大跨度斜拉桥复杂条件下地震反应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文围绕大跨度斜拉桥结构的地震动输入方式、土-结相互作用以及桥梁动水作用问题展开了如下研究:
     1.刚性地基地震动输入方式下,采用引入一个‘时差’的方式考虑了行波效应对一座七跨全漂浮结构体系斜拉桥结构的影响,比较了地震行波激励与一致激励作用下桥梁结构关键部位动力响应,分析了两种激励方式下桥梁结构关键部位动力响应的差异,阐明了行波激励作用对桥梁结构动力响应的影响规律,给出了相应抗震措施的建议和方法。
     2.针对多跨径大跨度斜拉桥等多波源问题,分别基于刘晶波考虑柱面衰减波和杜修力考虑平面波与远场散射波叠加的单点源粘弹性人工边界,利用波场叠加原理推导出一种多源加权集中粘弹性人工边界条件,给出了其弹簧系数、阻尼系数的计算公式,并通过二维偏心单点源、偏心多点源以及多散射源算例讨论了本文多源加权集中粘弹性人工边界的计算精度和稳定性。
     3.采用直接法建立了结构-地基整体分析模型,利用本文多源加权集中粘弹性人工边界,实现了基于粘弹性人工边界的地震动输入,分析了地基-结构动力相互作用全漂浮结构体系斜拉桥结构动力响应的影响。通过比较基于粘弹性人工边界的地震动输入方式下与采取引入一个‘时差’的基于刚性地基地震动输入方式下桥梁结构各关键部位动力响应的差异,提出了行波激励采取引入一个‘时差’的方式在实现大跨结构桥梁各支撑点地面运动模拟的局限性,论证了本文基于多源加权集中粘弹性人工边界地震动输入方式和建议分析模型对于建造条件复杂超大跨桥梁的地震动力响应分析的合理性。
     4.采用附加质量法,分别基于刚性地基地震动输入和粘弹性人工边界地震动输入两种地震动输入方式,分析了桥墩动水作用对全漂浮结构体系斜拉桥结构动力响应的影响。比较了两种地震动输入方式下,全漂浮结构体系斜拉桥结构关键部位动力响应的异同点,论证了考虑SSI+动水耦合作用对结构地震反应分析和抗震设计的必要性。
The seismic design of large-span cable-stayed bridge has been a topicwith special focus in current research for its complicated constructionconditions. In this paper, the method of seismic ground motion inputing,soil-structure interaction and the hydrodynamic effect of large-spancable-stayed bridge are studied.
     The results are shown that:
     1. In the fixed-foundation ground motion input mode, the influence oftravelling wave effect on a seven-span cable-stayed bridge with fully floatingstructure system is considered by way of introducing a ‘time difference’ intothe ground motion time history of each support point of bridge. The dynamicresoponse of key parts of cable-stayed bridge to the seismic travelling waveand seismic uniform excitation are given. By comparing with the dynamicresponse of cable-stayed bridge to seismic uniform excitation, the differenceof that of cable-stayed bridge to seismic travelling wave excitation isdiscussed. The effects of latter are stated, and the effective seismicfortification measures are suggested.
     2. The seismic analysis of large-span cable-stayed bridge with multispans is a multi-source scattering problem in numerical wave field. Based ontwo typical single-source visco-elastic artificial boundary, that are, LiuJingbo’s boundary which is set up on a basis of cylindrical evanescent waveand Du Xiuli’s boundary which is set up on a basis of plane wave and thesuperposition of far-field scattering wave, a multi-source weigthingconcentrated visco-elastic artificial boundary by using stacking principle ofwave fields. The formulas for calculating its spring coefficient and dampingcoefficient are givien. The accuracy and the stability of this boundaryconditions discussed by giving verification examples such as the2D eccentricsingle-point source problem, the2D eccentric multi-point source problem andthe2D multi-source scattering problem.
