the results of experiments, the low critical compression temperature and the experiment method were ensured. Furthermore, the principle and design of asphalt concrete for plateau-cold region were worked out; the optimum design method of asphalt concrete material composition based on the stability of freeze-thaw resistance and the processes control method which is composed by the parameter of volume and performance was also worked out.
     (5) Based on field test data, this system research has considered the temperature behavior, anti-cracking effects and anti-deflection characteristics in the design of the new asphalt pavement structures. Using FBG temperature sensor, the testing results show that the temperatures along the depth in the pavement changes dependant upon different environments and different time. A temperature forecast GM model has been established for each pavement structure in different environment and different time with different temperature. Cracking findings in the scene investigation are able to describe the cracking characteristics and evaluate the ability of the new structure's anti-cracking effect. Deflection test results clearly point out that if the deflections are too small, it may easy lead to reflection cracking. In this dissertation, a comprehensive theoretical analysis and field test results made here may improve to better the understanding of the design principles and requests needed for plateau-cold region. Some new and suitable asphalt pavement structures have been recommended for the plateau-cold region; the mechanic model for pavment structure design also has been established. Some structure and new structural design method for the plateau-cold region based on pavement's performance at low or high temperature conditions and different responses index (stress or strain) have been proposed in this thesis.
引文
[1]孟书涛.沥青路面合理结构的研究.东南大学博士学位论文,2005.
    [2]沈金安,李福普,陈景.编著.高速公路沥青路面早期损坏分析与防治对策.北京:人民交通出版社,2004.
    [3]毛成.沥青路面裂纹形成机理及扩展行为研究.西南交通大学博士学位论文,2004.
    [4]长安大学等.高原多年冻土地区路基路面典型结构研究总报告.2000.
    [5]巴桑顿珠,黄晓明,张道德.等.西藏东南部沥青路面常见病害及成因分析.公路交通科技,2006,23(11):36-39.
    [6]王小岗.青藏高原部分沥青混凝土路面病害调查及原因分析.公路,2007,(2):153-157.
    [7]中华人民共和国行业标准.公路沥青路面设计规范(JTG D50-2006).北京:人民交通出版社,2006.
    [8]吴旷怀,张肖宁.沥青混合料设计综述.广州大学学报,2005,4(5):456-461.
    [9]中华人民共和国行业标准.公路沥青路面施工技术规范(JTG F40-2004).北京:人民交通出版社,2004.
    [10]谭积青,张肖宁.沥青混合料体积设计及其效果评价.公路交通科技,2005,22(6):1-5,13.
    [11]Vinson,Ted S.;Hicks,R.Gary.et al.Low temperature cracking and rutting in asphalt concrete pavements.Technical Council on Cold Regions Engineering Monograph,Roads and Airfields in Cold Regions,1996,pp.203-248.
    [12]Guy Dore.Cold Region Pavement.Journal of Glaciology and Geocryology,2002,24(5):593-600.
    [13]马雷,李宏逵.寒冷地区沥青路面裂缝的防治措施.辽宁交通科技,1998,21(3):36-38.
    [14]谷立群,李德林,朱丽华.沥青路面低温收缩横向裂缝观测.黑龙江交通科技,2003,108(2):13-14.
    [15]刘信昌,徐子良,吴怡青.日本国寒冷地域的道路路面及其技术动向.黑龙江交通科技,1999,79(2):64-66.
    [16]Maureen A.Kestler.An Open Graded Base to Reduce Thaw Weakening in Flexible Pavements.Proceedings of the 8~(th)International Conference on Cold Regions Engineering(ASCE),1996,pp.878-889.
    [17]王端宜,张佳新。寒冷地区适宜沥青路面结构理论分析的探讨.东北公路,1997,20(3):16-19.
    [18]兰永贵,田书田,郑淑贤.寒冷地区适宜沥青路面结构理论分析的探讨.黑龙江交通科技,2002,102(8):21-23.
    [19]王端宜,王建民,田书田.寒冷地区适宜沥青路面结构的工程验证.东北公路,1997,20(2):46-48.
    [20]钱育锋.四川省高寒地区常见的公路病害及防治措施.公路,2003,(8):156-161.
    [21]何广龙.大新高速公路冬季低温横向裂缝观测综述.山西交通科技,2003,156(2):29-31.
    [22]王国忠.高寒地区沥青稳定碎石基层柔性路面适应性研究.南京林业大学博士学位论文,2006.
    [23]侯曙光.多年冻土路基融沉机理及路面结构对策研究.东南大学博士学位论文,2005,12.
    [24]马驫.多年冻土地区沥青路面材料组成与结构设计研究长安大学博士学位论文,2006.
