黄土填方高边坡稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在对凤凰山倒班基地黄土填土高陡边坡稳定性进行定性分析评价的基础上,结合极限平衡法和数值模拟方法,对该边坡的稳定性状态进行了研究,根据稳定性的研究结果,提出了治理该高陡边坡的建议方案。
     首先,根据凤凰山倒班基地黄土填土高陡边坡的变形破坏特征,从定性的角度对其变形破坏机制进行了全面探讨和深入分析。研究发现,凤凰山倒班基地高陡填方边坡变形显著,上部平台及坡体上裂缝发育,局部并出现有错动现象,其最大错动高差达1m;其上部的裂缝距离变压器近,裂缝的发展已经造成了变压器围墙墙体和栏杆的拉裂。其变形破坏主要有以下几种形式:坡面冲刷;崩(滑)塌;泥流和蠕滑-拉裂式变形破坏;坡体湿陷变形。变形破坏的影响因素主要为填土的结构与性质、水、地形地貌及人工不合理堆载等,其中填土结构松散和水的软化作用在起主导作用。
     其次,利用圆弧法、裂隙法、及改进裂隙法对凤凰山倒班基地黄土填土高陡边坡进行了稳定性计算,对改进裂隙法最危险滑面搜索按复形调优法进行优化计算,使搜索机时大大缩小,很大程度上提高了计算速度。经过对计算结果的分析发现:凤凰山倒班基地高陡填方边坡在天然状态下整体稳定,坡顶至坡中间部分处于极限平衡状态;在饱水状态下,该边坡整体处于极限平衡状态,坡顶至坡中间部分破坏。
     再次,采用二维有限元和三维有限差分对凤凰山倒班基地黄土填土高陡边坡进行了数值模拟研究,结果表明:在天然状态下,凤凰山倒班基地高陡填方边坡中的应力场表现为总体上的自重应力场特征。坡体的水平应力都是以压应力为主,而剪应力集中范围在坡顶以下20~25m的范围,对于竖向应力,其大小及分布特征在开挖前后则没有明显变化,都是以压应力为主,并随着深度的加深而逐渐增大。向坡体后缘方向逐渐减小。竖向应变变化则具有明显的规律性,表现为在坡体中随着深度的加深,竖向应变量先增大,后减小,最后又逐渐增大的现象,分析表明主要是岩性的差异导致了坡体不同部位的不同变形特征,这些结果验证了极限平衡法的相关计算结果。
     最后,根据本文的定性分析,定量评价和数值模拟方法对该边坡的稳定性状态进行了研究的结果,就凤凰山倒班基地黄土填土高陡边坡防治措施提出了针对性建议,从而为该边坡今后的治理打下了可靠的理论基础。
The stability of stuffing loess high slope in Phoenix Mountain shift base was studied based on its qualitative analysis, on the limiting equilibrium method and on numerical simulation. According to the study result, the control measures for this slope were suggested.
     Firstly, the deformation and destruction mechanism of stuffing loess high slope in Phoenix Mountain shift base were analyzed completely and deeply in qualitative analysis based on its deformation and destruction feature. The result shows that the deformation in this slope is remarkable. The fissures in the upper slope terrace and slope mass are well-development, part of this slope can see faulted phenomenon, the maximum height difference of which over 1m; the upper fissures are near the voltage transformer, and the development of them have made the pull-apparition of voltage transformer and the handrail. The deformation forms of the slope are: slope wash, collapse (slumping), mudflow, creep slide- pull apparition and collapsibility, etc. the main influence factors of deformation are: the structures and properties of filling soil, water, topography and morphology and the people's unreasonable pole up, etc. the pill soil and the water soften among of which take the leading function.
