用户名: 密码: 验证码:
塔里木河下游荒漠—绿洲过渡带退化生态系统解析与重构
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干旱区内陆河流域受损生态系统的恢复与重建是当前社会各界关注的焦点问题,对塔里木河下游荒漠-绿洲过渡带退化生态系统解析与重构研究为今后该区域生态恢复与重建工程的规划设计提供理论依据,具有重要的实践指导意义。本研究以恢复生态学理论为指导,以“退化历史→现状解析→恢复重构”为主线,采用树木年轮生态学、地统计学、数量生态学、遥感与地理信息系统等技术手段与分析方法,通过对塔里木河下游区域水环境历史变迁与生态退化历史、荒漠-绿洲过渡带浅层地下水历史变化与生态退化历史、荒漠-绿洲过渡带生境异质性、荒漠-绿洲过渡带植物群落多样性及过渡带生境与植物群落间关系进行解析,研究提出了荒漠-绿洲过渡带植物群落重构方略。主要研究结果如下:
     (1)胡杨(Populus euphratica Oliv.)树木年轮反映的塔里木河下游近50a来的区域水环境状况具有多样性和复杂性,并不完全表现为距离下游上段(大西海子水库)越近其水环境状况就越好,不同区域退化进程具有差异性,在生态恢复过程中应以分区治理恢复为宜。20世纪90年代是下游水环境状况最差时期,体现了长达30a断流水环境的变干累积效应,是下游生态系统退化最严重的时期;而20世纪60年代和21世纪初是下游水环境状况最好时期,分别对应了下游常年过水期和生态输水期;突变检测表明下游水环境变化对下游断流时段的突变效应具有滞后性;塔里木河下游区域水环境干湿变迁是地表径流的多寡,离流域上段(大西海子水库)、古河道、现有输水河道距离的远近,微地貌以及地质构造所决定的区域地下水构成等多方面因素共同作用的结果。
     (2)基于刚毛柽柳(Tamarix hispida Willd.)树木年轮重建的过渡带近50a来浅层地下水埋深序列和1972~2005年NDVI指数变化分级特征分析共同表明,荒漠-绿洲过渡带自上世纪50年代末至90年代,区域生态表现为逐年退化趋势,2000年生态输水后,区域生态初步恢复。过渡带柽柳年轮宽度指数与英苏3~6月浅层地下水埋深负相关显著(R=-0.917,p<0.01),具有明确的树木生理学意义;利用逐步回归分析,重建英苏近50a来3~6月浅层地下水埋深,延长了区域浅层地下水埋深水文记录达42a;重建序列趋势分析表明,1958~2000年英苏浅层地下水埋深序列呈波段增加趋势,20世纪50年代埋深最浅,20世纪90年代埋深最深;突变检测结果显示重建序列对下游断流、生态输水响应强烈。处于极端干旱区的荒漠-绿洲过渡带生态退化进程与区域浅层地下水为主导的水环境变迁以及NDVI指数反映的植被退化过程具有良好的同步性。
     (3)荒漠-绿洲过渡带现状生境在垂直梯度和水平梯度总体上均表现出空间自相关范围小,空间变异性强,受结构性因素影响大的特征,由于受河岸水文过程的影响,在整体规律性变化基础上都存在明显地局部性变异,这种局部性变异在靠近河道的区域表现更显著。在0~200cm的垂直梯度上,荒漠-绿洲过渡带土壤盐分和养分指标随土层深度的增加而表现为逐渐降低规律,pH值、CO32-和土壤含水量则相反;40~60cm土层是过渡带土壤理化性质垂直变异的突变层次,其在水平梯度上具有很强的空间变异性,空间自相关特性明显;对过渡带土壤盐分、土壤养分和土壤水分要素研究采样尺度应分别控制在2400m、4910m和11500m以下。过渡带具有土壤盐分含量高、养分贫乏的特点,但其浅层地下水埋深相对较浅,有利于进一步开展植被恢复与重建。
     (4)荒漠-绿洲过渡带植物种类少,以旱生耐盐植物为主;植物群落类型单一,可划分为4种类型;植物群落分布破碎,空间异质性强,以柽柳(Tamarix spp.)群落为分布面积最大的优势群落。基于面向对象的植物群落分类结果显示,从绿洲至荒漠方向上,植物群落分布整体上表现为减少的趋势;在河流流向方向上,植被群落分布差异不大;在垂直河道方向上,过渡带植物群落分布呈显著减少趋势,表现出明显的河道效应;0~180cm土层是与植物群落分布相关紧密的土壤层次,为开展植物群落格局与环境因子关系研究的关键层次;过渡带以水盐耦合为主导的环境梯度对植物群落分布格局起主导作用,其中影响显著的环境因子是以电导率、Cl-为代表的土壤盐分因子和土壤养分中的速效K;环境因子总共解释了塔里木河下游荒漠-绿洲过渡带植被分布格局变异的52.08%,其中土壤盐分因子、土壤养分因子、水分因子、空间因子和四者的交互作用分别解释了16.589%、11.104%、9.940%、7.148%和7.247%。在过渡带恢复与重建过程中,应采取分区治理,重点考虑土壤盐分因子。
     (5)基于“适地适生”原则,使重建群落在相对较短的时间内建立起自维持机制,并达到退化生态系统在当前生境状况下恢复与重建的目的。研究结果表明荒漠-绿洲过渡带植被重构区总面积11119.15hm2,其中:重构柽柳群落区主要位于靠近绿洲区域,面积为2990.18hm2,占重构区总面积26.89%;重构胡杨群落区主要位于输水河道中段和靠近英苏的河道下段,面积最小,为429.80hm2,占重构区总面积3.87%;重构疏叶骆驼刺(Alhagi sparsifolia Shap.)群落区主要位于过渡带中部及南部的大部分区域,面积最大,为7121.21hm2,占重构区总面积64.04%;重构花花柴(Karelinia caspica Less.)群落区主要位于河道上段的沿河区域,面积为577.96hm2,占重构区总面积的5.20%。
Ecological restoration and reconstruction of damaged ecosystem becomes more and more concerned issue of the society on continental river basin in arid zone. The results of analysis and reconfiguration of degraded ecosystem provide scientific basis for planning and design of regional ecological restoration and reconstruction project and has important directive significance in desert-oasis ecotone in the lower reaches of Tarim River. On the basis of the theory of restoration ecology, this study took "history-of- degradation→analysis-of-status-quo→reconfiguration-of-vegetation-community" as the main line, explored the regional water environmental change and history of degradation of the lower reaches of Tarim river about 50-year, the change of shallow water table depths about 50-Year and history of degradation in desert-oasis ecotone, described the characteristics of habitat and vegetation community and the relationships between habitat and vegetation community in desert-oasis ecotone, and put forward the strategy of vegetation community reconfiguration for desert-oasis ecotone on the basis of status quo. The methods and technologies of this study included dendroecology, geostatistics, quantitative ecology, remote sensing and geographic information system. The main results showed:
