亚波长槽缝结构中超强透射机理及在光纤通信中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自在亚波长金属小孔阵列中发现超强透射现象以来,人们对于这一现象的物理机制进行了广泛的研究并利用这一现象来设计光学器件。研究表明表面等离子体在超强透射现象中起到了至关重要的作用。
     本文基于以上的研究背景,从麦克斯韦方程出发,利用严格耦合波理论,分析了超强透射的物理机理,研究了槽缝结构,并设计出一种亚波长金属结构,此结构在常用的光纤通讯窗口(1550nm)处实现了光放大和光隔离的结合。本文的研究内容分为以下三个部分:
     1.由于目前超强透射现象的物理机制还不是很明确,目前国际上有三种公认程度较高的模型,分别是表面等离子体激元(SPP),复合衍射衰逝波(CDEW)和谐振腔(CM)模型。本文把亚波长金属结构简化为一个三层薄膜透射情况,利用导纳矩阵推导出近似情况下的透射率计算方式。利用严格耦合波理论分析了单层薄膜单狭缝结构中结构参数对透射率的影响,并把分析结果和推出的解析解进行比较,验证了近似情况下解析解的正确性,并利用提出的模型解释了结构参数对透射率的影响,为理解超强透射现象的物理机制提供了参考。
     2.超强透射现象正被不断地应用于光学集成器件的设计中,但目前实验和数值模拟研究较多的波段是为380nm-800nm,而目前在应用前景较广的光纤通信窗口研究较少。本文利用严格耦合波理论(RCWA),研究了单缝-凹槽结构参数对超强透射现象的影响,发现了两个现象:(1)透射率会随凹槽与狭缝的距离变化发生周期性变化,另外透射场振幅会随着凹槽与狭缝的距离变大而呈现下降趋势;(2)随凹槽数量不断增大,透射增强和削弱程度不断加大,当凹槽数量达到一定程度时(本文结构中凹槽数量n=4时)透射增强和削弱的程度会趋于稳定。
     3.通过研究单狭缝中结构参数对超强透射的影响,根据单狭缝结构中透射增强峰和削弱峰的位置,设计凹槽的位置,在1550nm处实现了在同一槽缝结构中光的放大和隔离两个功能。为了更好的实现光的放大和隔离效果,本文设计了周期性双缝结构,通过合理的参数选取,在1550nm处取得了更好的光放大和隔离的效果,由于1550nm这个通信窗口的特殊性,使得本文的设计结果对超强透射现象在光通信领域的应用有一定的参考意义。
There has been wide range of research in the physical origin of Extraodinary Optical Transmission(EOT) and using it to design optical devices since EOT was reported when light wave goes through arrays of sub-wavelength apertures on a piece of metallic film. The study shows that the surface plasmons played a crucial role in the phenomenon of EOT.
     Based on the above research background, starting from Maxwell's equations, the rigorous coupled-wave theory is adopted to analysis the physical origin of EOT.Through investigating the structure of groove-slit, design a subwavelength metal structure,when the light of 1550nm wavelength goes through the structure, the structure can achieve optical amplification in one direction, while the strucre can achieve optical isolation in another direction.The details are as follows:
     1. Currently the physical origin of EOT is not very clear, the current internationally accepted models of EOT are SPP, CDEW and CM models. By simplifying the structure of the metal film, the transfer matrix is used to calculate the transmission rate. We study the effects of structural parameters on the transmission rat by rigorous coupled-wave, and compare the simulation results with the analytical solutions, at the same time explain the simulation results using analytical solutions, the above research provides a reference for understanding the physical origin of EOT.
     2. The EOT has been widely used in the design of optics,but now most people focused on the wavelength between 380nm to 800nm,presently there is little research on optical fiber communication windows. We studied the effects of groove-slit's structural parameters on the transmission rat by rigorous coupled-wave. (1) we find that transmission rate periodically varies with the distance between groove and slit,the amplitude will reduce as the the distance between groove and slit increases. (2) we also find that with the growing number of grooves, strengthening and weakening degree of transmission increase,but when the number reaches a certain amount (the number of grooves n = 4) the degree will stabilize.
     3. According to the research of the enhanced position and weakened position,we design the location of grooves and realize the amplification and isolation of light in 1550nm wavelength.In order to achieve better effect,we design a cyclical double-slit structure.As the communication window of 1550nm is unique, the design provides a reference for the application of EOT in the optical communication.
引文
[1]Ebbesen T W,etal. Extraordinary optical transmission through sub-wavelength hole arrays[J]. Nature,1998,391:667~669.
    [2]Lezec H J,Degiron A,etal. Beaming light from a subwalength aperture[J]. Science,2002,297:820~822.
    [3]Porto J A,Garcia-Vidal,etal. Transmission resonances on metallic gratings with very narrow slit[J]. Phys. Rev. Lett.,1999,83:2845~2848.
    [4]Thio T,Pellerin K M. Enhanced light transmission through a single subwavelength aperture[J]. Opt. Lett.,2001,26:1972~1974.
