球型组合片悬浮填料的制备及其在污水处理中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
悬浮填料生物膜工艺是近十多年来迅速发展起来的技术之一,已有大量的研究表明该工艺兼具生物膜法和活性污泥法优点,尤其适合于在不用增大池容的情况下改造和提升采用常规活性法污水处理厂的处理能力。但是,作为其核心技术的悬浮填料存在价格高、挂膜难等问题,限制了悬浮填料在污水处理中的广泛应用。本课题研究旨在开发了一种用边角料加工的廉价的组合型悬浮填料,通过对其进行挂膜试验,并与另一种相对较成熟的聚丙烯材质的悬浮填料进行对污染物去除效果的对比试验,研究该填料挂膜特性和对各种污染物的处理效果,以探讨其工程应用的前景。
     研究设计的球型组合片悬浮填料的直径为100mm、比表面积为104 m~2/m~3。通过3个月的运行表明该悬浮填料结构设计合理,穿孔圆形层片和侧翼片交错组合的内部结构,使得填料结构稳定耐用而且内部空间分配均匀,具有良好的通水、透气性能,有利于生物膜充分利用内部空间生长,并且不会造成堵塞问题。挂膜后该填料在水中的平均密度为1.013 g╱cm~3,其密度接近于水,因而流化效果好。
     对该填料挂膜状况的研究表明其挂膜速度快,挂膜量高。组合片材料表面多孔粗糙的特性,使得该填料挂膜速度很快。初期粗糙多孔表面对活性污泥絮体具有很大的截留作用,使得在反应器启动三天后的填料挂膜量就达到1.2g╱个填料;在反应器启动的第13天填料完成挂膜,并在此后不同负荷下均保持了较高的挂膜量,其值为3—3.9g╱个填料,挂膜成熟后的平均挂膜量为3.4 g/个填料。
     试验中观察到填料上附着的生物膜呈絮状立体结构,可在水中随水流飘荡,填料内部的空间利用率高。对这种絮状立体结构的生物膜镜检观察到生物膜中生物相丰富,以丝状菌、菌胶团和钟虫交织构成该絮体生物膜的基本结构,具有高效的降解有机污染物的性能。在不同的负荷下均观察到很多的原生动物和较多的后生动物,表明生物膜生态结构稳定而成熟,生物膜活性高,适应负荷能力强。
     自行设计的球型组合片悬浮填料(A填料)和应用较成熟的直径同样为100mm的聚丙烯球型片状的悬浮填料(B填料)进行的去除污染物的对比试验表明A填料挂膜量更高、更稳定。挂膜成熟后A填料平均挂膜量为3.4g/个填料,B填料的平均挂膜量为2.1g/个填料,两者相差1.3g/个填料。表明A填料结构和粗糙材料的特征有利于微生物附着生长。
     对比试验还发现两种填料均表现出对有机污染物高效的处理能力,对有机负荷处理能力高达60g COD/(m~2填料表面积·d)。尤其是A填料生物膜反应器能达到更低的出水COD值,其出水COD平均值为23.4 mg/l,COD去除率平均值为91%。A填料上絮状立体结构的生物膜有利于进一步降低出水COD值。
     对氨氮处理效果的试验研究表明A、B填料生物膜反应器在较低的氨氮负荷下,均表现出较高的氨氮去除率,随着氨氮负荷和有机负荷的升高,氨氮去除率均有较大的下降。在进水氨氮负荷为1—1.5g N/(m~2填料·d)时,具有较高的硝化效率,去除率分别为62%和73%;随着进水氨氮负荷的升高,A、B反应器对氨氮的去除率几乎呈线性下降,在进水负荷为2.0—5.5g N/(m~2填料·d)时,去除率分别下降为31%和33%。对两反应器硝化效率不高的原因分析为试验期间的氨氮负荷和有机负荷均较高,异养菌竞争O2和生长空间时均处于优势,抑制了硝化菌的生长。
     对TN的处理效果的研究表明A、B填料生物膜反应器均表现出一定的同时硝化和反硝化能力。扣除了出水中脱落生物膜对氮的去除量后,A、B反应器TN去除量平均值分别为0.57g N/(m~2填料·d)和0.38 g N/(m~2填料·d)。填料内部由于生物膜的增长,可以产生反硝化所需的缺氧条件。
     对TP处理效果的研究表明A、B填料生物膜反应器对TP均有较高的去除率。试验期间系统保持了稳定的除磷效果,A、B反应器出水磷平均值分别为0.72 mg/l和0.70 mg/l,去除率平均值分别为75%和78%。
     综上所述,研究设计的以粗糙多孔材料制作的球型组合悬浮填料,具有结构合理,挂膜速度快,挂膜量高的优点,尤其适用于污水中有机污染物的处理,并可用于去除水中N、P营养物。通过对机械加工程序和耐用性等方面的进一步研究,该填料由于材料成本低的优势将具有广阔的市场应用前景。
Suspended Carrier Biofilm Process (SCBP) is one of the wastewater treatment technologies which has rapidly developped since 1990. Many academic researches showed that the SCBP has the advantages both of attached biofilm process and of activated sludge process. It can be used in existing wastewater treatment plants to improve the treatment efficiencies without enlargement of tankage. However, the suspended carrier is too expensive to be used in many wastewater treatment plants in developing countries. This study aimed at devoloping a new kind of much cheaper suspended carrier which is made of a kind of leftover materals. The studies on biofilm features of the new suspended carrier were conducted. The removal of pollutants from wastewater was also examined through a series of parallel tests to compare this new suspended carrier with another suspended carrier which has been proved to be effective.