     (1) The regional water environmental change were various and complicated about 50-year. The water environmental condition did not display completely that the nearer to the upper reaches(Daxihaizi reservoir) the site was, the better its water environmental condition was, reflecting degree of ecology degeneration of different regions in the downstream were not same; The worst periods of water environmental conditions occurred mainly in the 1990s. This phenomenon was attributed to the breaking flow of river downstream for more than 30 years. The best periods of water environmental conditions appeared in the 1960s and at the beginning of this century, and this phenomenon was attributed to perennial water period and eco-water period. The abrupt change examination indicated that the regional water environmental change had the obvious sudden change effect. The regional water environmental change in the lower reaches of Tarim River was determined by quantity of surface flow, distance to the upper reaches (Daxihaizi reservoir), distance to ancient watercourses, distance to the waterring watercourse, micro-topography and pattern of regional shallow water table determined by regional geological structure et al. jointly.
     (2) The analysis of regional shallow water table depths about 50-year reconstructed by Tamarix hispida Willd. Tree-ring width data and NDVI change classification between 1972 and 2005 both showed that degree of ecology degeneration become gradually serious from 1950 to 1990s, but regional ecology is on the way to preliminary restoration after 2000 because of eco-water transfer in desert-oasis ecotone. There was an obvious relationship between tree-ring widths of Tamarix hispida Willd. and regional shallow water table depths. The analysis result showed that there was the evident negative correlation(-0.917) between the STD tree-ring index and the 3-6 Month shallow water table depths in desert-oasis ecotone in the lower reaches of Tarim River, indicating obvious tree physiology significance. Using the stepwise linear regression models, the 3-6 Month shallow water table depths about 50-year in desert-oasis ecotone was reconstructed. Method of“Leave-one-out”was used to estimate stability of regression function based on statistics between the observed and estimated series, the result of reconstruction lengthened hydrology records of regional shallow water table to reach 42a. For the series of the construction, there was the rise trend in regional shallow water table depths from 1958 to 2000. Furthermore, the shallowest periods of shallow water table depths appeared in the 1950s, and that the deepest periods occurred mainly in the 1990s. The abrupt change examination indicated the reconstruction series had obvious response to the breaking flow of river downstream and eco-water transfer. The results showed the course of ecology degeneration had obvious synchrony with regional water environmental change determinated by shallow water table depths and the course of vegetation degeneration reflected by change of NDVI index in desert-oasis ecotone.
