基于高性能材料的千米级跨径混凝土斜拉桥力学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于RPC和CFRP材料的优越性能,依托国家自然科学基金资助项目“基于高性能材料的特大跨径混凝土斜拉桥的结构性能”,提出千米级CFRP索RPC梁混凝土斜拉桥方案,并从静力特性、动力特性、稳定性能、抗风以及抗震性能等方面探讨CFRP拉索超高性能混凝土特大跨径斜拉桥结构应用的可行性。主要的研究工作如下:
     (1)以1090m主跨的钢索钢主梁普通混凝土索塔斜拉桥设计方案为例,拟定了一座同跨度的CFRP索RPC梁混凝土斜拉桥体系新方案。其中拉索采用等强度原则将原桥的钢索替换成CFRP索,主梁考虑截面刚度、抗剪、抗冲切、局部稳定和局部抗弯等要求将原桥的钢主梁替换成RPC主梁,主塔考虑强度和稳定需要将原桥的普通混凝土主塔替换成RPC主塔。
     (2)采用有限元法分别对原方案和新方案在恒载、活载、温度荷载和静风荷载及各种荷载组合下的主梁挠度、索塔偏位、结构内力及应力等各项静力性能进行了对比分析,结果表明本文所提新方案具有良好的结构静力特性。相对于原方案,新方案在RPC主梁替换钢主梁后应力明显减少,且分布更均匀;在CFRP索替换钢索后,由于线膨胀系数不及钢材的1/10,在结构中所引起的温度变形很小,约为钢拉索的1/25。
     (3)考虑几何非线性和材料非线性的双重影响,应用大型有限元通用程序ANSYS对两种方案结构的静力稳定和静风稳定性能进行分析。静力稳定分析结果表明两种方案各工况下弹性稳定安全系数和非线性稳定安全系数均满足规范要求,且新方案静力稳定安全系数较原方案有所增大。相对于原方案,新方案CFRP索由于较高的比刚度和比强度,分析时可不计入其几何非线性的影响;而RPC主塔替换后纵向刚度的改善,在一定程度上延缓了新方案结构失稳破坏。静风稳定分析结果表明,在0°风攻角下,原方案静风失稳临界风速为179m/s,新方案静风失稳临界风速为165m/s,失稳形态均为弯扭耦合屈曲失稳;相对于原方案,新方案主梁在替换后竖向刚度下降了38%、扭转刚度下降了57%,但CFRP索较高的比刚度和比强度对结构竖向刚度和扭转刚度的改善以及主梁自重的增加,使新方案失稳临界风速仅下降了8%左右。
     (4)应用大型有限元程序MIDAS对两种方案进行了动力特性分析。结果表明,虽然新方案主梁替换后竖向刚度下降了38%,但CFRP索较高的比刚度和比强度改善了结构的竖向刚度,使新方案竖弯振型对应的频率下降不足20%;在RPC主塔替换普通混凝土主塔后,由于纵向刚度和横向刚度的改善,提高了新方案的基频,并延缓了主塔侧弯振型的出现。
     (5)分别采用反应谱法和时程分析法对原方案和新方案进行了弹性地震响应分析,并对所提体系进行了抗震性能评价。结果表明新方案具有与原方案相近的抗震性能,且在恒载与地震力组合下新方案各部分的应力和位移均能满足正常使用要求。相对于原方案,新方案在主塔采用RPC材料后纵向刚度和横向刚度的提高,减少了地震荷载作用下主塔塔顶位移,增大了塔底弯矩,有效的发挥了RPC材料的高强性能;在拉索采用CFRP材料后比刚度和比强度的提高,改善了结构的竖向刚度,并在一定程度上弥补了RPC主梁替换钢主梁后竖向刚度下降的不足,使两种方案在地震荷载作用下主梁竖向位移基本一致,新方案略大于原方案。
     (6)提出了RPC桥墩恢复力模型。以RPC箱型桥墩为研究对象,首先基于OPENSEES计算平台,选取Concrete02本构关系和Steel02本构关系,结合非线性梁柱单元,建立了RPC桥墩抗震分析模型,并通过3个常轴力RPC桥墩水平反复加载试验结果对数值分析模型进行了验证,在此基础上运用OPENSEES对RPC桥墩延性抗震性能进行了参数分析。然后基于数值分析结果和3个常轴力RPC箱型桥墩拟静力试验结果,考虑水平荷载作用方向对RPC箱型墩抗震性能的影响,建立了计入双轴水平力耦合效应的RPC箱型桥墩恢复力模型,并通过编制的双轴压弯构件非线性分析程序对恢复力模型进行了验证。
     (7)基于编制的双轴压弯构件非线性分析程序对RPC桥墩塑性铰长度进行了探讨并提出了相应的塑性铰长度回归公式。结果表明,桥墩塑性铰长度随墩柱高度和截面短边尺寸的增加单调递增,随轴压比的增加单调递减,随水平加载角度和纵筋直径的增加呈先增大后减少的趋势;其中强轴塑性铰长度小于弱轴,斜向60°左右加载时塑性铰长度最大,而在高轴压比时塑性铰长度接近零。提出的塑性铰长度回归公式计算结果与数值结果对比表明,回归公式计算值能较好的吻合数值结果并限制过大的塑性铰长度。
     (8)基于提出的RPC桥墩恢复力模型和塑性较长度回归公式,运用大型有限元程序Midas建立了新方案弹塑性地震响应分析模型并对其进行了延性分析。结果表明,通过修正Midas中已有的Takeda四直线恢复力模型能较好的拟合RPC桥墩恢复力模型;在E2地震作用下,主塔塔底虽已进入塑性阶段,但其塑性变形并未充分发挥,抗震设计时可适当减少其截面尺寸。最后为提高所提体系的抗震能力,基于建立的分析模型对粘滞阻尼器进行了阻尼系数和速度指数优化。结果表明,就本文所提体系而言,阻尼系数C取2000且速度指数α为0.4时,阻尼器减震效果最优,相应的塔顶纵向位移和塔底纵向弯矩最大值分别减少了35%和31%。
Based on the superior performances of RPC and CFRP materials, it is putforward for the scheme of super-long span concrete cable-stayed bridge with CFRPcables and RPC girder under the financial support of Program “Structural behaviors ofsuper-long span cable-stayed based on high performance materials”. The feasibilityof the new structure was discussed based on the results from static performances,dynamic performances, stability, wind resistance behavior and seismic resistancebehavior. This dissertation involves the following work:
     (1) Taking a main span of1090m cable-stayed bridge with steel girder and steelcables as an example, a new cable-stayed bridge in the same span with RPC girder andCFRP cables was designed, in which the cable’s cross section was determined by theprinciple of equivalent cable capacity, the girder’s cross section was determined invirtual of its stiffness, shear capacity, punching capacity, local stability and localbending capacity, and the tower’s cross section was determined in virtual of itsstability and intensity.
     (2) Based on the methods of finite element analysis, the comparative analysis ofthese two cable-stayed bridge schemes about static performances such as thedeflection of main girder, deviation of tower, force, and stress, etc. were carried outunder different load including dead load, vehicle load, temperature load and aerostaticload. The results show that the proposed scheme has good static performance.Compared with steel girder, The stress of RPC girder is reduced significantly, and thestress distribution is more uniform, because of the low linear expansion coefficient ofRPC which is just1/10of the steel material, the deformation of the new schemecaused by temperature effect is about1/25of the old scheme.
     (3) Considering the influence of geometric nonlinearity and material nonlinearity,the static stability and the aerostatic stability of the two cable-stayed bridge schemeswere analyzed using large finite element program ANSYS. The results of staticstability analysis show that the elastic stability safety coefficient and nonlinearstability safety coefficient of these two schemes can meet the specificationrequirements, and the static stability safety coefficient of the new scheme is greaterthan that of the old scheme. Because of the higher specific stiffness and specificstrength of CFRP cables, the corresponding geometric nonlinearity could be ignored, and the buckling failure of the new scheme would be delayed with the longitudinalstiffness improvement of RPC tower. The results of aerostatic stability analysis showthat the critical wind speed of the old scheme and new scheme are179m/s and169m/sat the0degree wind attack angle, respectively, and the instability pattern of twocable-stayed bridge schemes are all bending-torsional coupling instability. Comparedwith steel girder, the vertical stiffness and the torsion stiffness of RPC girder arereduced by38%and57%, respectively, but the higher specific stiffness and specificstrength of CFRP cables and the increased dead weight of the girder would improvethe stiffness of the structure, so the critical wind speed of the new scheme is onlyreduced by about8%.