     3. Based on the structure-foundation integral model which is set up byadopting direct method and the multi-source weigthing concentratedvisco-elastic artificial boundary, the visco-elastic artificial boundary groundmotion input mode for bridge is realized. The influence of soil-structureinteraction on the dynamic resoponse of cable-stayed bridge with fullyfloating structure system is analyzed. By comparing the seismic resoponse ofcable-stayed bridge in visco-elastic artificial boundary ground motion inputmode to that in the fixed-foundation ground motion input mode, the differenceof the dynamic resoponse of key parts of cable-stayed bridge in two input modes are discussed. The limitations of the fixed-foundation ground motioninput mode by introducing a ‘time difference’ into the ground motion timehistory of each support point of bridge are analyzed. The ground motion inputmode based on multi-source weigthing concentrated visco-elastic artificialboundary and the structure-foundation integral model are proposed fordynamic ananlysis of large-span cable-stayed bridge under complicatedconditions.
     4. The hydrodynamic effects on cable-stayed bridge with fully floatingstructure system in two different ground motion input modes are modeled byadded mass. The difference of the seismic resoponse of key parts ofcable-stayed bridge in two input modes are compared, which demonstratesthat it is necessary for seismic analysis and design of large-span cable-stayedbridge to consider the coupling interaction of hydrodynamic effect andsoil-structure interaction.
引文
[1]陈波,吕西林,李陪振,等.用ANSYS模拟结构-地基动力相互作用振动台试验的建模方法[J].地震工程与工程振动,2002,22(1):126-131.
    [2]陈波,吕西林,李陪振,等.均匀土-桩基-结构相互作用体系的计算分析[J].地震工程与工程振动,2002,22(3):91-99.
    [3]陈和群,章青.库水中淤沙对刚性坝的动水压力影响[J].河海大学学报,2000,28(4):72-76.
    [4]陈健云,孙胜男.海底岩土性质对悬浮隧道所受动水压力的影响——P波[J].自然科学进展,2007,17(1):79-85.
    [5]陈幼平,周宏业.斜拉桥地震破坏的计算研究[J].地震工程与工程振动,1995,15(3):127-134.
    [6]陈幼平,周宏业.斜拉桥地震反应的行波效应[J].土木工程学报,1996,29(6):61-68.
    [7]陈跃庆,吕西林,侯建国,等.有建筑物存在的软土地基液化模拟地震振动台试验研究[J].武汉大学学报,2003,24(1):59-63.
    [8]大琦顺彦.地震动的谱分析入门[M].第2版.北京:地震出版社,2008.
    [9]戴大农,王勖成,杜庆华.流固耦合系统动力响应的模态分析理论[J].固体力学学报,1990,11(4):305-312.
    [10]邓军,唐家祥.时程分析法输入地震记录的选择与实例[J].工业建筑,2000,30(8):9-12.
    [11]董亮.高速铁路路基动力特性及列车循环荷载作用下变形性质研究[D].北京:北京交通大学,2008.
    [12]杜修力.局部解耦的时域波分析方法[J].世界地震工程,2000,16(3):22-26.
    [13]杜修力,赵密,王进廷.近场波动模拟的人工应力边界条件[J].力学学报,2006,38(1):49-56.
    [14]杜修力.工程波动理论与方法[M].北京:地震出版社,2009.
    [15]范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [16]范立础,胡世德,叶爱君.大跨度桥梁抗震设计[M].北京:人民交通出版社,2001.
    [17]范立础.桥梁工程[M].上海:同济大学出版社,2001.
    [18]范立础,卓卫东.桥梁延性抗震设计[M].北京:人民交通出版社,2006.
    [19]冯玉涛,戎进章,曹芳,等.动水及桩-土-结构相互作用对跨江大桥稳定性的地震影响分析[J].岩石力学与工程学报,2006,25(1):2713-2718.
    [20]高学奎,朱晞,李辉.近场地震作用下深水桥墩的地震响应分析[J].工程抗震与加固改造,2006,28(3):83-87.
    [21]高学奎,朱晞.地震动水压力对深水桥墩的影响[J].北京交通大学学报,2006,30(1):55-58.
    [22]郜新军.大跨桥梁在地震及列车竖向荷载作用下动力响应分析[D].北京:北京交通大学,2011.
    [23]关慧敏.土-结构动力相互作用分析中的人工边界[D].哈尔滨:中国地震局工程力学研究所,1994.