     Then, the stability of stuffing loess high slope in Phoenix Mountain shift base was computed by circular arc method, crack method and improved crack method, the most dangerous face was searched for by improved crack method which was optimized by composite optimal method, so, the computed time was reduced greatly, and the computed speed was increased in a great condition. The computation results was showed that: on the natural condition , this high slope is steady in whole and is limited equilibrium in the part from slope top to the slope middle; on the saturation condition, this slope is limited equilibrium in whole and destruction in the part from slope top to the slope middle.
     Then, the stuffing loess high slope in Phoenix Mountain shift base was numerical simulated by two-dimension limited unit and three-dimension limited difference. The result indicates that the stress field shows the features of dead-weight in total. The horizontal stress of this slope mass is press stress mainly, the shear stress is concentrated in the place of the range of 20-25 meter under the top slope.
     Toward the vertical stress, there have not obvious change in size and distribution, and mainly is press stress, and the greater the deeper, the smaller the backer of the slope mass. The change of vertical strain has obvious regular patterns, it is see that with the deeper of the slope mass, the vertical strain reduce firstly, the increase. It is the difference of lithology that leads to the difference character in different part. These results prove the result of limited equilibrium.
     Lastly, the control measures was suggested base on the qualitative analysis, quantitative analysis and numerical simulation analysis, and the study base was established reliability and theoretically.
引文
[1]赵学勐,陈运理等.考虑垂直裂隙影响的均质黄土挖方边坡稳定性分析[J].岩土工程学报,1981,第3期;
    [2]周欣华等,黄土边坡及其稳定分析图简介[J],西北农业大学学报,第27卷,第二期,1999.4;
    [3]Terzaglai K.Mechanism of landslides[J].In S.Paige(ed) Application of Geology to Engineering Practice.Geologicaol Society of America,Berky,1950;
    [4]赵之胜等,铜黄公路黄土高边坡形状分析与治理对策研究,陕西省交通科技重点项目报告,陕西省高速公路建设集团公司,1989.12;
    [5]Ter-Sterpanian,G.Creep of a clay during shear and its rheological model[J].
    [6]赵宇.土体边坡稳定性力学分析和K值检算方法[J].东北公路,2000.4;
    [7]Skempton A.W.Residual Strength of clays in landslide,folded strata,and the laboratory[J].Geotechnique,London,1985.
    [8]赵学勐等.均质黄土挖方边坡稳定计算签表.土工结构物设计签表集(第一集)[M].陕西省交通科学研究所,1965.2;
    [9]张卓元,滑坡防治的现状与发展展望[J],地质灾害与环境保护,第11卷,第二期,2000.6;
    [10]俞剑勇、魏静,黑河工程引水洞进口段高边坡稳定性分析实例介绍[J],西北地质,2001:
    [11]Mogenstem N.R.The Influence of Groundwater on Stability.In Stability in Open Pit Ming(Brawner C.O.andMiligan V.eds),Society of Mining Engineers,American Institute of Mining,Metallurgical and Petroleum Engineers,Newyork,1971.
    [12]叶万军,折学森等.阶梯状黄土路堑高边坡稳定性分析方法[J],水文地质工程地质.32(206):75-78;
    [13]Alonso,E.E.,1976."Ridk analysis of slope and its application to slopes in Canadian sensitive clays."Geotechnique.Vol.26,No.3.453-472.