     (3) Environmental factors had obvious spatial heterogeneity; spatial autocorrelation was distinct both in vertical gradients and in level gradient in desert-oasis ecotone. Along and across the direction of the river water flowing and along the direction of the oasis to desert, all the soil elements were characterized by the partial variation on the basis of the whole regularity variation.And this partial variation was clearer across the direction of the river water flowing.The analysis of habitat heterogeneity showed that soil salinity and soil nutrient in 0~200cm soil depths in ecotone had decreasing trend with the increasing of the soil depth, while the change trend of pH, CO32- and soil moisture content were opposite. There is distinctly different between 0-60cm soil depths and 60-200cm soil depths as for soil factors, 40-60cm soil depths was the abrupt layer of soil physical and chemical properties in ecotone. Soil physical and chemical properties of 0-60cm soil depths in level gradient had obvious spatial heterogeneity, spatial autocorrelation was distinct. The max range of soil salinity, soil nutrient and soil moisture content were 2390m, 4906m and 11430m. The changing range of all indexes of the soil offers a reference for future study how to locate the points for collecting the soil samples.The soil salinity was higher and the soil nutrient was lower in ecotone, but shallow water table depths was lower and was in favor of vegetation restoration and reconstruction; the simulation of the soil elements spatial distribution can offer the information of habitat pattern in every point of study area for restoring regional vegetation.
     (4) The analysis about diversity of vegetation community showed that plant species was seldom. Eighteen species belong to nine family and seventeen groups existed in the study area. Type of vegetation community was unitary, classified into four types; Based on the result of object-based classification, distribution of vegetation community was broken, significantly, strong spatial heterogeneity, the size of Tamarix spp. Community was the largest in ecotone. Along the direction of the oasis to desert, distribution of vegetation community was decreased; along the direction of the river water flowing, there was little difference; across the direction of the watercourse, distribution of vegetation community was distinctly decreased in ecotone. The 0-180cm soil layer was closely related with plant community distribution patterns in desert-oasis ecotone. The environmental gradient of coupling relationship between water and salt played the most important role in the forming of community distribution pattern or species abundances variation in the communities. Conduct and Cl- in soil salt variables and available K in soil nutrient variables were the significant factors in all environmental factors. The total contribution rates of the environmental factors were 52.08%, the contribution rates of soil salt factors, soil nutrient factors, water factors and special factors were 16.589%,11.104%,9.940%,7.148%and 7.247%, respectively. From a management standpoint, it is most important to adopt corresponding ways according to the difference of soil salt in different region, and keep dynamic balance of water and salt in the process of restoration of damaged ecosystem in desert-oasis ecotone in the lower reaches of Tarim River.
     (5) Reconfiguration of vegetation community on the basis of habitat status is useful to build self-sustained mechanism of vegetation community in a short time. The reconfiguration not noly gives an indication in choosing the most appropriate community types in the process of restoration of damaged ecosystem in desert-oasis ecotone, but also fully embodies the corresponding environmental characteristics of different community types. The results of reconfiguration of vegetation community indicated that Tamarix spp. community reconfigured was located near oasis, its area was 2990.18hm2 and occupied 26.89% in whole vegetation loss zones; Populus euphratica Oliv. community reconfigured was located at the middle of watercourses and the lower of watercourses near Yengisu, its area was least, 429.80hm2 and occupied 3.87% in whole vegetation loss zones; Alhagi sparsifolia Shap. community reconfigured was located at the middle of ecotone and most of northern region, its area was largest, 7121.21hm2 and occupied 64.04%in whole vegetation loss zones; Karelinia caspica Less. community reconfigured was located at the upper of watercourses region, its area was largest, 577.96hm2 and occupied 5.20% in whole vegetation loss zones.
引文
1艾尔肯·土拉克,艾斯卡尔·买买提,吐尔逊·肉苏力,等. 2007.塔里木河流域水文特征分析[J].冰川冻土,29(4):543-552.
    2鲍土旦. 2000.土壤农化分析[M].北京:中国农业出版社,29-137.
    3陈灵芝,陈伟烈. 1995.中国退化生态系统研究[M].北京:中国科学技术出版社,1-4.
    4陈亚宁,李卫红,陈亚鹏,等. 2006a.塔里木河下游断流河道输水的生态响应与生态修复[J].干旱区研究,23(4):521-530.
    5陈亚宁,李卫红,徐海量,等. 2003a.塔里木河下游地下水位对植被的影响[J].地理学报,58(4):542-549.
    6陈亚宁,王强,李卫红,等. 2006b.植被生理生态学数据表征的合理地下水位研究—以塔里木河下游生态恢复过程为例[J].科学通报,51(增刊1):7-13.
    7陈亚宁,张宏峰,李卫红,等. 2005.新疆塔里木河下游物种多样性变化与地下水位的关系[J].地球科学进展,20(2):101-108.
    8陈亚宁,张小雷,崔旺诚. 2003b.塔里木河流域主要生态问题与对策建议[J].中国科学院院刊,3:191-195.
    9陈亚鹏,陈亚宁,张宏锋. 2004.塔里木河下游干旱胁迫下的胡杨生理特点分析[J].西北植物学报,24(9):1943-1948.
    10程冬兵,蔡崇法,孙艳艳. 2006.退化生态系统植被恢复理论与技术探讨[J].世界林业研究,19(5):7-14.
    11程雄,王红. 2004. GIS软件应用-ARC/INFO软件操作与应用[M].武汉大学出版社,57-73.
    12丁建丽,塔西甫拉提·特依拜. 2002.基于NDVI的绿洲植被生态景观格局变化研究[J].地理学与国土研究,18(1):23-26.