     (4) The dynamic characteristics of the two cable-stayed bridge schemes wereanalyzed using large finite element program MIDAS. The results show that, althoughthe vertical stiffness of the girder are reduced by38%after RPC girder replace steelgirder, the higher specific stiffness and specific strength of CFRP cables wouldimprove the stiffness of the structure, so the frequency of vertical bending vibrationmode for the new scheme is reduced by less20%. While the longitudinal stiffness andtransverse stiffness improvement of the main tower after RPC tower replace RC towerincrease the fundamental frequency of the new scheme, and delay the occurrence ofmain tower lateral bending vibration mode.
     (5) The elastic earthquake responses of these two schemes were analyzed basedon response spectrum method and time history analysis method, respectively, andseismic performance of proposed scheme was evaluated. The results show seismicperformance of the new scheme is almost same with the old scheme, and the stressand displacement of the new scheme can be satisfied with the requirement ofserviceability under the combination of dead load and earthquake force. Comparedwith the old scheme, the improvements of the longitudinal stiffness and the transversestiffness decrease the displacement of the tower top, increase the moment of the towerbottom, and give full play the high performance of RPC material. Althouth thevertical stiffness of RPC girder is less than that of steel girder, the higher specificstiffness and specific strength of CFRP cables improve the vertical stiffness of thestructure, so the vertical displacements of steel gieder and RPC girder are almost thesame under the earthquake, and that of steel girder is a little less than RPC girder.
     (6) Restoring force model of Reactive Power Concrete piers was put forward.Taking Reactive Power Concrete box piers as research object, the seismic analysismodels were built by choosing the material constitutive relation including Concrete02 and Steel02and element types including Beam-with-Hinges-Element in OPENSEES,and the comparison between the experimental results of three Reactive PowerConcrete piers samples under the invariable axial force and reversed horizontal loadand the computed results proved the accuracy of the model. At the same time, thefactors affecting the seismic behavior of RPC piers were analyzed on this basis of theseismic model. Then, basing on the results of numerical analysis and cyclic loadingtests of three Reactive Power Concrete box piers samples under the invariable axialforce and reversed horizontal load, those factors affecting the restoring force modelsof the samples were considered in order to establish restoring force model of ReactivePower Concrete box piers under biaxial horizontal load. In addition, the numericalsimulation analysis was performed with the program taking into account thesecond-order effects of the axial force and biaxial laods, and the results are in goodagreement with the experimental results.
     (7) Based on the biaxial bending component nonlinear analysis program,parameters which effect RPC pier plastic hinge length were analyzed, and theregression formula of RPC pier plastic hinge length was put forward. The results showthat, the plastic hinge length monotonically increases with the increase of pier heightand section size of the short side, decreases with the increase axial compression ratio,and increases at first and then decreases with the increase of horizontal loading angleand longitudinal reinforcement diameter. The strong axis plastic hinge length is lessthan the weak axis, the maximum plastic hinge length can be obtained when the loaddirection inclined about60degrees, and the plastic hinge length almost closes to zeroat high axial compression ratio. Compared the numerical results with the calculationresults of RPC pier plastic hinge length regression formula, the calculation results ofthe corresponding regression formula are in good agreement with the numericalresults and limit too much plastic hinge length.
     (8) Based on the proposed RPC restoring force model and RPC pier plastic hingelength regression formula, elastic-plastic seismic response analysis model of the newscheme was built by the finite element program Midas, and the ductility seismicresponse was analyzed. The results show that the restoring force model of RPC can bewell simulated by revising Takeda restoring force model in Midas. Although thebottom of the main tower has been in the plastic stage under the E2earthquake, theplastic deformation of the plastic hinge isn’t used adequately, so the section size ofRPC tower can be reduced appropriately from the point of seismic design. Finally, toimprove the seismic resistance of the proposed system, based on the elastic-plastic seismic response analysis model, the damping coefficient and the speed index of theviscous damper was optimized. The results show that, in terms of system is proposed,the damping coefficient C of2000and the velocity index α of0.4can help the damperachieving the best damping effect, meanwhile the maximal longitudinal displacementof the tower top and bending moment of the tower bottom are reduced by35%and40%, respectively.
引文
[1] Richard P, Cheytezy M. Reactive Powder Concrete with High Ductility and200MPa–800MPa Compressive Strength. ACI,1997,144(6):507-518.
    [2] KONNO S, NORO T, YAMAZAKI S, et al. Material properties of carbon fibercables for cable supported bridges. Bridge and Foundation Engineering,1999,99(9):29-32.