    [24]关慧敏,廖振鹏.局部人工边界稳定性的一种分析方法[J].力学学报,1996,28(3):376-380.
    [25]胡聿贤.地震工程学[M].北京:地震出版社,2006.
    [26]黄信,李忠献.自由表面波和水体压缩性对深水桥墩地震动水压力的影响[J].天津大学学报,2011,44(4):319-323.
    [27]居荣初,曾心传.弹性结构与液体的耦联振动理论[M].北京:地震出版社,1983.
    [28]赖伟,王君杰,胡世德.地震下桥墩动水压力分析[J].同济大学学报,2004,32(1):1-5.
    [29]赖伟,王君杰,胡世德.桩基础承台水平附加质量分析[J].同济大学学报,2004,32(10):1339-1343.
    [30]赖伟,郑铁华,雷勇. Morison方程中动水阻力项对桥梁桩柱地震反应的影响[J].四川建筑科学研究,2007,33(4):163-168.
    [31]李国豪主编.桥梁结构稳定与振动(修订版)[M].北京:中国铁道出版社,2006.
    [32]李婕.中、日、美三国抗震设计反应谱及隔震设计方法比较研究[D].广州:广州大学,2006.
    [33]李铁成,王照林,李俊峰,等.刚-柔耦合系统动力学建模理论与仿真技术研究[J].应用力学学报,1998,15(2):127-131.
    [34]李霞,唐清华,周仲元.考虑动水压力的连续刚构桥地震反应分析[J].四川建筑,2005,25(5):59-61.
    [35]李小军.非线性场地地震反应分析方法的研究[D].哈尔滨:中国地震局工程力学研究所,1993.
    [36]李小军,廖振鹏.时域局部透射边界的计算漂移失稳[J].力学学报,1996,28(5):627-632.
    [37]李玉成,滕兵.波浪对海上建筑物的作用[M].北京:海洋出版社,1993.
    [38]李正农,楼梦麟.大跨度桥梁结构地震动输入问题的研究现状[J].同济大学学报,1999,27(5):592-597.
    [39]李忠献,史忠利.行波激励下大跨度连续刚构桥的地震反应分析[J].地震工程与工程振动,2003,23(2):68-76.
    [40]廖振鹏,黄孔亮,杨柏坡,等.暂态波透射边界[J].中国科学(A辑),1984,26(6):50-56.
    [41]廖振鹏.工程波动理论导论[M].北京:科学出版社,2002.
    [42]凌贤长,王东升.液化场地桩-土-桥梁结构动力相互作用振动台试验研究进展[J].地震工程与工程振动,2002,22(4):53-59.
    [43]刘洪兵,朱晞.大跨度斜拉桥多支承激励地震响应分析[J].土木工程学报,2001,34(6):38-44.
    [44]刘洪兵,范立础.大跨度桥梁考虑地形及多点激励的地震响应分析[J].同济大学学报,2003,31(6):641-646.
    [45]刘晶波,吕彦东.结构-地基相互作用问题分析的一种直接方法[J].土木工程学报,1998,31(3):55-64.
    [46]刘晶波,王振宇,张克峰,等.考虑土-结相互作用大型动力机器三维有限元分析[J].工程力学,2002,19(3):34-49.
    [47]刘晶波,杜义欣,闫秋实.粘弹性人工边界及波动输入在通用有限元软件中的实现[J].防灾减灾工程学报,2004,27(Suppl.):37-42.
    [48]刘晶波,王振宇,杜修力,等.波动问题中的三维时域粘弹性人工边界[J].工程力学,2005,22(6):46-51.
    [49]刘晶波,李彬.三维黏弹性静-动力统一人工边界[J].中国科学(E辑),2005,35(9):966-980.
    [50]刘振宇,李乔,赵灿辉,等.深水连续刚构桥地震响应分析[J].地震工程与工程振动,2009,29(4):119-124.
    [51]刘铸永.刚-柔耦合系统动力学建模理论与仿真技术研究[D].上海:上海交通大学,2008.