    13丁裕国,江志红. 1998.气象数据时间序列信号处理[M].北京:气象出版社,35-50.
    14杜子涛,占玉林,王长耀. 2008.基于NDVI序列影像的植被覆盖变化研究[J].遥感技术与应用,23(1):47-50.
    15樊自立,马英杰,张宏,等. 2004.塔里木河流域生态地下水位及其合理深度确定[J].干旱区地理,27(1):9-13.
    16冯云,马克明,张育新,等. 2008.辽东栎林不同层植被沿海拔梯度分布的DCCA分析[J].植物生态学报,32(3):568-573.
    17关元秀,程晓阳. 2008.高分辨率卫星影像处理指南[M].北京:科学出版社,21,93.
    18郝兴明,陈亚宁,李卫红,等. 2008b.塔里木河中下游荒漠河岸林植被对地下水埋深变化的响应[J].地理学报,63(11):1123-1130.
    19郝兴明,李卫红,陈亚宁. 2008a.新疆塔里木河下游荒漠河岸(林)植被合理生态水位[J].植物生态学报,32(4):838-847.
    20郝占庆,于德永,吴钢,等. 2001.长白山北坡植物群落β多样性分析[J].生态学报,21(12):2018-2022.
    21何成华,刘洪英,何成元. 2003.恢复生态学的研究动向[J].四川林业科技,24(2):17-21.
    22何海. 2005.使用WinDENDRO测量树轮宽度及交叉定年方法[J].重庆师范大学学报,22:39-44.
    23胡志林,钟骏平,常直海,等. 1993.土壤学及新疆土壤[M].乌鲁木齐:新疆科技卫生出版社,240-252.
    24黄培佑. 1991.荒漠河岸胡杨林的生活周期对生境水条件的动态适应的研究[J].新疆环境保护,13(2):5-10.
    25黄盛璋. 2003.绿洲研究[M].北京:科学出版社,9-13.
    26黄湘,李卫红,陈亚宁,等. 2007.塔里木河下游荒漠河岸林群落土壤呼吸及其影响因子[J].生态学报,27(5):1951-1959.
    27贾艳红,赵传燕,南忠仁. 2008.黑河下游地下水波动带土壤盐分空间变异特征分析[J].干旱区地理,31(3):379-388.
    28蒋高明. 1995.矿业废弃地恢复生态学的理论与实践[A].北京:中国科学技术出版社,234-246.
    29康兴成,程国栋,康尔泗,等. 2002.利用树轮资料重建黑河近千年来的出山口径流量[J].中国科学(D辑),32(8):675-685.
    30雷志栋,杨诗秀,许志荣,等. 1985.土壤特性变异性初步研究[J].水利学报,9:10-20.
    31李国庆,王孝安,郭华,等. 2008.陕西子午岭生态因素对植物群落的影响[J].生态学报,28(6):2463-2471.
    32李哈滨,王政权,王庆成. 1998.空间异质性定量研究理论与方法[J].应用生态学报,9(6): 651-657.
    33李江风,袁玉江,王承义. 1989b.塔里木河下游年表特征[C] //李江风等.新疆年轮气候年轮水文研究.北京:气象出版社,18-24.
    34李江风. 1989a.塔里木河中游年轮与水热指数[C] //李江风等.新疆年轮气候年轮水文研究.北京:气象出版社,109-115.
    35李江凤,袁玉江,由希尧,等. 2000.树木年轮水文学研究与应用[M].北京:科学出版社,105-109,134-164,165-252.
    36李淑,王杰光,莫时雄. 2008.金属矿区生态恢复与重建研究[J].山西建筑,34(32):15-16.
    37李涛,尹林克,严成. 2003.塔里木河中游天然植被的数量分类与排序研究[J].干旱区地理,26(2):173-179.
    38李香云,张蓬涛,章予舒. 2001.塔里木河下游绿色走廊特点及衰败成因分析[J].干旱区研究, 18:28-30.
    39李一静,曾辉,魏建兵. 2008.基于归一化植被指数变化分级的深圳市植被变化[J].应用生态学报,19(5):1064-1070.
    40李玉臣,舒洪岚. 1995.矿区废弃地的生态恢复研究[J].生态学报,15(3):339-343.
    41刘加珍,陈亚宁,李卫红,等. 2004.塔里木河下游植被群落分布与衰退演替趋势分析[J].生态学报,24(2):379-383.
    42刘加珍,陈亚宁,李卫红,等. 2006.荒漠河岸植被的受损过程与受损机理分析[J].地理学报,61(9):946-956.
    43刘康,王效科,杨帆,等. 2005.红花尔基地区沙地樟子松群落及其与环境关系研究[J].生态学杂志,24(8):858-862.
    44刘普幸,陈发虎,勾晓华,等. 2005.额济纳旗近100a来胡杨年表的建立与响应分析[J].中国沙漠,25(5):764-768.
    45刘普幸,勾晓华,张齐兵,等. 2004.国际树轮水文学研究进展[J].冰川冻土,26(6):720-728.
    46刘晏良. 2000.塔里木河中下游实地踏勘报告[M].北京:中国统计出版社,16-17,163-178,276-300.