    [3]梅葵花,吕志涛. CFRP斜拉索的静力特性分析.中国公路学报,2004,17(4):43-45.
    [4]谢旭,高金盛,苟昌焕,黄剑源.应用碳纤维索的大跨度斜拉桥结构振动特性.浙江大学学报,2005.39(5):728-733.
    [5]谢旭,朱越峰. CFRP拉索设计对大跨度斜拉桥力学特性的影响.工程力学,2007,24(11):113-120.
    [6]李晓莉. CFRP材料在超大跨度斜拉桥拉索中的应用研究.武汉理工大学学报,2006,28(2):30-33.
    [7]张新军,应磊东.超大跨度CFRP索斜拉桥的力学性能分析.公路交通科技,2008,25(10):74-78.
    [8] Cbeyrezy M, Maret V, Frouin L. Microstructural Analysis of RPC. Cement andConcrete Research,1995,25(7):1491-1500.
    [9] Cwirzen A, Penttala V. Vornanen C. RPC Mix Optimization by Determination ofthe Minimum Water Requirement of Binary and Polydisperse Mixtures.Innovation&Sustainability of Structures,2005,52(3):2191-2201.
    [10] Matte V, Richet C, Moranville M. Characterization of Reactive Powder Concreteas a Candidate for the Storage of Nuclear Wastes. In: Symposium on High-Performance and Reactive Powder Concrete, Sherbrooke,1998,75-88.
    [11]何峰,黄政宇.养护制度对活性粉末混凝土(RPC)强度的影响研究.混凝土,2000,(5):31-34.
    [12]何峰,黄政宇.200MPa-300MPa活性粉末混凝土(RPC)的研制技术研究.混凝土与水泥制品,2000,(4):12-14.
    [13]闫光杰,阎贵平,安明喆.200MPa级活性粉末混凝土试验研究.铁道学报,2004,26(2):116-119.
    [14]吴炎海,何雁斌.活性粉末混凝土(RPC200)的配置试验研究.中国公路学报,2003,16(4):44-49.
    [15] Dallaire E. Mechanical Behavior of Confined Reactive Powder Concretes.Proceedings of the Materials Engineering Conference, Materials for the NewMillennium,1996,(1):555-563.
    [16] Karihaloo B, Vriese k. Short-Fiber reinforced Reactive Powder Concrete.RILEM Proc.6,1999:53-63.
    [17] Ple O, Vega E, Bernier G, et al. Biaxial tensile Behavior of the reactive PowderConcrete. AMER CONC209,2002:369-387.
    [18] Bayard O, Ple O. Fracture Mechanics of Reactive Powder Concrete: materialModeling and Experimental Investigations. Engineering Fracture Mechanics,2003,97(80):839-851.
    [19] Acker P, and Behloul M. Ductal technology: A Large Spectrum of Properties, AWide Range of Application. Proceedings of the International Symposium onUltra High Performance Concrete. Kassel, Germany,2004:11-23.
    [20] Lee MG, Chiu C, Wang YC. The Study of Bond Strength and Bond Durability ofReactive Powder Concrete. Journal of ASTM International,2005,2(7):104-136.
    [21] Graybeal A.B. Characterization of the Behavior of ultra-high Performanceconcrete [dissertation]. Doctoral thesis of University of Maryland,2005,1-25.
    [22] Kuznetsov, Valerian A. Strength and Toughness of Steel Reinforced PowderConcrete under Blast Loading. Transactions of Tianjin University,2006,12(5):70-74.
    [23] Fujikake, Kazunori. Effects of Strain Rate on Tensile Behavior of ReinforcedPowder Concrete. Journal of Advanced Concrete Technology,2006,4(1):79-84.
    [24]单波.活性粉末混凝土基本力学性能的试验研究:[湖南大学硕士论文],长沙:湖南大学土木工程学院,2002:4-6.
    [25]黄政宇,王艳,肖岩等.应用SHPB试验对活性粉末混凝土动力性能的研究.湘潭大学自然科学学报,2006,28(2):113-117.
    [26]姚志雄,周瑞忠,石成恩.活性粉末混凝土断裂力学性能.福州大学学报,2005,33(2):196-200.
    [27]石成恩,周瑞忠,姚志雄.活性粉末混凝土弯曲疲劳寿命研究.福州大学学报,2005,33(4):504-508.