     The new suspended carrier was designed as a sphere with a diameter of 100 mm. Its specific surface area is 104 m~2/m~3. After 3-month running tests, it could be concluded that the design is suitable for the growth of biofilm inside the suspended carrier because of its structure. The average density of the suspended carrier with mature biofilm is 1.013 g/cm~3, close to the density of water, so that the suspended carrier can be easily fluidized in bioreactor.
     The studies on biofilm features show that the growth of biofilm was rapid and the biomass was considerable high because of the rough and porous surface. In initial phase, with the effect of the capture of the activated sludge by rough and porous surface of the suspended carrier, the biomass achieved 1.2 g per suspended carrier after 3-day operation of bioreactor. After 12-day operation, the biomass became stable and the average biomass is 3.4 g per suspended carrier.
     A three-dimensional structure biofilm fluttered in water was observed inside the suspended carrier. Under the microscope, many zoogleas, protozoons and metazoans were found. The basic structure of the biofilm consisted of hyphomycetes, vorticellas and zoogleas. This special biofilm structure proved to be very effective for the removal of pollutants and able to handle the large variations in influent flow and concentrations.
     In comparison with another type of suspended carrier made of polypropylene with the same diameter and the almost same specific surface area, the new suspended carrier could increase the biomass from 2.1 g per suspended carrier to 3.4 g per suspended carrier. Thus, the new suspended carrier was more effective for the removal of organic pollutants. The average concentration of COD of the effluent was 23.4 mg/l with a removal rate of 91%.
     The studies on removal of ammonia nitrogen showed that both of the two suspended carriers in parallel tests were effective for the treatment of ammonia nitrogen with the ammonia nitrogen load of 1-1.5 g N/(m~2·d). The efficiency of treatment decrease quickly with the increasing ammonia nitrogen load. Under the ammonia nitrogen load of 2-5.5 g N/(m~2·d), the removal rate declined to 31-33% from the initial removal rate of 62-67%. The decline of removal rate was due to the high ammonia nitrogen load and the high organic load during the tests. The heterotrophic microorganism have the competitive advantages for O_2 and for growth space because of its much higher growth rate, so that the growth of nitrifying bacteria is stagnant due to competitive inhibition under high organic load.
     The phenomenons of simultaneous nitrification and denitrification were founded with the SCBP. Without including the removal of nitrogen by the sludge in effluent, the net removal of TN was 0.57 g N/(m~2·d) with the new suspended carrier and 0.38 g N/(m~2·d) with the polypropylene suspended carrier. The anoxic area could be produced inside the suspended carrier with the growth of thick biofilm.
     The studies on removal of total phosphor showed that high removal rate of phosphor could be achieved with the SCBP. The average concentration of TP in effluent was 0.7 mg/l with the corresponding removal rate of 75-78%.
     It is concluded that the new suspended carrier is suitable for the growth of biofilm due to its special structure and its rough porous surface, and that it could be effective for removal of pollutants, especially for the removal of organic matter. With the improvement of manufacturing process and the durability, it would have a high potential market because of its lower price.
引文
[1] 姜德义,任海霞.引入循环经济理念,改善城市污水处理现状[J].化工装备技术,26(6):64-65.