    47莫治新,尹林克,文启凯. 2004.塔里木河中下游表层土壤盐分空间变异性研究[J].干旱区研究,21(3):250-253.
    48彭少麟,陆宏芳. 2003.恢复生态学焦点问题[J].生态学报,23(7):1251.
    49彭少麟. 1996.恢复生态学与植被重建[J].生态科学,15(2):26-31.
    50乔丽芳,赵恒君,常正林,等. 2007.新乡市卫河生态恢复与景观重建探讨[J].水土保持研究,14(4):174-181.
    51秦宁生,靳立亚,时兴合,等. 2004.利用树轮资料重建通天河流域518年径流量[J].地理学报,59(4):550-556.
    52全国土壤普查办公室. 1992.中国土壤普查技术[M].北京:农业出版社.
    53饶瑞符. 1998.塔里木河的变迁与整治[C] //毛德华等.塔里木河流域水资源、环境与管理.北京:中国环境科学出版社,184-193.
    54任海,李萍,周厚诚. 2001a.海岛退化生态系统的恢复[J].生态科学,21(1):60-64.
    55任海,李志安,申卫军,等. 2006.中国南方热带森林恢复过程中生物多样性与生态系统功能的变化[J].中国科学,36(6):563-569.
    56任海,刘庆,李凌浩. 2008.恢复生态学导论(第二版)[M].北京:科学出版社,6-7,36.
    57任海,彭少麟,陆宏芳. 2004.退化生态系统恢复与恢复生态学[J].生态学报,24(8):1761-1762.
    58任海,彭少麟. 2001b.恢复生态学导论[M].北京:科学出版社,14-17.
    59邵雪梅. 1997.树木年代学的若干进展[J].第四纪研究,(3):265-271.
    60沈泽昊,张新时. 2000.三峡大老岭地区森林植被的空间格局分析及其地形解释[J].植物学报,42(10):1089-1095.
    61宋永昌. 2001.植被生态学[M].上海:华东师范大学出版社,353-422.
    62宋郁东,樊自立,雷志栋,等. 2000.中国塔里木河水资源与生态问题研究[M].乌鲁木齐:新疆人民出版社,383-384,390-391.
    63孙军艳,刘禹,蔡秋芳,等. 2004.额济纳233年来胡杨树轮年表的建立及其所记录的气象、水文变化[J].第四纪研究,26(5):799-807.
    64孙儒泳,李庆芬,牛翠娟,等. 2002.基础生态学[M].北京:高等教育出版社,7.
    65孙晓霞,张继贤,刘正军. 2006.利用面向对象的分类方法从IKONOS全色影像中提取河流和道路[J].测绘科学,31(1):62-63.
    66唐立松,张佳宝,程心俊,等. 2002.干旱区绿洲荒漠交错带土地退化及生态重建[J].干旱区研究,19(3):44-48.
    67万福绪,张金池. 2003.黔中喀斯特山区的生态环境特点及植被恢复技术[J].南京林业大学学报,27(1):45-49.
    68王国梁,刘国彬,侯喜禄. 2002.黄土高原丘陵沟壑区植被恢复重建后的物种多样性研究[J].山地学报,20(2):182-187.
    69王蕙,赵文智,常学向. 2007.黑河中游荒漠绿洲过渡带土壤水分与植被空间变异[J].生态学报27(5):1731-1739.
    70王晶晶,白雪,邓晓曲,等. 2008.基于NDVI的三峡大坝岸边植被时空特征分析[J].地球信息科学,10(6):808-815.
    71王克林. 1998.洞庭湖湿地景观结构与生态工程模式[J].生态学杂志,l7(6):28-32.
    72王堃. 2004.草地植被恢复与重建[M].北京:化学工业出版社,4-5.
    73王婷,于丹,李江风,等. 2003.树木年轮宽度与气候变化关系研究进展[J].植物生态学报,27:23-33.
    74王亚军,陈发虎,勾晓华. 2004.黑河230 a以来3~6月径流的变化[J].冰川冻土,26(2):202-206.
    75王亚军,陈发虎. 2002.利用树轮资料重建黑河古径流的变化[J].河北建筑科技学院学报,19(3):60-62.
    76王政权. 1999.地统计学及其在生态学中的应用[M].北京:科学出版社,162-192.
    77王遵亲. 1993.中国盐渍土[M].北京:科学出版社,1-573.
    78吴后建,但新球,舒勇. 2007.长江中下游洲滩湿地生态恢复研究[J]. 38(8):53-55.
    79夏汉平,蔡锡安. 2002.采矿地的生态恢复技术[J].应用生态学报,13(11):47l-477.
    80肖笃宁,李小玉,宋冬梅,等. 2006.民勤绿洲地下水开采时空动态模拟[J].中国科学,36(6):567-578.
    81肖生春,肖洪浪,周茂先,等. 2004.近百年来西居延海湖泊水位变化的湖岸林树轮记录[J].冰川冻土,26(5):557-562.