    [28]龙广成,谢友均,王培铭等.活性粉末混凝土的性能与微细观结构.硅酸盐报,2005,33(4):456-461.
    [29]余自若,阎贵平.活性粉末混凝土(RPC)的断裂力学性能.中国安全科学学报,2005,15(8):101-104.
    [30]余自若,安明喆,郑帅泉.活性粉末混凝土疲劳后剩余抗压强度试验研究.建筑结构学报,2011,32(1):82-87.
    [31]赖建中,孙伟,詹炳根.生态型RPC材料的断裂力学行为研究.东南大学学报(自然科学版),2004,34(1):92-95.
    [32]刘数华,阎培渝,冯建文.超高强混凝土RPC强度的尺寸效应.公路,2010,52(3):123-127.
    [33] Brian F. FHWA Gives Superior Marks to Concrete Bridge Girder. CivilEngineering Magazine,2001,71(10):12-13.
    [34] Vool JYL, Foster SJ, Gilbert RI. Shear Strength of Fibre Reinforced ReactivePowder Concrete Girders without Stirrups. Australia: The Univ. of New SouthWales,2003,22-31.
    [35] Sameer S. Behavioral Study of Ultra High Performance Concrete Girders:
    [dissertation]. University of Maryland,2004,2-30.
    [36] Graybeal A.B. Characterization of the Behavior of ultra-high Performanceconcrete:[dissertation]. Doctoral thesis of University of Maryland,2005,1-25.
    [37] Fujikake Kazunori, Senga Takanori, Nobuhito Ueda. Study on impact responseof reactive powder concrete beam and its analytical model. Journal of AdvancedConcrete Technology,2006.4(1):99-108.
    [38] Adnan R Malik, Stephen J. Foster. Behaviour of Reactive Powder ConcreteColumns without Steel Ties. Journal of Advanced Concrete Technology,2008.6(2):377-386.
    [39] Adnan R Malik, Stephen J. Foster. Carbon fiber-reinforced polymer confinedreactive powder concrete columns-experimental investigation. ACI StructuralJournal,2010,107(3):263-271.
    [40]闫光杰,阎贵平,方有亮. RPC200人行道板抗弯承载力试验研究.中国安全科学学报,2004,14(2):87-90.
    [41]闫志刚,季文玉,安明喆.活性粉末混凝土T形梁承载力试验与全过程分析.北京交通大学学报,2009,33(01):86-90.
    [42]张明波,阎贵平,闰光杰等.20OMPa级活性粉末混凝土抗弯性能试验研究.北京交通大学学报,2007,31(l):81-84.
    [43] Gao Ri, Liu Zhi-Min, Zhang Li-Qian, Stroeven P. Static properties of plainreactive powder concrete beams. Key Engineering Materials.2006,302(6):521-527.
    [44]张彦玲,王元清,季文玉.钢-活性粉末混凝土简支组合梁正截面破坏模式.铁道科学与工程学报,2009,6(01):10-15.
    [45]张彦玲,阎贵平,安明喆,钟铁毅.钢-活性粉末混凝土组合梁的极限承载力.北京交通大学学报,2009,33(01):81-85.
    [46]余自若,阎贵平,唐国栋.活性粉末混凝土(RPC)箱梁剪力滞效应有限元分析.中国安全科学学报,2004,14(9):16-19.
    [47]黄栋. RPC预制拼装桥墩受力性能研究:[北京交通大学硕士论文].北京:北京交通大学,2005,30-41.
    [48]赵冠远,阎贵平,活性粉末混凝土柱的抗震性能试验研究.中国安全科学学报,2004,14(07):94-97.
    [49]周轶峰,阎贵平,活性粉末混凝土预制桥墩的设计研究.铁道建筑,2006,12(01):6-9.
    [50]许丽娜.活性粉末混凝土桥墩的地震响应分析:[北京交通大学硕士论文].北京:北京交通大学,2006:23-35.
    [51]郝文秀,钟铁毅.活性粉末混凝土桥墩延性试验研究与数值分析.土木工程学报,2010,43(06):82-86.
    [52]方志,杨剑.预应力CFRP筋混凝土T梁受力性能试验研究.建筑结构学报,2005,26(5):66-73.
    [53]陈彬.预应力RPC梁抗剪性能研究:[湖南大学硕士学位论文].长沙:湖南大学,2007:41-48.
    [54]王飞,方志.大跨活性粉末混凝土连续刚构桥的性能研究,湖南大学学报(自然科学版),2009,36(4):6-12.