    [5]Treacy J M M. Dynamical diffraction explanation of the anomalous transmission of light through metallic grationgs[J]. Phys. Rev. B,2002,66:195105.
    [6]Lee K G,Park Q H. Coupling of surface slasmon polaritons and light in metallic nanoslits[J]. Phys. Rev. Lett.,2005,95:103902.
    [7]Barnes W L,Dereux A. Surface plasmon subwavelength optics [J]. Nature,2003, 424:824~830.
    [8]Martin-Moreno L,etal. Theory of extraordinary optical transmission through subwavelength hole arrays[J]. Phys. Rev. Lett.,2001,86:1114~1118.
    [9]Taco D.Visser. Surface plasmon at work[J]. Natrue,2006,2:509~510.
    [10]Ghaehi H F,etal. Surface plasmons enhance optical transmission through subwave length holes[J]. Phys. Rev. B.,1998,83:6779~6782.
    [11]Cao Q,Lalanne P. Negative role of surface plasmons in the transmission of metallic grating with very narrow slits[J]. Phys. Rev. Lett.,2002,88:057403.
    [12]Lalanne P,Hugonin J P. Theory of surface plasmon generation at nanoslit aperture s[J]. Phys, Rev, B,2005,95:263902.
    [13]Haitao Liu,Lalanne P. Microscopic theory of the extraordinary optical transmis sion[J]. Nature,2008,452:728~731.
    [14]Bliokh K Y,etal. Colloquium:Unusual resonators:Plasmonics metamaterials,and random media[J]. Rev. Mod. Phys.,2008,80:1201~1211.
    [15]Liu Juan,etal. Contribution of surface plasmon polaritons to extraordinary optical transmission through metallic nanoslit[J]. Chin J. Opt. Appl. Opt.,2010,3:33~37.
    [16]周仁龙,陈效双等.金属光子晶体平板的超强透射及其表面等离子体共振[J].物理学报,2008,57(7):3506~3514.
    [17]Yang T. Simulation and analysis of phase-sensitive surface plasmon resonance sensor based on enhanced optical transmission through arrays of nanoholes in silver films[J]. Chin J. Opt. Appl. Opt.,2010,3:57~64.
    [18]Valdivia-Valero F J,Nieto-Vesperinas M. Resonance excitation and light concentr ation in sets of dielectric nanocylinders in front of a subwavelength aperture effects on extraordinary transmission[J]. Opt. Express,2010,18(7):6740~6754.
    [19]Poujet Y,Salvi J,etal.90% Extraordinary optical transmission in the visible range through annular aperture metallic arrays[J]. Opt.Lett.,2007,20:2942-2944.
    [20]Medina F,Ruiz-Cruz J A. Experimental verification of extraordinary transmission without surface plasmons[J]. Appl.Phys.Lett.,2009,95:071102.
    [21]Moreno E,Martin-Moreno L. Etraordinary optical transmission without plasmon s:the s-polarization case[J]. J.Opt.A:Pure Appl.Opt,2006,8:S94-S98.
    [22]Belotelov V I,Bykov D A,etal. Extraordinary transmission and giant magneto-optical transverse Kerr effect in plasmonic nanostructured films[J]. J. Opt. Soc. Am. B,2009,26(8):1594~1598.
    [23]Vengurlekar. Extraordinary optical transmission through metal films with subway velength holes and slits[J]. Current Sci.,2010,98(8):1021~1033.
    [24]Ohstu M,Kobayashi K. Nanophtonics:design,fabrication and operation of nanom etric[J]. IEEE J. Sel.,2002,8:839~862.
    [25]Zhaoning Yu,Paru Deshpande,etal. Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithogra phhy[J]. Appl. Phys. Lett.,2002,77:927~929.
    [26]Hooper I R,Sambles J R. Broadband polarization-converting mirror for the visib le region of the spectrum[J]. Opt. Lett.,2002,27:2152~2154.
    [27]Lin Cai,Guangyuan Li. Interference and horizontal Fabry-Perot resonance on extraordinary transmission through a metallic nanoslit surrounded by grooves[J]. Opt. Lett.,2010,35(2):127~130.
    [28]Yanxia Cui,Jun Hu,and Sailing He. Nanocavity antenna array for enhancing extraordinary optical transmission of light through a metallic nanoslit[J]. J. Opt. Soc. Am. B,2009,26(11):2131~2126.
    [29]Takakura Y. Optical Resonance in a Narrow Slit in a Thick Metallic Screen [J]. Phys. Rev. Lett.,2001,86(24):5601~5603.
    [30]Partovi A,etal. High-power laser light source for near-field optics and its application to high-density optical data storage[J]. Appl. Phys. Lett.,1999,75:1515~1517.
    [31]M.玻恩,E.沃耳夫.光学原理[M].北京,科学出版社,1978:489~494.
    [32]Moharam M G. Rigorous coupled-wave analysis of metallic surface-relief grating s[J]. J. Opt. Soc. Am. A,1986,3(11):1780~1788.