    [14]叶万军,折学森等.基于可靠度理论的黄土高边坡优化设计[J],地球科学与环境学报,2005;
    [15]王念秦,黄土滑坡发育规律及其防治措施研究[D],成都理工大学博士学位论文,2004;
    [16]王建锋,斜坡稳定:方法论[J],水文地质工程地质,第二期,1999;
    [17]王庚荪,边坡的渐进破坏及稳定性分析[J],岩土力学与工程学报,第19卷,第一期,2000.1;
    [18]万玉珍,林德明.重塑黄土的应力-应变关系[J].岩土工程学报,第18卷,第6期,1996.11;
    [19]任伟新,三门峡地区路堑黄土边坡稳定性研究[D],长安大学硕士论文,2003;
    [20]乔平定、李增钧,黄土地区工程地质[M],北京:水利水电出版社,1994;
    [21]倪万魁,黄土高边坡可靠性分析及优化设计[D],西安:西安工程学院博士学位论文,1999;
    [22]门玉明,土坡稳定的概率极限分析与抗滑桩地基承载能力的可靠性研究[D],西安:西安地质学院硕士学位论文,1993;
    [23]马良,陈麦侠,高等级公路植物防护篱的营造与管理[J],公路,1999。公路环境保护设计规范;
    [24]马洪文等,神经网络在边坡稳定性分析中的应用[J],中国地质灾害与防治学报,第10卷,第1期,2000.9;
    [25]刘祖典,黄土力学与工程[M],西安:陕西科学技术出版社,1997;
    [26]刘祖典,黄土高陡边坡的失稳机理和锚固措施[J],人民黄河,第四期,1994;
    [27]刘志斌,王志宏,圆弧滑坡最危险滑弧圆心位置的求解方法[J],煤炭学报 第22卷第六期1997.12:
    [28]Baecher,G.B.1983."Reliability analysis of offshore structures." Reliability Theory an Its Application on Structural and Soil Mechanise.Martincs,Nijhoff Publishers,The Netherlands.
    [29]刘毓权,黄土边坡稳定性分析初探[J],西北农业大学学报 第27卷,第二期,1999.4;
    [30]李靖,周欣华,党进谦.黄土边坡稳定性图解法[J],岩土工程学报,1998,20(4),40-43:
    [31]雷祥义.中国黄土的孔隙类型与湿陷性[J].中国科学,1987(12):1304- 1306;
    [32]黄润秋等,高边坡稳定性研究现状及发展展望[J],水文地质工程地质,第一期,1991;
    [33]洪毓康.土质学与土力学(第二版)[M].人民交通出版社,1995;
    [34]关文章,湿陷性黄土工程性能新篇[M],西安:西安交通大学出版社,1992;
    [35]高德彬等,边坡稳定性分析方法综述[A],地球探测科学与技术新进展[C],北京:中国科学技术出版社,2002.10;
    [36]丰定祥等.边坡稳定性分析中几个问题的探讨,岩土工程学报[J],第12卷,第3期,1990;
    [37]戴福初,陈守义,李焯芬.从土的应力应变特性探讨滑坡发生机理[J].岩土工程学报,第22卷,第1期,2000.1;
    [38]崔政权,系统工程工程地质与岩土工程实践[J],岩石力学与工程学报,第4卷,第二期,1995;
    [39]程良奎,杨志银,喷射混凝土与土钉墙[M],北京:中国建筑工业出版社,1998;
    [40]陈祖煜,边坡稳定分析的极限平衡法[M],北京:清华大学出版社,1991;
    [41]陈志新等,黄土高边坡层状结构与稳定性关系研究[J],工程地质学报,第10卷,2002;
    [42]陈志新等,铜黄公路黄土高边坡性状分析与治理对策研究[M],陕西省交通科技重点项目 2002.3;
    [43]长安大学等,黄土地区公路修筑技术与病害防治研究分题报告之一陕西省高等级公路黄土高边坡稳定性及其防治研究,2001;
    [44]Haefeli R.Creep and progressive failure in snow,soil,rock and ice.Proc.Sixth Intern.Conf.Soil Mech.Found.Eng,Montreal,1965(36).
    [45]Ang,A.H-S & Tang,W.H.1984."Probability concepts in engineering planning and design." Vol.2-Decision,risk,and reliability.John Wiley & Sons,New York.
    [46]《工程地质手册》编写委员会.工程地质手册(第三版)[M].中国建筑出版社.1990.11;
    夏元友等,基于人工神经网络的边坡稳定性工程地质评价方法[J],岩土力学,第17卷,第三期,1996.9;

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700