    [25]周继业,林绣贤.沥青路面的预锯缝和缝距计算.中国公路学报,1994,7(1):14-19.
    [26]李福普,陈景,严二虎.新型沥青路面结构在我国的应用研究.公路交通科技,2006,23(3):10-14.
    [27]沙庆林.高等级公路半刚性基层沥青路面.北京:人民交通出版社,1998.
    [28]李善祥.半刚性基层沥青路面的裂缝形成机理与预防.施工技术,1998,(11)19-20.
    [29]王建伟.路面半刚性基层横向裂缝的研究.平顶山工学院学报,2003,12(1):16.18,25.
    [30]陈峙峰.半刚性基层沥青路面的横向开裂分析.河南科技,2004,9(上):41.
    [31]Peter.S.Pell.Development in Highway Pavement Engineering 2.London:Applied Science Publishers Ltd.,1982.
    [32]Robert H.Kuhlman.Cracking in Soil Cement-Cause,Effect,Control.Concrete International,1995,(8):45-50..
    [33]同济大学等.编.半刚性基层沥青路面.北京:人民交通出版社,1991.
    [34]林绣贤.半刚性沥青路面.北京:人民交通出版社,1991.
    [35]沙爱民.半刚性路面材料结构与性能.北京:人民交通出版社,1998.
    [36]Dauzats,M.;Rampal,A..Mechanism of Surface Cracking in Wearing Courses,Proceedings,6~(th)International Conference on the Structural Design of Asphalt Pavements,1987,pp.232-247.
    [37]沙庆林.高速公路沥青路面早期破坏现象及预防.北京:人民交通出版社,2001.
    [38]郑健龙等.沥青路面抗裂设计理论与方法.北京:人民交通出版社,2002.
    [39]陈贵锋.高等级公路沥青路面反射裂缝的分析与防治.重庆交通学院学报.2003,22(3):33-36.
    [40]东南大学交通学院.宁沪高速公路路面结构研究总报告.1996.
    [41]东南大学交通学院.高等级半刚性基层沥青路面合理结构研究报告.1994.
    [42]王树森.级配碎石基层材料组成设计与工艺控制研究.公路,2001,(2):75-78.
    [43]Guthrie,W.;Lay,Russell;Birdsall,Adam..Effect of Reduced Cement Contents on Forst Heave of Silty Soil:Laboratory Testing and Numerical Modeling.In 86~(th)Annual Meeting(CD-ROM),TRB,National Research Council,Washington,D.C.,2007.
    [44]C.L.Monismith;N.F.Coetzee.Reflection Cracking:Analysis,Laboratory State and Design Consideration.Proceeding of AAPT,Vol.49,1980,pp.268-313.
    [45]N.F.Coetzee;C.L.Monismith.Analytical Study of Minimization of Reflection Cracking in Asphalt Concrete Overlays by Use of a Rubber-asphalt Interlayer.TRR700,1981,pp.101-108.
    [46]K.Majidzadeh;G.Sacharieh.The Study of Pavement Overlay Design.Final Report,Ohio State Unvi.,Columbus,1977.
    [47]N.F.Coetzee.Some Considerations on Reflection Cracking in Asphalt Concrete Overlay Pavement.PH.D.Dissertation,Univ.of Califoria,1979.
    [48]Cheetham,R.Haas.Initial Design Analysis for Elimination of Pavement Reflection Cracking through Overlay by Use of a Composite Interlayer Research Report for Ontario Joint Transportation and Systems Ltd.,1981.
    [49]J.P.Marchand;H.Goacolou.Cracking in Wearing Course.Proceedings of the 5th ISAP,1982,pp.741-757.
    [50]J.A.Chen;J.A.D.Vito;G.A.Morals.Finite Element Analysis of Arizona's Three Layer Overlay System of Rigid Pavements to Prevent Reflective Cracking.Proceeding AAPT,Vol.54,1982,pp.150-168.
    [51]P.Joseph.Low Temperature Reflection Cracking through Asphalt Overlays.Ph.D.Thesis,Univ.of Waterloo,1987.
    [52]P.W.Jayqwickrama;R.E.Smith;R.L.Lytton;et al.Development of Asphalt Concrete Overlay Design Program for Reflective Cracking.Proceedings of RILEM Conf.on Reflective Cracking in Pavement,1989,pp.164-170.
    [53]A.A.A.Molenear.Effects of Mix Modification,Membrane Interlayers and Reinforcements on the Prevention of Reflective Cracking of Asphalt Overlays.Proceedings of Int.RILRM Conf.On Reflective Cracking in Pavements,1989,pp.225-232.