    [52]楼梦麟,范么清,叶爱军.苏通大桥初设阶段主桥场地地震反应计算[J].防灾减灾工程学报,2007,27(4):429-435.
    [53]苗家武,胡世德,范立础.大型桥梁多点激励效应的研究现状与发展[J].同济大学学报,1999,27(2):189-193.
    [54]苗家武,裴岷山,肖汝成,等.苏通大桥主航道桥总体静力分析[J].公路交通科技,2006,23(2):64-67.
    [55]潘旦光,楼梦麟,范立础.多点输入下大跨度桥梁结构地震反应分析研究现状[J].同济大学学报,2001,29(10):1213-1219.
    [56]潘旦光,楼梦麟,范立础.多点输入下场地非线性地震反应分析计算模型[J].同济大学学报,2002,30(12):1411-1416.
    [57]彭德运,彭晔丹.苏通大桥主桥设计与施工[J].现代交通技术,2007,4(4):34-38.
    [58]彭小波.汶川地震强震动记录分析及应用[D].哈尔滨:中国地震局工程力学研究所,2011.
    [59]齐鹏,侯一筠.水波与淤泥质床底相互作用数值模拟——基于滞后回路特征的淤泥体流变模型[J].中国工程科学,2006,08(4):39-45.
    [60]邱流潮,张立翔.地震作用下拱坝-库水耦合振动动水压力分析[J].水动力学研究与进展,2001,15(1):94-103.
    [61]屈铁军,王前信.多点输入地震反应分析研究的进展[J].世界地震工程,1993,09(1):30-36.
    [62]屈铁军,王前信.地下管线多点地震激励纵向振动的级数解[J].地震工程与工程振动,1993,13(4):39-45.
    [63]屈铁军,王前信.空间相关的多点地震动合成[J].地震工程与工程振动,1998,18(1):8-15.
    [64]上海岩土工程勘察设计研究院有限公司.东方之门岩土工程勘察报告(上册)
    [R],2004.
    [65]史忠利,李忠献.大跨度桥梁多点激励地震反应分析与MR阻尼器控制[D].天津:天津大学,2003.
    [66]史忠利,李忠献.随机地震动场多点激励下大跨度桥梁抗震分析方法[J].地震工程与工程振动,2003,23(4):124-130.
    [67]宋雨,陈冬霞.斜拉桥动力特性分析[J].厦门大学学报,2006,45(1):56-59.
    [68]孙剑平,朱晞.桩基础桥梁的土-结构动力相互作用[J].铁道学报,2001,23(2):65-69.
    [69]孙利民,孙晨南,潘龙,等.桥梁桩土相互作用的集中质量模型及参数确定[J].同济大学学报,2002,30(4):409-415.
    [70]孙树民.土-结构动力相互作用研究进展[J].中国海洋平台,2001,16(5):31-37.
    [71]瓦尔夫J. P.土-结构动力相互作用[M].北京:地震出版社,1989.
    [72]王进廷,杜修力.动水压力及其对坝体地震反应影响的研究进展[J].水利学报,2001,(7):13-21.
    [73]王进廷,杜修力.拱坝-可压缩库水-地基地震波动反应分析方法[J].水利学报,2002,(6):83-90.
    [74]王蕾,赵成刚,王智峰.考虑地形影响和多点激励的大跨度高墩桥地震响应分析[J].土木工程学报,2006,39(1):55-59.
    [75]王丽.大跨度立交桥抗震设计理论与方法[D].北京:北京工业大学,2005.
    [76]王勖成.有限单元法[M].北京:清华大学出版社,2006.
    [77]王亚勇,刘小弟,程民宪.建筑结构时程分析法输入地震动的研究[J].建筑结构学报,1991,12(2):51-60.
    [78]王振宇,刘晶波.成层地基非线性波动问题人工边界与波动输入研究[J].岩石力学与工程学报,2004,23(7):1169-1173.
    [79]韦晓,范立础,王君杰.考虑桩-土-桥梁结构相互作用振动台试验研究[J].土木工程学报,2002,35(4):91-97.
    [80]温德超,孙焕纯.用ALE和时间分裂步法分析三维粘性流体大幅晃动的非线性问题[J].振动与冲击,1996,15(3):48-54.