    [55]杨吴生.钢管活性粉末混凝土力学性能及其极限承载力研究:[湖南大学硕士学位论文].长沙:湖南大学,2004:13-25.
    [56]吴炎海,林震宇.钢管活性粉末混凝土轴压短柱受力性能试验研究.中国公路学报,2005,18(1):57-62.
    [57]马远荣,胡钧策.活性粉末混凝土预应力叠合梁抗剪强度.公路交通科技,2007,24(12):85-88.
    [58]郑文忠,李莉,卢珊珊.钢筋活性粉末混凝土简支梁正截面受力性能分析.建筑结构学报,2011,32(6):125-134.
    [59]郑文忠,卢珊珊,李莉.GFRP筋活性粉末混凝土梁受力性能试验研究.建筑结构学报,2011,32(6):115-124.
    [60]邵旭东,曹君辉,易笃韬等.正交异性钢板-薄层RPC组合桥面基本性能研究.中国公路学报,2012,25(2):40-45.
    [61] Pierre Y B. Marco Couture. Precast, Prestressed Pedestrian Bridge-World’s FirstReactive Powder Concrete Structure. PCI Journal,1999,40(5):60-71.
    [62] Behloul B, Lee KC. Ductal Seonyu footbridge. Structure Concrete,2003,4(4):195-201.
    [63] Brian C, Gordan C. The Worlds First Ductal Road Bridge Shepherds Gully CreekBridge. In: CIA21st Biennial Conference, Brisbane,2003,1-11.
    [64] Bierwagen, D. and Hawash, A.A. Ultra High Performance Concrete HighwayBridge. Proceeding of the2005Mid-Continebt Transportation Symposium, Iowa,2005:1-14.
    [65]曹万会,高淑平. RPC混凝土在铁路预应力T形梁中的应用试验.铁道建筑技术,2009,(7):105-108.
    [66]李真.预应力活性粉末混凝土槽型梁的设计、试验及承载力的研究.[北京交通大学硕士论文].北京:北京交通大学,2004:41-52.
    [67] American Concrete Institute440. State-of-the-Art Report on Fiber ReinforcedPlastic (FRP) Reinforcement for Concrete Structures Structures (ACI440R-96).Michigan: Farmingtons Hills,1996,1-25.
    [68] American Concrete Institute440. Guide for the Design and Construction ofconcrete Reinforced with FRP Bars (ACI440.1R-01). Michigan: FarmingtonsHills,2001,1-78.
    [69] Faza S, GangaRao H. Bending Response of Beams Reinforced with FRP RebarsforVarying Concrete Strengths. In: Advanced Composite Materials in CivilEnginering Structure, ASCE, New York,1991,262-27.
    [70] Japan Society of Civil Engineers. Recommendation for Design and Constructionof Concrete Structures Using Continuous Fiber Reinforcing Materials, ResearchCommittee on Continuous Fiber Reinforcing Materials. JSCE,1997,1-325.
    [71] ACI Committee440. Guide for Test Methods for Fiber Reinforced Polymers(FRP) for Reinforcing and Strengthening Concrete Structures,(ACI440.3R-04).Michigan: Farmingtons Hills,2004,1-86.
    [72]薛伟辰.新型FRP筋预应力混凝土梁试验研究与有限元分析.铁道学报,2003,25(5):103-108.
    [73]高丹盈,赵军.玻璃纤维增强聚合物筋混凝土梁裂缝和挠度的特点及计算方法.水利学报,2006,33(6):23-29.
    [74]中国工程建设标准化协会.《碳纤维片材加固混凝土结构技术规程》(CECS146:2003).北京:中国计划出版社,2003.
    [75]中国人民共和国建设部.《混凝土结构加固设计规范》(GB50367-2006).北京:中国建筑工业出版社,2006.
    [76] Kato T, Hayashida N. Flexoral characteristics of prestressed concrete beamswith CFRP tendons. American Concrete Institute,1993,138(8):419-440
    [77] Tjandra R A, Tan K H. Strengthening of RC continuous beams with externalCFRP tendons. In: Fifth International Conference on Fiber ReinforcedP1asticsfor Reinforced concrete. Cambridge (England), Advanced Materials&Composites, Nes,2001,66l-669.
    [78] Ezzeldin Y, Sayed A, Nigel G S. A new steel anchorage system for posttensioning applications using carbon fibre reinforced plastic tendons. Can J civilEngineering,1998,25(1):113-127.