    [54]L.Francken;A.Vanelstraete.Interface Systems to Prevent Reflective Cracking:Modeling and Experimental Testing Methods.Proceedings of the 7~(th)ISAP,Vol.1,1992,pp.45-60.
    [55]Vanealstraete;L.Fanken.Numerical Modeling of Crack Initiation under Thermal-Stress and Traffic.Proceedings of the 2~(th)Int.RILEM Conf.1993,pp.136-145.
    [56]Lytton,R.L.;Tseng,K.H..Laboratory Evaluation of Overlays Reinforced with Fabrics.Texas Transportation Institute,May,1983.
    [57]Pickett,D.L.;Lytton,R.L..Laboratory Evaluation of Selected Fabrics for Reinforcement of Asphalt Concrete Overlay.Report No.FHWA/TX-84/20+271-1,Texas Transportation Institute,August,1983.
    [58]Lytton.R.L.;Jaywickrama,P.W..Reinforcing Fabric Glass for Asphalt Overlays.Texas Transportation Institute,May,1986.
    [59]张起森,郑健龙,刘益河.半刚性基层沥青路面的开裂机理.土木工程学报,1992,25(2):13-22.
    [60]张起森,刘益河.沥青路面开裂机理分析与试验研究.长沙交通学院学报,1988,4(2):67-80.
    [61]Button,J.;Lytton,R..Guidelines for Using Geosynthetics with Hot-Mix Asphalt Overlays to Reduce Reflective Cracking.In 86~(th)Annual Meeting (CD-ROM),TRB,National Research Council,Washington,D.C.,2007.
    [62]Prozzi,J.;Luo,R..Using Geogrids to Minimize Reflective Longitudinal Cracking on Pavements Over Expansive Soils.In 86~(th)Annual Meeting (CD-ROM),TRB,National Research Council,Washington,D.C.,2007.
    [63]河北省交通科学研究所.河北正定试验路研究报告.1990.
    [64]何兆益.碎石基层防止半刚性路面裂缝及路用性能研究.东南大学博士学位论文,1997.
    [65]何兆益,黄卫,邓学钧.级配碎石动静弹性模量对比研究.中国公路学报,1998,1(1):15-20.
    [66]何兆益,黄卫,邓学钧,谈长庆.碎石基层防止沥青路面反射裂缝结构和应用方法.华东公路,1997,(1):51-54.
    [67]何兆益,沈颖,黄卫,邓学钧.具有碎石基层的半刚性沥青路面合理结构研究.岩土工程学报,1997,(1):94-96.
    [68]金江.半刚性基层沥青路面的倒装结构综述.北京工业大学学报,2003,29(4):465-467.
    [69]王龙,刘东亮.沥青碎石与级配碎石过渡层在防止半刚性基层反射裂缝的对比分析.东北公路,2002,25(4):10-12.
    [70]黄仰贤 著;余定选,齐诚译.路面分析与设计.北京:人民交通出版社,1998.
    [71]A.C.Whiffin;N.W.Lister.The Application of Elastic Theory to Flexible Pavements.Proceedings of the 1~(th)International Conference on the Structural Design of Asphalt Pavements,Ann Arbor,MI,USA,1962,pp.499-520.
    [72]Mariana R.K.;Andrew C.C.;Nicholas H.T..Effect of Bond Condition on Flexible Pavement Performance.J.Transp.Engrg.,Vol.131,(11),2005,pp.880-888.
    [73]Uzan,J.Influence of the Interface Contact on Stress Distribution in a Layered System(abridgement).Transportation Research Record,Published by Transportation Research Board,Washington,DC.USA,1976,pp.71-73.
    [74]Brown,S.E;Brunton,J.M..Improvements to pavement subgrade strain criterion.Journ.Transp.Eng.,ASCE,Vol.110,No.6,1984,pp.551-567.
    [75]Brown,S.F.;Brunton,J.M..Computer programs for the analytical design of asphalt pavements.Highways and Transportation,Vol.31,No.8/9,1984,pp.18-27.
    [76]Brown,S.F.;Brunton,J.M.;Stock,A.F..The analytical design of bituminous pavements.Proc.Inst.of Civil Eng.,Pt.2,Vol.79,1985,pp.1-31.
    [77]Brown,S.F.;Tam,W.S.;Brunton,J.M..Structural evaluation and overlay design:analysis and implementation.Proc.6~(th)Int.Conf.on the Struct.Design of Asphalt Pavements,Vol.1,Ann Arbor,Mich.,1987,pp.1013-1028.
    [78]Khweir K.;Fordyce D..Influence of Layer Bonding on Prediction of Pavement Life.Proc.Inst.Civ.Eng..Transp..Vol.156,No.2,2003,pp.73-83.