    [81]吴一红,谢宗省.水工结构流固耦合动力特性分析[J].水力学报,1995,26(1):27-35.
    [82]武岳.考虑流同耦合作用的索膜结构风致动力响应研究[D].哈尔滨:哈尔滨工业大学,2003.
    [83]项海帆.斜张桥在行波作用下的地震反应分析[J].同济大学学报,1983,11(2):1-8.
    [84]谢旭.桥梁结构地震响应分析与抗震设计[M].北京:人民交通出版社,2006.
    [85]谢志南.波动数值模拟人工边界的稳定问题[D].哈尔滨:中国地震局工程力学研究所,2011.
    [86]刑景棠,崔尔杰.流固耦合力学进展[J].力学进展,1997,27(1):19-31.
    [87]宴启祥,刘浩吾,王忠.流固耦合系统库底边界对动水压力的影响[J].西南交通大学学报,2002,37(3):227-230.
    [88]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报,2000,33(6):33-37.
    [89]杨庆山,刘文华,田玉基.国家体育场在多点激励作用下的地震反应分析[J].土木工程学报,2008,41(2):35-41.
    [90]游庆仲.苏通大桥工程与关键技术研究[M].北京:中国科技出版社,2004.
    [91]袁万城.大跨度桥梁空间非线性地震反应分析[D].上海:同济大学,1990.
    [92]袁行飞,苏波,聂国隽,等.流固耦合理论研究述评(1)——流固耦合问题研究进展[C].第七届全国现代结构工程学术研讨会,杭州,2007,703-709.
    [93]袁行飞,苏波,聂国隽,等.流固耦合理论研究述评(2)——流固耦合理论基础及关键问题[C].第七届全国现代结构工程学术研讨会,杭州,2007,710-716.
    [94]袁行飞,苏波,聂国隽,等.流固耦合理论研究述评(3)——流固耦合问题求解策略[C].第七届全国现代结构工程学术研讨会,杭州,2007,717-723.
    [95]袁迎春,赖伟,王君杰,等. Morison方程中动水阻力项对桥梁桩柱地震反应的影响[J].世界地震工程,2005,21(4):88-94.
    [96]张立翔,杨柯.流体结构互动理论及其应用[M].北京:科学出版社,2004.
    [97]张喜刚.苏通大桥总体设计[M].北京:中国科技出版社,2004.
    [98]赵健峰,杜修力,韩强,等.外源波动问题数值模拟的一种实现方式[J].工程力学,2007,24(4):52-58.
    [99]赵密.粘弹性人工边界与透射边界的比较研究[D].北京:北京工业大学,2004.
    [100]中国地震局工程力学研究所.交通系统震害[J].地震工程与工程震动,2008,28(Suppl.):59-73.
    [101]中国地震局震害防御司.中国强震记录汇报:汶川8.0级地震未校正加速度记录(第十二集,第一卷)[M].北京:地震出版社,2008.
    [102]中华人民共和国交通部.JTG B01-2003公路工程技术标准(附条文说明)[S].北京:人民交通出版社,2003.
    [103]中华人民共和国交通运输部. JTG/T B02-01-2008公路桥梁抗震设计细则[S].北京:人民交通出版社,2008.
    [104]中华人民共和国交通运输部. JTS146-2012水运工程抗震设计规范[S].北京:人民交通出版社,2012.
    [105]中华人民共和国住房和城乡建设部.GB50011-2010,混凝土结构设计规范,中华人民共和国国家标准[S].北京:中国建筑工业出版社,2011.
    [106]中华人民共和国铁道部. GB50111-87铁路工程抗震设计规范[S].北京:中国计划出版社,2006.
    [107]中交公路规划设计院,江苏省交通规划设计院,同济大学建筑设计研究院.苏通长江公路大桥跨江大桥工程设计指南(修编稿),2004.
    [108]钟万勰,林家浩,吴志刚,等.大跨度桥梁分析方法的一些进展[J].大连理工大学学报,2000,40(2):127-135.
    [109]周国良,李小军,刘必灯,等.大质量法在多点激励分析中的应用、误差分析与改进[J].工程力学,2008,28(1):48-54.