    82辛晓平,高琼,李镇清,等. 1999.松嫩平原碱化草地植物群落分布的空间和环境因素分析[J].植物学报,41(7):775-781.
    83新疆农业厅,新疆土壤普查办公室. 1996.新疆土壤[M].北京:科学出版社,51-52.
    84徐海量,宋郁东,王强,等. 2004.塔里木河中下游地区不同地下水位对植被的影响[J].植物生态学报,28(3):400-405.
    85徐海量,陈亚宁,杨戈. 2003塔里木河下游生态输水对植被和地下水位的影响[J].环境科学,24(4):18-22.
    86徐嵩龄. 1995.恢复生态学的理论性质[J].科学导报,(3):18-21.
    87许英勤,胡玉昆,马彦华. 2001.塔里木河中下游区域开发对生态环境的影响及生态环境恢复与重建对策[J].干旱区地理,24(4):342-346.
    88杨玉海,陈亚宁,李卫红. 2007.塔里木河下游土壤特性及荒漠化程度研究[J].水土保持学报,21(1):45-49.
    89杨玉海,陈亚宁,李卫红. 2008.新疆塔里木河下游土壤特性及其对物种多样性的影响[J].生态学报,(2):602-611.
    90余建英,河旭宏. 2003.数据统计分析与SPSS应用[M].北京:人民邮电出版社,295.
    91余伟莅,郭建英,胡小龙,等. 2008.浑善达克沙地东南部退化草场植物群落DCCA排序与环境解释[J].干旱区地理,31(5):759-764.
    92余作岳,彭少麟. 1996.热带亚热带退化生态系统的植被恢复生态学研究[M].广州:广东科技出版社,1-9.
    93俞筱押,李玉辉,马遵平. 2007.云南石林喀斯特小生境木本植物多样性特征[J].山地学报,25(4):438-447.
    94喻理飞,朱守谦,祝小科,等. 2002.退化喀斯特森林恢复评价和修复技术[J].贵州科学,20(1):7-13.
    95喻树龙,袁玉江,金海龙,等. 2005.用树木年轮重建天山北坡中西部7~8月379a的降水量[J].冰川冻土,27(3):404-410.
    96袁玉江,穆桂金. 2004.新疆天山山区近40年春季气候变化特征与平原区的比较[J].干旱区地理,27(1):35-40.
    97袁玉江,喻树龙,穆桂金,等. 2005.天山北坡玛纳斯河355 a来年径流量的重建与分析[J].冰川冻土,27(3):411-417.
    98袁玉江. 1989.塔里木河中游胡杨年表的响应函数[C] //李江风等.新疆年轮气候年轮水文研究.北京:气象出版社,160-166.
    99张春雨,赵秀海,夏富才. 2008.长白山次生林树种空间分布及环境解释[J].林业科学,44(8):1-8.
    100张德敏,黄骁勇,张苋. 2004.塔里木河大西海子至台特玛湖段生态修复对策[J].中国水土保持SWCC,(11):12-18.
    101张峰,张金屯,张峰. 2003.历山自然保护区猪尾沟森林群落植被格局及其环境解释[J].生态学报,23(3):421-427.
    102张峰,张金屯. 2000.我国植被数量分类和排序研究进展[J].山西大学学报(自然科学版),23(3):93-97.
    103张丽华,陈亚宁,李卫红. 2006.塔里木河下游生态输水对植物群落数量特征的影响[J].干旱区研究,23(1):32-38.
    104张文辉,刘国彬. 2007.黄土高原植被生态恢复评价、问题与对策[J].林业科学,43(1):102-106.
    105张文辉,卢涛,马克明,等. 2004岷江上游干旱河谷植物群落分布的环境与空间因素分析[J].生态学报,24(3):552-558.
    106张先平,王孟本,佘波,等. 2006.庞泉沟国家自然保护区森林群落的数量分类和排序[J].生态学报,26(3):754-761.
    107张小炎,袁玉江. 1989.用年轮年表重建塔里木中游年径流量[C] //李江风等.新疆年轮气候年轮水文研究.北京:气象出版社,131-137.
    108张新时. 1991.西藏阿里植物群落的间接梯度分析、数量分类与环境解释[J].植物生态学报与地植物学学报,16(4):301-309.
    109张永香,勾晓华,胡文东,等. 2005.树轮记录的贺兰山区近百年来的干旱事件[J].生态学报,25(8):2121-2126.
    110张元明,陈亚宁,张小雷. 2004.塔里木河下游植物群落分布格局及其环境解释[J].地理学报,59(6):903-910.
    111章家恩,徐琪. 1999.恢复生态学研究的一些基本问题探讨[J].应用生态学报,10(1):109-113.
    112赵静,姜琦刚,李卫东,等. 2008.基于NDVI变化的三江源生态环境演变分区研究[J].世界地质,27(4):427-431.
    113赵万羽,陈亚宁. 2008.塔里木河下游断流河道整治引发的生态问题与重建对策分析[J].地理科学,28(4):496-500.
    114赵英时,等. 2003.遥感应用分析原理与方法[M].北京:科学出版社,374.