    [79] Grace. N. F, Tsuyoshi Enomoto, Saju Sachidanandan, etal. Use of CFRP/CFCCReinforcement in Prestressed Concrete Box Beam Bridges. ACI StructuralJournal,2006,103(1):123-132.
    [80] Matta, F, Nanni, A, Abdelrazaq, A, Gremel, D, and Koch, R. Externallypost-tensioned carbon FRP bar system for deflection control. Construction andBuilding Materials,2009,23(4),1628–1639.
    [81] Colin MacDougall, Mark Green, and Lucio Amato. CFRP Tendons for theRepair of Posttensioned Unbonded Concrete Buildings. Journal of Performanceof Constructed Facilities,2011,25(3),149–157.
    [82] Wang Xin, Wu Zhishen. Integrated high-performance thousand-metre scalecable-stayed bridge with hybrid FRP cables. Composites Part B: Engineering,2010,42(2):166-175.
    [83] Ozlem Cavdar, Alemdar Bayraktar, Suleyman Adanur, etal. Stochastic finiteelement analysis of long-span bridges with CFRP cables under earthquakeground motion. Sadhana-Academy Proceedings in Engineering Sciences,2010,35(3):341-354.
    [84] W.T.JUNG, J. S.PARK. An Experimental Study on Tensile Characteristic forCFRP Cable without Surface Treatments. The Twelfth East Asia-PacificConference on Structural Engineering and Construction. Hongkong,2011,1518-1523.
    [85] Sayed Ahmad Firas, Foret Gilles, Le Roy Robert. Bond between carbonfibre-reinforced polymer (CFRP) bars and ultra high performance fibrereinforced concrete (UHPFRC): Experimental study. Construction and BuildingMaterials,2011,25(4),479–485.
    [86]方志,郭棋武,刘光栋.碳纤维复合材料(CFRP)斜拉索的应用.见:中国公路学会桥梁与结构工程学会2001年桥梁学术讨论会论文集.北京:人民交通出版社,2001,411-416.
    [87]方志,梁栋,蒋田勇.不同粘结介质中CFRP筋锚固性能的试验研究.土木工程学报,2006,39(6):47-51.
    [88]方志,李红芳,彭波.体外CFRP预应力筋混凝土梁的受力性能分析.中国公路学报,2008,21(3):40-47.
    [89]陈国平,方志等.基于高性能材料大型岩锚体系应用研究.中外公路,2011,31(6):16-19.
    [90]薛伟辰.新型FRP筋预应力混凝土梁试验研究与有限元分析.铁道学报,2003,25(5):103-108.
    [91]梅葵花,吕志涛等.CFRP拉索的非线性参数振动特性.中国公路学报,2007,20(1):52-57.
    [92]谢旭,张鹤,申永刚.钢和CFRP拉索的振型阻尼特性研究.工程力学,2008,25(3):151-157.
    [93]谢旭,中村一史等. CFRP拉索阻尼特性实验研究和理论分析.工程力学,2010,27(3):205-211.
    [94]吕志涛,梅葵花.国内首座CFRP索斜拉桥的研究.土木工程学报,2007,40(1):54-59.
    [95]刘荣桂,许飞,蔡东升等. CFRP拉索斜拉桥静载试验分析.中国公路学报,2009,22(02):48-52.
    [96]刘荣桂,邓程远等.非线性粘滞阻尼器对大跨CFRP索斜拉桥抗震性能影响研究.桥梁建设,2011,(2):18-22.
    [97]刘荣桂,李明君,蔡东升,刘德鑫. CFRP筋锚固体系研究与应用现状.建筑科学与工程学报,2012,29(2):14-20.
    [98]周士金,刘荣桂,蔡东升等. CFRP索和钢索斜拉桥地震响应分析与抗震验算.建筑科学与工程学报,2009,26(3):76-81.
    [99]周士金,刘荣桂,蔡东升等. CFRP索大跨斜拉桥的非线性地震响应控制分析.中国公路学报,2011,24(3):64-71.
    [100]张建东,方志.碳纤维复合材料拉索的非线性力学性能.计算力学学报2009,26(5):751-756.
    [101]熊文,肖汝诚. CFRP与钢组合斜拉索设计方案及理论研究.同济大学学报(自然科学版),2010,38(1):12-17.