    [110]周锡元,王广军,苏经宇.场地分类和平均反应谱[J].岩土工程学报,1984,6(5):59-68.
    [111]朱晞,高学奎.桥梁抗震分析中动水压力的计算[J].中国铁道科学,2007,28(3):44-48.
    [112] A S Nazmy and A M Abdel-Ghaffar. Non-linear earthquake response analysis oflong-span Cable-stayed Bridges: theory[J]. Earthquake Engineering&StructuralDynamics,1990,19(1):45-62.
    [113] A S Nazmy and A M Abdel-Ghaffar. Non-linear earthquake response analysis oflong-span Cable-stayed Bridges: Applications[J]. Earthquake Engineering&Structural Dynamics,1990,19(1):63-76.
    [114] A S Nazmy and A M Abdel-Ghaffar. Three-dimensional nonlinear static analysisof cable-stayed bridges[J].Computers&Structures,1990,34(2):257-271.
    [115] A S Nazmy and A M Abdel-Ghaffar. Effects of Ground Motion Spatial Variabilityon The Response of The Cable-stayed Bridges[J]. Earthquake Engineering&Structural Dynamics,1992,21(1):1-20.
    [116] A Sommerfeld. Lectures on Theoretical Physics in the Series Partial DifferntialEquations in Physics [J]. Academic Press, New York,1964,6(28).
    [117] Abdel-Ghaffar A M. Cable-stayed Bridges under Seismic Action. In: Ito M, ed.Cable-stayed Bridges: Recent Developments and Their Future[M]. Amsterdam:Elsevier Science Publishers,1991,171-191.
    [118] Albadawi Z., Bashir, H. A. and Chen, M. A Mathematical Approach for theFormation of Manufacturing Cells [J]. Computers and Industrial Engineering,2005,48(1):3-21.
    [119] Anil K. Chopra. Dynamics of Structures: Theory and Applications to EarthquakeEngineering [M].2nd ed. Beijing: Tsinghua University Press,2005.
    [120] Armold R. N., G. N. Bycroft and G. B. Warburton. Forced vibrations of a body oninfinite elastic solid [J]. Journal of Applied Mechanics,1955,(22):391-400.
    [121] Basil W and Alf Torum W. The Tsunami of the Alaska earthquake: EngineeringEvaluation [M]. Washington, D.C., Inc.,1968.
    [122] Bruce Hunt and Nigel Priestley. Seismic Water Waves in a Storage Tank [J].Bulletin of the Seismological Society of America,1978,68(2):487-499.
    [123] Bycroft R. N. Forced vibration of a rigid circular plate on semi-infinite elasticspace and on an elastic stratum [J]. Phil. Trans. Roy.Soc.London,1956, Ser.A(248):327-368.
    [124] C. J. Curras, R.W.Boulanger and B. L. Kutter. Dynamic experiments and analysisof a pile-group-supported structures[J]. Journal of Geotechnical and geoenviron-ment engineering, ASCE,2001,127(7):585-596.
    [125] Choi, H. G., Joseph, D. D. F1uidization by lift of300circular partic]es in planePoiseuile flow by direct numerical simulation[J].Journal of Fluid Mechanics,2001,438:1l-39.
    [126] Clayton R, Engquist B. Absorbing Boundary Conditions for Acoustic and ElasticWave Equations[J]. Journal of Computationals Physics,1977,67(6):1529-1540.
    [127] Clayton R, Engquist B. Absorbing Boundary Conditions for Wave-EquationMigration[J]. Journal of Computationals Physics,1980,45(5):895-904.
    [128] Clough R W and Penzien J. Dynamics of Structures [M]. New York: Computers&Structures, Inc.,2004.
    [129] De Barros and Luco J E. Discrete models for vertical vibrations of surface andembedded foundations [J]. Earthquake Engineering and Structural Dynamics,1990,19(2):289-303.
    [130] Deeks A J, Randolph M F. Axisymmetric Time-domain Transmitting Boundaries[J]. Journal of Computationals Physics,1994,120(1):25-42.