    115周连碧. 2007.我国矿区土地复垦与生态重建的研究与实践[J].有色金属,59(2):91-94.
    116周淑琴,吴发启,荆耀栋. 2007.毛乌素沙地南缘植被覆盖度动态监测—以陕西省靖边县为例[J].安徽农业科学,35(27):8550-8551,8573.
    117周文盛. 1984.根据新疆阿尔泰山南坡树木年轮初步分析额尔齐斯河500年(1582-2081)径流[J].新疆地理,7(1):35-50.
    118周兆叶,储少林,王志伟,等. 2008.基于NDVI的植被覆盖度的变化分析—以甘肃省张掖市甘州区为例[J].草业科学,25(12):23-29.
    119朱震达.1998.中国土地荒漠化的概念、成因及防治[J].第四纪研究,(2):145-155.
    120 Abd-EL-Ghani M M. 2000. Vegetation composition of Egyptian inland saltmarshes [J]. Botanical Bulletin of Academia Sinica,41:305-314.
    121 Antoine G,Niklaus E Z. 2000. Predictive habitat distribution models in ecology[J]. Ecological Modeling,135:297-313.
    122 Aronson J,Le Floc’h E. 1996. Vital landscape attributes:missing tools for restoration ecology [J]. Restoration Ecology,4(4):377-387.
    123 Aronson J,Li J,E Le Flo’ch. 2001. Combining biodiversity conservation,management andecological restoration:a new challenge for the arid and semiarid regions of China [C] // Jin JM ed. Symposium of Iternational Conference of Biodiversity Protection and the Use of Advanced Technology. Beijing:Beijing Science and Technology Press,279-301.
    124 Borcard D,Legendre P,Drapeau P. 1992. Partialling out the spatial components of ecological variation[J]. Ecology,73:1045-1055.
    125 Cairns J J. 1992. Restoration of Aquatic Ecosystems [M]. Washington,D C:National Academy Press,32-38.
    126 Cambardella C A,Moorman T B,Novak J M,et a1. 1994. Field-scale variability of soil properties in central Iowa soils[J]. Soil Science Society of America Journal,58:1501-1511.
    127 Cleveland M K. 2000. A 963-year reconstruction of summe(rJJA)stream flow in the White River,Arkansas,USA,from tree-rings [J]. The Holocene,10(1):33-41.
    128 Cook E R,Jacoby G C. 1983. Potomac River stream flow since 1730 as reconstruction tree rings[J]. Journal of Climate and Applied Meteorology,22(10):1659-1672.
    129 Cook E R,Kairiukstis L A. 1990. Methods of Dendrochronology:Applications in the Environmental Sciences[M]. Dordrecht:Kluwer Academic Publishers,1-200.
    130 Cynthia S A,Joseph M W,Stephen R Y. 2000. Characterizing the spatial structure of vegetation communities in the Mojave Desert using geostatistical techniques[J]. Computers & Geosciences,26:397-410.
    131 Daily G C. 1995. Restoring value to the worlds degraded lands[J]. Science,269:350-354.
    132 Diekmann M,Eilertsen O,Fremstad E,et al. 1999. Beech forest communities in the Nordic countries multivariate analysis [J]. Plant Ecology,140:203-220.
    133 Fritts H C,Swetnam T W. 1989. Dendroecology:a tool for evaluation variation in past and present forest environments [J]. Advance in Ecological Research,19:111-188.
    134 Fritts H C. 1976. Trees and Climate [M]. London:Academic Press Inc,5-10.
    135 Gaynor V. 1990. Prairie restoration on acorporate site[J]. Restoration and Reclamation Review,1(1):35-40.
    136 Glenn M,Robert E,Brian H,et al. 2002. Jonathan H,Dana M. Vegetation variation across CapeCod,Massachusetts:environmental and historical determinants[J]. Journal of Biogeography,29:1439-1454.
    137 Hao Xu,Yan Li. 2006. Water-use strategy of three central Asian desert shrubs and their responses to rain pulse events[J]. Plant and Soil,285:5-17.
    138 Helley E J,Jr LaMarche V C. l964. A400-Year flood in Northern California[R]. U.S.Geological Survey Professional Paper 600-D,34-37.
    139 Hirschboeck K K. 1987. Hydroclimatically defined mixed distributions in partial duration flood series[J]. Geographers,77:19-29.
    140 Hobbs R J,Norton D A. 1996. Towards a conceptual framework for restoration ecology[J]. Eestoration Ecology,4(2):93-110.
    141 ITT Visual Information Solutions. 2008. ENVI Feature Extraction Module Users Guide[M]. ITT Corporation,8.
    142 Jones P D,Briffa K R,Pilchen J R. 1984. Riverflow reconstruction from tree rings in southern Britain [J]. Climatology. 4:46l-472.
    143 Jonsson K.2001. A dendro-hydrological method for reconstruction of river flow in the Swedish boreal zone [C] // Conference“Tree Ring and People”,September 22-26,Davos,Switzerland.