    [2] 牛晗.城市水资源合理化开发利用[J].工程勘察,2005,4:23-27.
    [3] 2005年中国环境状况公报[R].国家环境保护局,2006-6-2
    [4] 刘文,王刚等.城市污水的资源化利用[J].吉林建筑工程学院学报,2005,22(3):51-55
    [5] 建设部关于全国城市污水处理情况的通报[R].数据中国,2005,38:27
    [6] 彭胜华.我国城市污水集中处理的主要问题及对策[J].水利发展研究,2005,10:33-34
    [7] 李挚萍.政府对污水处理厂的环境管制新探[J].2005,南方经济,2005,12:24-26
    [8] 陈洪斌,屈计宁等.悬浮填料生物膜工艺的研究进展[J].应用与环境生物学报,2005,11(4):514-520
    [9] 季民,董广瑞等.移动床生物膜反应器水力特性的数字化模拟[J].中国给水排水.2002,18(5):14-17
    [10] 孙华,张菊萍等.投加悬浮填料改善活性污泥法处理性能的试验研究[J].重庆环境科学.2001,23(6):37-40
    [11] 张菊萍,孙华等.一种新型悬浮填料的性能试验研究[J].安全与环境学报.2002,2(5):42-44
    [12] 周建平,郑国兴.悬浮填料在微污染原水生物预处理中的应用[J].净水技术.2005,24(5):45-48
    [13] 徐斌,夏四清等.应用悬浮填料预处理微污染原水的影响因素探讨[J].上海环境科学.2002,21(12):738-741
    [14] 徐斌,夏四清等.微污染原水生物预处理中的硝化动力学[J].中国给水排水.2003,19(4):15-18
    [15] 夏四清,徐斌等.悬浮填料床生物预处理黄浦江原水中试研究[J].同济大学学报.2003,31(8):977-981
    [16] B. Rusten, Odd Kolkinn et al. Moving bed biofilm reactors and chemical precipitation for high efficiency treatment from small communities[J]. Wat. Sci. 1997, Tech. 35(6): 71-79
    [17] Morper M R. Upgrading of activated sludge system for nitrogen removal by application of the LINPOR-CN process[J]. Wat.Sci.Technol., 1994, 29(12):167-176.
    [18] Morper M R. Improvement of existing wastewater treatment plants efficiencies without enlargement of tankage by application of LINPOR process-case studies[J]. Wat.Sci.Technol., 1990, 22(7):207-215.
    [19] Golla P S. Three years of full-scale CAPTOR process operation at Moundsnille WWSP[J]. Wat. Sci.Tech. 1994, 29(10): 175-182.
    [20] Reddy M P. Estimation of biomass concentration and population dynamics in a CAPTOR activated sludge process[J]. Wat.Sci.Tech. 1994, 29(7): 149-152.
    [21] 赵庆良.新型复合式生物反应器处理污水[M].哈尔滨建筑大学博士后研究报告,1997.
    [22] Fahid K. J. Rabah, Mohamed F. Dahab. Nitrate removal characteristics of high performance fluidized-bed biofilm reactors[J]. Wat. Res., 2004, 38:3719-3728.
    [23] Lars J H. Nitrification of municipal wastewater in moving-bed biofilm reactors[J]. Wat. Env. Res., 1995, 67(1):75-86.
    [24] B. Rusten. Small wastewater treatment plants based on moving bed biofilm reactors[J]. Wat.Sci.Technol., 1993, 28(10):351-359.
    [25] 夏四清,高廷耀等.多级悬浮填料生物反应器处理石化废水[J].中国给水排水,2002,18(1):9-12.
    [26] 张志斌,夏四清等.化学生物絮凝/悬浮床处理低浓污水[J].中国给水排水,2005,21(2):44-46.