    [131] Edward L Wilson. Three-Dimensional Static and Dynamic Analysis of structures
    [M]. New York: Computers&Structures, Inc.,2002:234-249.
    [132] European Committee for Standardization, Eurocode8: Structures in SeismicRegions-Design Part2: Bridges[S]. Brussels: European Committee forStandardization,1995.
    [133] G W Housner. Dynamic Pressure on Accelerated Fluid Containers [J]. Bulletin ofthe Seismological Society of America,1957,41(1):15-35.
    [134] G W Housner. The Dynamic Behavior of Water Tanks [J]. Bulletin of theSeismological Society of America,1963,53(2):381-387.
    [135] Gluck M, Breuer M and Durst F. Computation of wind-induced vibration offlexible shells and membranous structures [J]. Journal of Fluid and Structures,2003,17(5):739-765.
    [136] H. H. Hu. Direct simu1ation of flows of solid-liquid mixtures [J]. InternationalJournal of Multiphase Flow,1996,22(2):335-352.
    [137] Hubner B, Walhorn E and Dinkler D. Simultaneous solution to the interaction ofwind flow and lightweight membrane structures [C]. Warsaw: Proceedings ofInternational Conference on Lightweight Structures in Civil Engineering.2002,519-523.
    [138] Hubner, E. Walhorn and D. Dinkler. Strongly coupled analysis of fluid-structureinteraction using space-time finite elements [C]. Seconnd European Conference onComputational Mechanics, Cracow,2001:546-547.
    [139] Hubner, E. Walhorn and D. Dinkler. A monolithic approach to fluid-structureinteraction using space-time finite elements [J]. Computer Methods in AppliedMechanics and Engineering,2004,193(23-26):2087-2104.
    [140] J Lysmer, R L Kulemeyer. Finite Dynamic Model for Infinite Media[J]. Journal ofthe Engineering Mechanics Division, ASCE,1969,95(4):759-877.
    [141] J. L Bonganoff, J E Goldberg and A J Schiff. The effect of ground transmissiontime on the response of long structures[J].Bulletin of the Seismological Society ofAmerica,1965,55(3):627-640.
    [142] J D Anderson. Computational Fluid Dynamics: The Basics with Applications [M].1st ed. Beijing: Tsinghua University Press,2005.
    [143] Jean W Y, Ling T W and Penzien J. System parameter of soil foundation for timedomain dynamic analysis [J]. Earthquake Engineering and Structural Dynamics,1990,19(4):541-553.
    [144] K. Namkoong, H. G. Choi and J. Y. Yoo. Computaion of dynamic fluid-structureinteraction in two-dimensional laminar flows using combined formulation [J].Journal of F1uid and Structure,2005,20(1):51-69.
    [145] Keith Stein, Richard Benney and Vinay Kalro, etc. Parachute fuid-structureinteractions:3-D computation[J]. Computer Methods in Applied Mechanics andEngineering,2000,190(20-23):373-386.
    [146] Keith Stein and Richard Benney. Fuid-structure interactions of a round parachute:modeling and simulation techniques [J]. Journal of Aircraft,2001,38(5):800-808.
    [147] L Kellezi. Local Transmitting Boundaries for Transcient Elastic Analysis[J]. SoilDynamics and Earthquake Engineering,2000,9(7):533-547.
    [148] Liaw C Y and Chopra A K. Dynamics of towers surrounded bywater[J].Earthquake Engineering and Structural Dynamics,1974,3(1):33-49.
    [149] List of500Highest International bridges. Available at www.highestbridges.hk,2012.
    [150] Liu Jingbo, Du Xiuli and Wang Zhenyu, et al.3D Viscous-spring ArtificialBoundary in Time Domain[J]. Earthquake Engineering and Engineering Vibration,2006,5(1):93-102.
    [151] Lysmer J and Richart F E. Dynamic response of footing to vertical loading [J].Journal of Soil Mechanics&Foundations Div,1967,92(1):65-91.
    [152] M Novak, T Nogami and F Aboul-Ella. Dynamic Soil Reactions for Plane StrainCase [J]. Journal of the Engineering Mechanics Division, ASCE,1978,104(4):953-959.