    [79]Romanoschi,S.A.;Metcalf,J.B..Effects of Interface Condition and Horizontal Wheel Loads on the Life of Flexible Pavement Structures.Transportation Research Record,No.1778,Design and Rehabilitation of Pavements,2001,pp.123-131.
    [80]Ziari,H.;Khabiri,M.M..Effects of Interface Condition on the Fatigue Life of Flexible Pavement.In Proc.of Isfahan Conference.Iran,2003,pp.361-367.
    [81]Ziari,H.;Khabiri,M.M..Effects of Interface Condition on the Rutting of Flexible Pavement.In Proc.of Conference on Asphalt and Bitumen.Iran,2004,pp.60-62.
    [82]Hassan Z.;Mohammad M.K..Interface Condition Influence on Prediction of Flexible Pavement Life.Journal of Civil Engineering and Management,Vol.ⅩⅢ,No 1,2007,pp.71-76.
    [83]刘红坡.层间接触对半刚性沥青路面力学响应的影响.西南交通大学硕士学位论文,2006.
    [84]张起森,郑健龙.弹性层状体系考虑层间接触非线性的有限单元分析方法.土木工程学报,1989,22(3):63-75.
    [85]关昌余,王哲人,郭大智.路面结构层间结合状态的研究.中国公路学报,1989,2(1):70-80.
    [86]苏凯.山区公路沥青路面基面层滑移分析.长安大学硕士学位论文,2004.
    [87]武建民,苏凯,宋田兴.沥青混凝土路面层间推移破坏的研究分析.公路,2004,(08):105-108
    [88]冯德成,宋宇.层间结合状态对沥青路面设计指标的影响分析.华东公路,2006,(03):35-38.
    [89]冯德成,宋宇.沥青路面层间结合状态试验与评价方法研究.哈尔滨工业大学学报,2007,39(04):627-631.
    [90]胡小弟,孙立军,刘兆金.沥青路面非均布荷载下层间接触条件不同时力学响应的三维有限元分析.公路交通科技,2003,20(3):1-4.
    [91]薛亮,张维刚,梁鸿颉.考虑层间不同状态的沥青路面力学响应分析.沈阳建筑大学学报(自然科学版),2006,22(4):575-578.
    [92]李明飞,刘殿良,等.基于层间滑移的沥青路面响应分析.沈阳建筑工程学 院学报(自然科学版),2003,19(03):172-174.
    [93]严二虎,沈金安.半刚性基层与沥青层之间界面条件对结构性能的影响.公路交通科技,2004,21(1):38-41.
    [94]纪小平,李兵,王宇.不同层间接触条件对沥青路面力学特性的影响分析.交通科技与经济,2007,9(6):31-33.
    [95]罗睿,黄晓明.利用权函数计算沥青路面层间部分约束的面层底裂缝应力强度因子.岩土工程学报,2001,23(5):610-613
    [96]王金昌,朱向荣.面层与基层层间摩擦系数对应力强度因子影响的研究.岩石力学与工程学报,2005,24(15):2757-2764.
    [97]周生金.沥青路面荷载与温度耦合疲劳特性研究.长安大学硕士学位论文,2005.
    [98]邓学钧,黄晓明.路面设计原理与方法.北京:人民交通出版社,2001.
    [99]朱照宏,许志鸿.柔性路面设计理论和方法.上海:同济大学出版社,1985.
    [100]姚祖康.对国外沥青路面设计指标的评述(连载一).公路,2003,(3):18-25.
    [101]姚祖康.对国外沥青路面设计指标的评述(续).公路,2003,(4):49-55.
    [102]周利,蔡迎春,杨泽涛.国内外沥青路面设计方法综述.公路交通技术,2007,(4):36-39.
    [103]孙立军,等著.沥青路面结构行为理论.北京:人民交通出版社,2005.
    [104]Shell.Shell pavement design method for use on a personal computer user manual.Shell,London,1994.
    [105]姚祖康.公路设计手册-路面.北京:人民交通出版社,1992.
    [106]Shell International Petroleum Co.Ltd.Shell Pavement Design ManualAsphalt Pavements and Overlays for Road Traffic.London,1978.
    [107]Gerristsen,A.H,;Koole,R.C..Seven years' experience with the structural aspects of the Shell pavement design manual.Proceedings,6~(th)International Conference on Structural Design of Asphalt Pavements,Ann Arbor,1987,Vol.1.pp.94-106.
    [108]Shook,J.K.;Finn,F.N.;et al.Thickness design of asphalt pavements-the Asphalt Institute Method.Proceedings,5~(th)International Conference on Asphalt Pavements,Delft,1982,Vol.1.pp.17-44.