    [27] 杨虹,李道裳等.全程白养脱氨氮悬浮填料床反应器性能的研究[J].上海环境科学.2001,20(8):369-371
    [28] 汪晓军.活性污泥法污水处理应用亲水性填料实验研究[J].工业水处理,2004,24(6):32-35
    [29] 吴根,宋存义等.悬浮填料生物膜床反应器处理高校生活污水[J].环境污染治理技术与设备.2005,6(1):87-89
    [30] 吕迎.生活污水膜处理技术试验研究[J].河南科学.2004,22(6):876-878
    [31] 杨殿海,吴军等.城市污水化学生物强化一级处理及后续脱氮中试研究[J].四川环境.2003,22(4):26-28
    [32] 夏四清,王学江等.悬浮填料浮动床石化废水处理初步研究[J].环境科学.2000,21(2):91-93
    [33] 夏四清.悬浮填料生物反应器废水处理工艺研究[M].同济大学工学博士学位论文.2000
    [34] 夏四清,高廷耀等.悬浮填料生物反应器石化废水生物硝化研究[J].同济大学学报.2001,29(4):448-452
    [35] 夏四清,高廷耀等.多级悬浮填料生物反应器处理石化废水[J].中国给水排水.2002,18(1):9-12
    [36] 王学江,夏四消等.悬浮填料生物膜A/O法处理石化废水试验研究[J].工业水处理.2001,21(6):26-31
    [37] 陈洪斌,庞小东等.晷浮填料生物接触氧化法处理炼油废水[J].中国给水排水.2002,18(9):42-44
    [38] 何成达,叶亚玲等.短HRT下厌氧降流式悬浮填料床预处理生活污水的研究[J].中国沼气.2004,24(3):11-14
    [39] 何成达,季俊杰等.厌氧悬浮床/潜流湿地处理生活污水[J].中国给水排水.2004,20(7):11-15
    [40] U. Welander, B. Mattiasson. Denitrification at low temperatures using a suspended carrier biofilm process[J]. Water Research. 2003, 37:2394-2398
    [41] 郭静,邱波等.厌氧浮动生物膜反应器处理高浓度有机废水[J].中国给水排水.1999,15(10):53-55
    [42] 时彦芳,胡翔.移动床生物膜反应器处理废水的特性研究[J].环境科学研究.2005,18(5):49-55
    [43] 孙博,韩洪军等.新型悬浮填料处理低温生活废水的试验研究[J].哈尔滨商业大学学报(自然科学版).2005,21(1):35-38
    [44] 赵庆良,黄汝常.复合式生物膜反应器中生物膜的特点[J].环境污染于防治.2000,22(1):4-7
    [45] 董斌,周增炎等.较高负荷条件下活性污泥—生物膜联合系统对氮磷的去除[J].环境工程.2005.23(5):18-20
    [46] 董斌,周增炎等.投料A2/O工艺的硝化特性[J].给水排水.2004.30(9):50-52
    [47] 殷渝强.一种悬浮填料在处理PTA废水中的应用[J].石油化工环境保护.2003,26(2):19-23
    [48] Eva Dalentoft, Peter Thulin. The use of the Kaldnes suspended carrier process in treatment of wastewaters from the forest industry[J]. Wat. Sci. Tech. 1997, 35(2-3): 123-130
    [49] 魏瑞霞,孙剑辉等.悬浮填料—SBR工艺处理难降解青霉素制药废水的研究[J].环境污染治理技术和设备.2003,4(4):46-49
    [50] 刘剑,马鲁铭等.催化铁内电解/生物膜法处理化工废水[J].中国给水排水.2004,20(11):55-57
    [51] 黄理辉,马鲁铭等.催化铁内电解法对胞外聚合物形成的影响[J].中国环境科学.2005,25(6):660-663
    [52] 傅钢,董斌等.新型悬浮填料滤池取代二沉池研究[J].中国给水排水.2005,21(8):14-18
    [53] 郭静等.生物滤池与固定—悬浮填料复合式生物膜反应器脱臭[J].中国环境科学.1999,19(1):59-62
    [54] 中华人民共和国环境保护行业标准:HJ/T246-2006(环境保护产品技术要求—悬浮填料).国家环保总局2006年4月13日发布,2006年6月1日实施
    [55] 熊建英,雷震栅等.化学强化+悬浮填料活性污泥工艺设计[J].中国给水排水.2005,21(1):67-69
    [56] 许建华,万英等.微污染原水的生物接触氧化预处理技术研究[J].同济大学学报(自然科学版).1995,23(4):376-381
    [57] 张东,许建华等.用生物接触氧化预处理与常规工艺净化受污染原水[J].给水排水.2000,26(10):25-27
    [58] 樊芸,杨凤林等.摇动床生物膜反应器处理生活污水[J].环境污染与防治.2005,27(9):683-685
    [59] Rittmann B. E., McCarty P. L. Environmental biotechnology: principles and applications[M], 2004
    [60] Burdick C.R., Refling D.R. Advanced biological treatment to achieve nutrient removal[J], Water Pollution Control Federation. 1982, 54:1078-1086

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700