    [153] M. Gluck, M Breuer and F Durst, etc. Computation of fluid-structure interactionon lightweight structures[J]. Journal of Wind Engineering and IndustrialAerodynamics,2001,89(14-15):1351-1368.
    [154] Medhat A Haroun. Stress Analysis of Rectangular Walls under SeismicallyInduced Hydrodynamic Loads [J]. Bulletin of the Seismological Society ofAmerica,1984,53(2):1031-1041.
    [155] Morison J R, O’Brien M P and Johnson J W, etc. The Force Exerted by SurfaceWave on Piles [J]. Petroleum Transactions, AIME,1950,189:149-154.
    [156] Morison J R. The Force Distribution Exerted by Surface Wave on Piles [R].California: University of California,1953,345(3):1-8.
    [157] N. Makris, D.Badoni and E. Delis. Prediction of observed bridge response withsoil-pile-structure[J]. Journal of Structure engineering, ASCE,1994,120(10):2992-3011.
    [158] N.N. Moiseyev, V.V. Rumyanstev. Dynamic stability of bodies containingfluid[M]. New York: Springer verlag,2011.
    [159] Nilrat F Berkeley. Hydrodynamic pressure and added mass for axisymmetricbodies[R].[s.1.]: Earthquak e Engineering Research Center,1980.
    [160] P. Leger, I M Ide and P Paultre. Multiple support seismic analysis of largestructures [J]. Computers&Structures,1990,36(6):1153-1158.
    [161] R. L. Higdon. Absorbing boundary conditions for difference approximations to themulti-dimensional wave equations[J]. Mathematics of Computation,1986,47(176):437-459.
    [162] R. L. Higdon. Numerical absorbing boundary conditions for the Wave Equations[J]. Mathematics of Computation,1987,49(179):65-90.
    [163] R. L. Higdon. Numerical absorbing boundary conditions for acoustic and elasticwaves in stratifeld media [J]. Jounal of Computational Physics,1992,101(1):386-418.
    [164] R.W.Boulanger, C. J. Curras and D. W. Wilson. Seismic soil-pile-structureinteraction experiments and analysis [J]. Journal of Geotechnical andgeoenvironment engineering,1999,125(9):750-759.
    [165] Reissner. Stationare, axialsymmetrische durch eine schuttelnde masse erregieschwingungen eines homogesen elastischen halbrunes [J]. Ingenieur-Archiv,1936,7(6):381-396.
    [166] Richart F. E. and Whitman R. V. Comparison of footing vibration tests with theory[J]. Journal of Soil Mechanics&Foundations Div,1967,93(6):143-168.
    [167] Smith W. A Non-reflecting Plane Boundary for Wave Propagation Problems[J].Journal of Computationals Physics,1974,15(4):492-503.
    [168] Sung. T. Y. Vibration in semi-infinite solids due to periodic surface loading [J].Symposium on Dynamic Testing of Solids, ASTM-STP,1953(156):251-272.
    [169] T.Yoshihiro T and Robert T H. Restoring forces on vertical circular cylindersforced by earthquake[J]. Earthquake Engineering and structural Dynamics,1988,16(5):98-102.
    [170] Tatsuo Ogata and Koji Osada. Seismic Retrofitting of Expressway Bridges inJapan[J]. Cement and Concrete Composites,2000,22(1):17-27.
    [171] Thomas L.Geers. IUTAM Symposium on Computational Methods for UnboundedDomains[M]. Netherlands: Kluwer Academic Publishers,1998.
    [172] Wolf J P and Somaini D R. Approximate dynamic model of embedded foundationin time domain [J]. Earthquake Engineering and Structural Dynamics,1986,14(5):683-703.
    [173] Wolf J P and Chongming Song. Unit-impulse response matrix of unboundedmedium by infinitesimal finite-element cell method [J]. Computer Methods inApplied Mechanics and Engineering,1995,122:251-272.
    [174] Yamamura N and Hiroshi Tanaka. Response analysis of flexible MDF systems formultiple-support seismic excitation[J]. Earthquake Engineering&StructuralDynamics,1990,19(3):345-357.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700