    144 Jordan W R,Gilpin M E. Aber J D. 1987. Restoration Ecology:A Synthetic Approach to Ecological Research[M]. New York:Cambridge Press,15-20.
    145 Kaufman R. 1995. Ecological approaches to riparian restoration in northeast Oregon[J]. Restoration and Managemnet Notes,13:12-15.
    146 Li H B,Reynolds J F. 1995. On definition and quantification of heterogeneity [J]. Oikos,73(2):280-284.
    147 Loaiciga H A,Haston L,Michaelsen J. 1993. Dendrohydrology and long-term hydrologic phenomena[J]. Reviews of Geophysics,31(2):151-171.
    148 Magda V A,Zelenova A V,Andreev S G. 2001. A 280-year reconstruction of Baikal Lake water level from tree rings[C] // Conference of“Tree Rings and People”. September 22-26,Davos,Switzerland.
    149 Mansfield B,Towns D. 1997. Lessons of the islands:restoration in New Zealand[J]. Restoration and Managemnet Notes,15(2):150-154.
    150 Martin Baatz,et al. 2000. ECognition User Guide [Z]. Germany:Definiens AG,Munchen,6-8.
    151 Mas J F. 1999. Monitoring land-cover changes:a comparison of change detection techniques[J]. International Journal of Remote Sensing,20:139-152.
    152 Meko D M,Therrell M D,Baisan C H,et al. 2001. Sacramen to River flow reconstructed to A.D.
    869 from tree rings[J]. Journal of the American Water Resources Association,37(4):1029-1040.
    153 Middleton B. 1999. Wetland Restoration:Flood Pulsing and Disturbance Dynamics[M]. New York:John Wiley & Sons,Inc,1-311.
    154 Mitsch W J,Jorgensen S E. 1989. Ecological Engineering [M]. New York:John Wiley & Sons,Inc,26-126.
    155 Nelson R F. 1983. Detecting forest canopy change due to insectactivity using Landsat MSS[J]. Photogrammetric Engineering and Remote Sensing,49:1243-1251.
    156 Nikos N,Santiago C. 2004. Studying within stand structure and dynamics with eostatistical and molecular marker tools[J]. Forest Ecology and Management,189:223-240.
    157 Parham W. 1993. Improving Degraded Lands:Promising Experience form South China [M]. Hono lulu:Bishop Museum Press,11-23.
    158 Pederson A,Jacoby G C,DArrigo R,et a1. 2001. Hydrometeorological reconstructions for north eastern Mongolia derived from tree rings:AD 1651-1995[J]. Journal of Climate,14(5):872-881.
    159 Ren H,Peng S L. 1998. Restoration and sustainable development of degraded ecosystem in low subtropical China[C] // Chen Z,et al. Symposium of Life Science-3rd Youth Academic Conference of Chinese Science Society. Beijing:Chinese Science and Technology Pres,176-179.
    160 Rouse J W,Haas R H,Schell J A,et al. 1973. Monitoring vegetation systems in the Great Plains with ERTS[J]. Third ERTS Symposium,NASA,351.
    161 Stockton C W,Meko D M. 1975. A long-term history of drought occurrence in western UnitedStates as inferred from tree rings[J]. Westherwise,28(6):245-249.
    162 Stockton C W,Fritts H C. 1971. Augmenting annual runoff records using tree ring data[C] // Hydrology and Water Resources in Arizona and the Southwest,vol.1 Arizona,Tempe,1-12.
    163 Stockton C W,Fritts H C. 1973. Long-term reconstruction of water lever changes for Lake Athabaska by analysis of tree rings[J]. Water Resources Bulletin,9(5):1006-1027.
    164 Stokes M A,Smiley T L. 1996. An Introduction to Tree-Ring Dating[M]. Tucson:University of Arizona Press,1-73.
    165 Timothy E L. 1995. Tree-ring as Indicators of Ecosystem Health[M]. CRC Press. Inc. 1-10.
    166 Torelli L. 1976. Reconstruction,prediction and simulation of multiple monthly stream-flow series [J]. Annalidi Geofisica,29(1-2):27-39.
    167 Trangmar,B B,R S Yost,G Uehara. 1985. Application of Geostatistics to Spatial Studies of Soil Properties [M]. Advanced Agronomy,38:45-94.
    168 Van der Valk A G. 1999. Succession theory and wetland restoration[C] // Proceedings of INTECOL's V International Wetlands Conference,Perth,Australia,1-162.
    169 Woodhouse C A,Overpeck J T. 1998. 2000 years of drought variability in the central United States [J]. Bulletin of the American Meteorological Society,79(12):2693-2714.
    170 Woodhouse C A. 2001. A tree-ring reconstruction of stresmflow for the Colorado Front Range[J]. Journal of the Amencan Water Resources Association,37(3):561-570.
    171 Woodward F I,Mckee I F. 1991. Vegetation and climate[J]. Environment International,17(6):535-546.
    172 Zhang C S,David McGrath. 2004. Geostatistical and GIS analyses on soil organic carbon concentrations in grassland of southeastern Ireland from two different periods[J]. Geoderma,119:261-275.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700