    [109]Monismith,C,L..Analytically based Asphalt Pavement Design and Rehabilitation:Theory to Practice:1962-1992.TRB1354,1992,pp.5-26.
    [110]Valkering,C.P.;Stapel,F.D.R..The Shell pavement design method on a personal computer.Proceedings,7~(th)International Conference on Asphalt Pavements,Nottingham,1992,Vol.1.pp.351-367.
    [111]Walker,R.N.;Patterson,C.R.;Freeme,C.R.;et al.The South African mechanistic pavement design procedure.Proceedings,4~(th)International Conference on Structural Design of Asphalt Pavements,Ann Arbor,1977,Vol.2.
    [112]Kenis W J;Sherwood J A;McMahon R F.Verification and Application of the VESYS structural subsystem.Proceedings,5~(th)International Conference on Structural Design of Asphalt Pavements,Ann Arbor,1982,Vol.1.pp.333-346.
    [113]Brown J F;Brunton J M;Pell P S.The development and implementation of analytical pavement design for British Conditions.Proceedings,5~(th)International Conference Structural Design of Asphalt Pavements,Ann Arbor,1982,Vol.1.pp.17-44.
    [114]Autret P;De Boissoudy A B;Marchand J P.ALIZE ⅲ practice.Proceedings,5~(th)International Conference on Structural Design of Asphalt Pavements,Ann Arbor,1982,Vol.1.pp.174-191.
    [115]Verstraeten J;Ververka V;Franken L.Rational and practical design of asphalt pavements to avoid cracking and rutting.Proceedings,5~(th)International Conference on Structural Design of Asphalt Pavements,Ann Arbor,1982,Vol.1.pp.42-58.
    [116]NCHRP.Guide for Mechanistic-Empirical Design on New and Rehabilitated Pavement Structures,March,2004.
    [117]Monismith C L.International Conferences- twenty-five years of contributions to asphalt concrete pavement design and rehabilitation.Proceedings,6~(th)International Conference on Structural Design Asphalt Pavements,Ann Arbor,1987,Vol.2.
    [118]姚祖康.沥青路面设计指标体系研究报告.2003,4.
    [119]姚祖康.对我国沥青路面现行设计指标的评述.公路,2003,(2):43-49.
    [120]姚祖康.沥青路面设计指标的探讨.中国公路学会,2005年学术年会论文集,2005.
    [121]毕艳详.半刚性基层沥青路面设计指标研究.同济大学博士学位论文, 2001.
    [122]郭亚兵,丛林,郑航,等..半刚性基层沥青路面结构设计指标的研究.上海公路,2002,(4):6-9.
    [123]余清河.对我国沥青路面设计的几点改进建议.重庆交通学院学报,2004,(2):26-27.
    [124]钟梦武,吴善周,谢立新,等.我国现行沥青路面设计方法存在问题分析.湖南交通科技,2007,33(1):7-9,38.
    [125]秦雯,李彩霞.沥青路面设计方法及存在问题浅析.北方交通,2007,(1):37-39.
    [126]武建民.半刚性基层沥青路面使用性能衰变规律研究.长安大学博士学位论文,2005
    [127]辛德刚,王哲人,周晓龙 编著.高速公路沥青路面材料与结构.北京:人民交通出版社,2001.
    [128]罗芳艳,孙立军.基于使用性能的沥青路面结构设计方法研究.中国公路学报,2001,S1:35-38.
    [129]居浩,黄晓明,等.柔性基层沥青路面轴数系数研究.公路交通科技,2006,23(7)6-9,22.
    [130]崔鹏,邵敏华,等.长寿命沥青路面结构组合探讨.中南公路工程,2007,32(3):6-10.
    [131]朱洪洲.柔性基层沥青路面疲劳性能及设计方法研究.东南大学博士学位论文,2005.
    [132]姬杨蓓蓓.多年冻土地区沥青路面结构设计方法研究.长安大学硕士学位论文,2005.
    [133]王瑞宜.设计沥青路面及其方法的研究.华南理工大学博士学位论文,2003.
    [134]霍晓东,雷静芸.国外沥青混合料设计方法评述.交通标准化,2007,(12):136-138.
    [135]陈骁,朱春阳.不同沥青混合料设计方法对比评价分析.中外公路,2007,27(4):267-271.
    [136]沈金安.关于沥青混合料配合比设计确定最佳沥青用量的问题.公路,2001,(11):1-5.
    [137]McGennis,R.B..Evaluation of Materials from Northest Texsa Using Superpave Mix Design Technology.TRR1583.Washington.D.C.TRB. NRC.1997,pp.98-105.