    [33]Wood R W. On a remarkable case of uneven distribution of light in a diffraction grating spectrum[J]. Philosophical Magazine Series,1902,6,4(21).
    [34]Falco F. Grating diffraction and Wood's anomalies at two-dimensionally periodic impedance surfaces[J]. J. Opt. Soc. Am. A,2004,9(21):1621~1635.
    [35]Raether H. Surface plasmons on smooth and rough surface[M]. Springer-Verl ag,1988,4-8.
    [36]Sarid D. Long-range surface-plasma waves on very thin metal film[J]. Phys. Rev. Lett.,1981,47:1927~1930.
    [37]Barnes W L. Surface plasmon-polariton length scales:a route to sub-wavelength optics[J]. J. Opt. A:Pure Appl. Opt.,2006,8:S87-S93.
    [38]Drude P. The theory of optics[J]. Ann. Phys.,1901,1:566.
    [39]Davies A J.The finite element method[M]. Oxford:Clarendon Press,1980.
    [40]Nagayoshi Motita,etal. Integral equation methods for electromagnetic[M]. Boston London, Artech House 1991.
    [41]Yee K S. Numerical solution of initial boundary value problems in isotropic [J]. IEEE Trans.Antennas Propag.,1966,14:302~307.
    [42]葛德彪,闫玉波.电磁波时域有限差分方法[M].西安电子科技大学出版社,2002.
    [43]Moharam M G,Gaylord T K. Three-dimensional vector coupled-wave analysis of planar-grating[J]. J. Opt. Soc. Am.,1983,73:1105~1112.
    [44]Crouse D,Keshavareddy P. Role of optical and surface Plasmon modes in enh anced transmission and applications [J]. Opt. Lett.,2005,20(13):7760~7772.
    [45]Genet C,Ebssen T W. Light in the holes[J]. Natrue,2007,445:39~48.
    [46]Chen Cheng,etal. Physical mechanism of extraordinary electromagnetic transmissi on in dual-metallic grating structures [J]. Phys. Rev. B,2008,78:075406.
    [47]Darmanyan S A,etal. Light tunneling via resonant surface plasmon polariton states and the enhanced transmission of periodically nanostructured metal films:An analytical study[J]. Phys. Rev. B,2003,67:035424.
    [48]Lezec H J,Thio T. Diffracted evanescent wave modle for enhanced and suppressed optical transmission through subwavelength hole arrays[J]. Opt. Lett.,2004,12:3629-3651.
    [49]Gay G,Qetal. The optical sesponse of nanostructured surfaces experimental investig ation of the composite diffracted evanescent wave model [J].Nature physics, 2006,2:262~267.
    [50]Sun Z J,Kim H. Role of surface plasmons in the optical interaction in metallic gratings with narrow slits[J]. Appl. Phys. Lett,2003,83:3021~3023.
    [51]Collin S, Pardo F,etal. Horizontal and vertical surface resonances in transmission metallic gratings[J]. J. Opt. A:Pure Appl. Opt.,2002,4:S154-S160.
    [52]Bethune D S. Optical harmonic generation and mixing multilayer media:analysis using optical transfer matrix techniques [J]. J. Opt. Soc. Am. B,1989,6(5):910-917.
    [53]Kukhlevsky S V,etal. Ehanced transmission versus location of a light pulse by a subwavelength metal slit[J]. Phys. Rev. B,2004,70:195428.
    [54]Dionne J A,etal. Planar metal Plasmon waveguides:frequency-dependent disperisi on,propagation,localization,and loss beyongd the free electron model [J]. Phys. Rev. B.,2005,72:075405.
    [55]Garcia-Vidal F J,Martin-Moreno L. Transmission and focusing of light in one-dim ensional periodically nanostructure metals[J]. Phys. Rev. B.,2002,66:155412.
    [56]Salomon L, Grillot F,etal. Near-field distrbution of optical transmission of periodic subwavelength holes in a metal film[J]. Phys. Rev. Lett.,2001,86(6):1110~1113.
    [57]Lopez-Tejeira F,etal. Effcient unidirectional nanoslit couplers for surface Plasmon s[J]. Natrue Physics,2007,3:324~328.
    [58]Lalanne P,Hugonin J P. Interaction between optical nano-objects at metallo-diele ctric interfaces[J]. Nature Physics,2006,2:551~556.
    [59]Schouten H F,Kuzmin N. Plasmon-Assisted Two-Slit Transmission:Young's Experiment Revisited[J]. Phys. Rev. Lett.,2005,94:053901.
    [60]Lindberg J,Lindfors K,etal. Spectral analysis of resonant transmission of light through a single sub-wavelength slit[J]. Opt. Express,2004,12(4):623~632.
    [61]Lopez-Tejeira. Scattering of surface plasmons by one-dimensional periodic nanoindented surfaces[J]. Phys. Rev. Lett.,2005,72:161405.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700