    [102]熊文,肖汝诚等.基于刚度及经济的CFRP与钢组合拉索设计理论.同济大学学报(自然科学版),2011,39(2):172-178.
    [103]侯苏伟,强士中等. CFRP主缆与索夹间摩擦学性能试验研究.深圳大学学报理工版,2012,29(3):201-206.
    [104]侯苏伟,叶华文,强士中等. CFRP主缆在鞍座及索夹处的抗弯折性能研究.工程力学,2012,29(5):128-133.
    [105]李扬.大跨度CFRP缆索悬索桥的静力性能.重庆大学学报,2012,35(8):26-33.
    [106]李扬,肖汝诚.大跨度CFRP缆索悬索桥的抗风稳定性能.同济大学学报(自然科学版),2012,40(4):499-507.
    [107]冯鹏,叶列平. FRP结构和FRP组合结构在结构工程中的应用与发展,建筑科学与工程学报,2008,25(2):24-35.
    [108]蔡国宏.国外桥梁建设与发展的新动态.国外公路,1998,18(4):9-15
    [109] Rohleder Jr., W. Jay, Tang, Benjamin, Doe, Thomas A., Grace, Nabil F,Burgess, Christopher J. Carbon fiber-reinforced polymer strand application oncable-stayed bridge penobscot narrows. Transportation Research Record2050,2008,169-176.
    [110]张喜刚.苏通大桥总体设计.公路,2004,(7):1-11.
    [111]张明波.基于承载力控制的预应力RPC梁设计理论研究:[北京交通大学博士论文].北京:北京交通大学,2009:21-46.
    [112]中华人民共和国交通部发布标准.公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004).北京:人民交通出版社,2004.
    [113]卢永成,曾源,张元凯.上海长江大桥斜拉桥分离式钢箱梁设计研究.城市道桥与防洪.2010.(6):33-37.
    [114]马胤超. RPC双向带肋板的性能研究:[湖南大学硕士学位论文].长沙:湖南大学,2009:12-26.
    [115]张元伟.钢筋混凝土板抗冲切试验研究:[湖南大学硕士学位论文].长沙:湖南大学,2009:33-47.
    [116]中华人民共和国住房和城乡建设部发布标准.混凝土结构设计规范(GB50010-2010).北京:中国建筑工业出版社,2010.
    [117]李国豪.桥梁结构稳定与振动.北京:中国铁道出版社,2001.
    [118]雷薇.超大跨径UHPC连续箱梁桥抗剪性能研究:[湖南大学硕士学位论文].长沙:湖南大学,2013:15-26.
    [119]郑海霞. RPC胶接拼装箱梁正常使用极限状态性能研究:[北京交通大学硕士论文].北京:北京交通大学,2005:11-22.
    [120]中华人民共和国交通部发布标准.公路桥涵设计通用规范(JTG D60-2004).北京:人民交通出版社,2004.
    [121]中华人民共和国交通部发布标准.公路斜拉桥设计规范细则(JTG/T D65-01-2007).北京:人民交通出版社,2007.
    [122]陈艾荣等.苏通长江公路大桥结构抗风性能分析与试验研究(之三)主桥阶段模型风洞试验研究.上海,同济大学土木工程防灾国家重点实验室,2003.1
    [123]中华人民共和国交通部发布标准.公路桥梁抗风设计规范(JTG/T D60-01-2004).北京:人民交通出版社,2004.
    [124]中华人民共和国交通部发布标准.公路桥梁抗震设计细则(JTG/T B02-02-2008).北京:人民交通出版社,2008.
    [125]谢旭.桥梁结构地震响应分析与抗震设计.人民交通出版社,2006年.
    [126]中华人民共和国交通部发布标准.公路桥涵地基与基础设计规范(JTGD63-2007).北京:人民交通出版社,2007.
    [127]卢柯,杨建龙,丁望星.荆岳长江公路大桥主桥主梁计算研究.交通科技,2009,236(5):7-9.
    [128] PRIESTLEY M J N, PARK R. Strength and ductility of concrete bridgecolumns under seismic loading. ACI Structural Journal. l987,84(1):6l-76.
    [129] PAULAY T, PRIESTLEY M J N. Seismic design of reinforeed concrete andmasonry buildings. Construction and Building Materials,1992,23(2):12-22.
    [130] ITELEMACHOS B P. MICHAEL N F. Deformations of Reinforced ConcreteMembers at Yielding and Ultimate. ACI Structural Journal,2001,98(2):135-148.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700