    [138]Sebaaly,P.E.;et al.Selection of the Most Desirable HMA Mixture.TRR1590.Washington,D.C.TRB,NRC.1997,pp.97-107.
    [139]Van De Ven.M;et al.Validation of Some Superpave Design Parameters by Wheel Testing with the Scale Model Load Simulator.Proceedings.English International Conference on Asphalt Pavement.Vol2.Seattle,WA.1997,pp.1245-1256.
    [140]Chowdhury,A.;Joe W.B.;Jose D.C.G..Effects of Superpave Restricted Zone on Permanent Deformation.Project Title:Evaluation of Superpave Aggregate Specifications.Report No.201-2,Texas A&M University,2001.
    [141]Hand,A J;Stiady,J L;et al.Gradation Effects on HotMix Asphalt Performance.TRR1767.TRB,NRC.Washington,D.C.2001,pp.152-157.
    [142]Kandhal,P.S.;Cooley,L.A.,et al.The Restricted Zone in the Superpave Aggregate Gradation Specification.NCHRP Report 464,Washington.D.C.2001.
    [143]Oliver,J.W..Development and Implementation of a New Australian Asphalt Mix Design Procedure.Journal of the Association of Asphalt Paving Technologists.AAPT,V69-00,2000,pp.867-882.
    [144]Corte,J.F.;Serfass,J.P..The French Approach to Asphalt Mixtures Design:A Performance Related System of Specifications.Journal of the Association of Asphalt Paving Technologists.AAPT,V69-00,2000,pp.794-834.
    [145]陈顺福,韩东萍,延西利.法国沥青混合料设计方法.中外公路,2000,20(6):49-52.
    [146]周卫峰.基于GTM的沥青混合料配合比设计方法研究.长安大学博士学位论文,2006.
    [147]William,R.V.;Willam,J.P.;et al.Bailey Method for Gradation Selection in HMA Mixture Design.Transportation Research Circular,Number E-C044,2002.
    [148]William,R.V.;Willam,J.P.;et al.Aggregate Blending for Asphalt Mix Design:Bailey Method.Transportation Research Record,2002,pp.146-153.
    [149]林绣贤.论Superpave组成配比的特色.华东公路,2002,(1):3-7.
    [150]林绣贤.沥青混凝土合理集料组成的计算公式.华东公路,2003,(1):82-84.
    [151]于新,吴建浩.贝雷法应用探讨.公路,2003,(8):83-87.
    [152]张肖宁,吴旷怀.沥青混合料组成设计的CAVF法.公路,2002,(1):17-21.
    [153]张肖宁.设计沥青混合料.哈尔滨建筑大学学报,2002,(1):108-112.
    [154]吴超凡,童光明.对马歇尔设计方法与设计标准的几点看法.湖南交通科技,2003,29(3):1-3,9.
    [155]朱洪洲,唐伯明,何兆益,黄晓明.基于综合性能的沥青混合料组成结构优化.公路交通科技,2007,24(10):1-5.
    [156]曹晓岩,王永光,于跃.寒区高速公路沥青上面层的空隙率.森林工程,2004.20(1):48-50.
    [157]Hardgan,E.T.;Leahy,R.B.;Youtcheff,J,S..Superpave Manual of Specifications,Test Methods and Practices(SHRP-A-379),Washington D C,USA:National Research Council,1994.
    [158]魏建民,朱大权.矿料间隙率在沥青混合料组成设计中的应用研究.重庆交通学院学报,1999,18(2):67-70.
    [159]蔡锁德,陈伟,商玉田.矿料间隙率在沥青混合料设计和生产中的应用.公路与汽运,2004,104(5):62-64.
    [160]钟素银.沥青混凝土混合料配合比设计应用技术.西部探矿工程,2003,80(1):142-143.
    [161]王瑞宜,张肖宁,王绍怀.级配对沥青混合料特性的影响.华南理工大学学报(自然科学版),2002,30(3):53-56.
    [162]朱光耀,高伟,等.高等级公路沥青混凝土面层合理级配室内试验分析.黑龙江交通科技,1994,58(2):12-16.
    [163]张登良,李俊.高等级道路沥青路面车辙研究.中国公路学报,1995,8(1):25-29.
    [164]郝培文,吴微,张登良.不同沥青用量与级配组成对沥青混合料抗车辙性能的影响.西安公路交通大学学报,1998,18(3B):199-202.
    [165]郝培文,张景涛,张登良.不同级配类型沥青混合料抗疲劳特性研究.石油沥青,1998,12(2):20-24.
    [166]申爱琴,蒋庆华.沥青混合料低温抗裂性能评价及影响因素.长安大学学报(自然科学版),2004,24(5):1-6.
    [167]刘红军,陈胜.寒冷地区改性沥青路面配合比设计.低温建筑技术,2004,101(5):61-63.
    [168]陈建,张秀华,许永明.多年冻土地区改性沥青混合料的研究.西安公路交通大学学报,1995,15(4):19-23.
    [169]张毅.多年冻土地区沥青混合料低温抗裂性能及配合比设计方法研究.长安大学硕士学位论文,2004.
    [170]章金钊,汪双杰,台电仓 多年冻土地区沥青混凝土路面的设计与施工公路,200,(2):124-127.
    [171]李志栋.多年冻土地区沥青混合料配合比设计及其性能评价.东南大学硕士学位论文,2005.
    [172]汪双杰,章金钊,黄晓明,台电仓.高原多年冻土地区SBR改性沥青路面应用研究.石油沥青,2004,(3):23-26.
    [173]章金钊,汪双杰,台电仓.多年冻土地区沥青混凝土路面的设计与施工.公路,2005,(2):124-127.
    [174]郝培文,张登良.沥青混合料低温抗裂性能评价指标的研究.公路,2000,(5):63-67.
    [175]许志鸿,陈兴伟,刘红,李淑明.Supeoave级配范围.交通运输工程学报,2003,3(3):1-6.
    [176]许志鸿,刘红,王宇辉,马卫民.禁区附近集料级配的试验研究.公路交通科技,2002,19(2):17-20.
    [177]彭波,田见效,陈忠达.Supeoave沥青混合料路用性能.长安大学学报(自然科学版),2003,23(5):21-23,93.
    [178]李文瑛,彭波,戴经梁.Supeoave沥青混合料路用性能的研究.东北公路,2003,26(2):34-36.
    [179]刘天贵,李宁,等.Superpave沥青混合料路用性能研究 武汉理工大学学报,2007,29(9):19-21,30.
    [180]孟祥荣,李磊.沥青混合料配合比设计优化探索.山东交通学院学报,2003,11(1):71-75.
    [181]王辉,张起森.沥青混合料目标配合比设计方法.长安大学学报(自然科学版),2004,24(6):25-28.
    [182]丛卓红.高性能沥青混合料设计方法研究.长安大学硕士学位论文,2004.
    [183]沈金安.沥青及沥青混合料路用性能.北京:人民交通出版社,2001.
    [184]窦明健,胡长顺,多吉罗布,何子文.青藏公路路面病害成因分析.冰川冻土,2003,(4):439-444.
    [185]张宏超,孙立军,黄进堂.沥青路面新泛油病害及其机理分析.公路交通科技,2002,(6):32-34.
    [186]俞祁浩,刘永智,童长江.青藏公路路基变形分析.冰川冻土,2002,(5):623-627.
    [187]余东坡,王鲁军.沥青路面低温开裂问题的探讨.公路交通技术,2004,(2):23-24,50.
    [188]邓学钧.路基路面工程(第二版).北京:人民交通出版社,2006.
    [189]张起森.道路工程有限元分析法.北京:人民交通出版社,1983.
    [190]丁皓江,何福保,谢贻权,徐兴编.弹性和塑性力学中的有限单元法(第2版).北京:机械工业出版社,1989.
    [191]郭乙木,等.线性与非线性有限元及其应用.北京:机械工业出版社,2003.
    [192]庄茁,张帆等.ABAQUS非线性有限元分析与实例.北京:科学出版社,2005
    [193]www.abaqus.com.cn.
    [194]封基良.新疆油田公路层间滑移分析.长安大学硕士学位论文,2000.
    [195]Dae-Wook Park;Emmanuel Fernando;Joe Leidy.Evaluation of Predicted Pavement Response Using Measured Tire Contact Stresses.In 84~(th)Annual Meeting(CD-ROM),TRB,National Research Council,Washington,D.C.,2005.
    [196]姚祖康.路面工程(第二版).北京:人民交通出版社,1999.
    [197]Monismith C L;Secor G A;Secor K E.Temperature-induced stresses and deformations in asphalt concrete.Proceeding of the Association of Asphalt Paving Technologists,1965,34,pp.248-285.
    [198]Deacon J A;Coplantz J S;Tayabali A A;Monismith C L.Temperature Considerations in Asphalt-Aggregate Mixture Analysis and Design.Transportation Research Record,1996,1454,pp.97-112.
    [199]Bouldin M G;Dongre R;Rowe G M;et al.Predicting thermal cracking of pavements from binder properties:Theoretical basis and field validation.Proceeding of the Association of Asphalt Paving Technologists,2000,69,pp.455-488.
    [200]Yungochien Lee.Application of Viscoelastic Theory and Finite Element Analysis to Determine Effective Temperature of Asphalt Concrete Layer in Flexible Pavement(CD-ROM),.TRB 2004 Annual Meeting,2004.
    [201]吴赣昌.沥青路面温度应力分析[J].中国公路学报,1993,6(4):1-9.
    [202]钱国平,郭忠印,郑健龙,等.环境条件下沥青路面热粘弹性温度应力计算.同济大学学报,2003,31(2):150-155.
    [203]王金昌,朱向荣.低温下沥青混凝土道路温度应力的新评价.公路,2004(2):60-63.
    [204]秦健,孙立军.沥青路面温度场的分布规律.公路交通科技,2006,23(8):18-21.
    [205]李春雷,李春香,陈光营,等.半刚性基层沥青路面温度应力断裂力学分析.公路交通科技,2006,23(10):33-36.
    [206]杨学良,刘伯莹.沥青路面温度场与结构耦合的有限元分析.公路交通科技,2006,23(11):1-4,9.
    [207]兰永贵,田书田,李士辉,李宏伟.级配碎石上基层对寒冷地区高等级公路沥青路面反射裂缝隔断作用的研究.黑龙江交通科技,2001,(5):1-3.
    [208]王端宜,张肖宁,田书田.林齐试验路不同基层类型使用情况10年跟踪调查.公路交通科技,2003,20(1):6-9.
    [209]梁鸿,王国忠,等.高等级沥青路面结构综述.内蒙古农业大学学报,2005,26(5):105-109.
    [210]郭玉民.新型路面结构和高性能路面材料应用探讨.交通科技,2006,(2):95-98.
    [211]郑琼水.新型路面结构在邵三高速公路的应用.公路交通技术,2007,(2):37-39,44.
    [212]舒富民,钱振东,唐健娟.新型长寿命沥青路面结构力学指标的正交分析.上海公路,2007,(3):19-22.
    [213]韦金城,马士杰,胡家波.新型沥青路面结构在山东省高速公路上的应用.山东交通科技,20007,(4):28-31.
    [214]王润富,陈国蓉.编著.温度场和温度应力.北京:科学出版社,2005.
    [215]ABAQUS,Inc.ABAQUS Theory Manual(Version 6.5-1).ABAQUS Inc.2004.
    [216]范天佑.断裂理论基础.北京:科学出版社,2003.
    [217]莫介臻,李峰.沥青混凝土路面结构组合力学响应.公路,2005,(8):234-238.
    [218]敖道朝.柔性基层路面结构在渝湛高速公路中的应用.公路,2006,(7): 308-311.
    [219]杨阳,高立波.山区沥青路面结构剪应力三维有限元分析.北方交通,2007,(3):3-6.
    [220]赵向敏.关于沥青路面面层剪应力的几点认识.山西交通科技,2007,(1):8-10,53.
    [221]谢水友,郑传超.水平荷载对沥青路面结构的影响.长安大学学报(自然科学版),2004,24(2):14-17.
    [222]Asphalt Pavement Alliance.Perpetual Pavements A Synthesis.Asphalt Pavement Alliance Order Number APA 101 1/02,2002.
    [223]M.M.J.Jacobs.Crack Growth in Asphaltic Mixes.Ph.D.Dissertation,Faculty of Civil Engineering,Delft University of Technology,Delft,1995.
    [224]尹泽明,丁春利,等.精通Matlab6.北京:清华大学出版社,2002.
    [225]四川省交通厅公路规划勘察设计研究院.国道213线郎木寺(川甘界)至川主寺公路改建工程(路面工程).2005.
    [226]侯曙光,黄晓明.击实温度对沥青混合料参数影响分析.公路,2006(11):153-156.
    [227]中华人民共和国交通部.公路沥青及沥青混合料试验规程(JTJ052-2000).北京:人民交通出版社,2000.
    [228]刘涛.石灰等添加剂改善沥青混合料的水稳定性.湖南大学硕士学位论文,2006.
    [229]王旭东,戴为民.水泥、消石灰在沥青混合料中的应用.公路交通科技,2001,18(4):20-24.
    [230]国道213线郎木寺至川主寺公路改建工程指挥部,西南交通大学,等.高原湿地郎川公路修筑及环境保护技术研究研究总报告,2007.
    [231]中华人民共和国行业标准.公路路面基层施工技术规范(JTJ 034-2000).北京:人民交通出版社,2000.
    [232]北京路科锐威科技有限公司.光纤光栅温度传感器简介.www.tricombi.com.
    [233]骆保国.高原多年冻土地区沥青及沥青混合料路用特性研究.西安公路交通大学硕士学位论文,1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700