棉籽粕的发酵脱毒及其在肉仔鸡中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文首先通过微生物发酵试验筛选出了能够有效降解棉粕中有害成分游离棉酚(Free Gossypol,FG)的微生物菌株,并且优化出了该微生物脱毒棉粕的最佳发酵工艺条件,结果表明,料水比1:0.94、发酵时间62.33h、装料量30.96g/150mL、接种量10%、麸皮量为20%时脱毒率最大(接近86%);随后进行了发酵棉粕在肉仔鸡日粮中的应用试验研究,结果表明,与对照组相比,发酵棉粕未对肉仔鸡生产性能、肉品质、免疫器官指数及表观能量和蛋白代谢产生显著影响,当添加量为20%时,肠道乳酸菌显著增加(P<0.05),大肠杆菌显著降低(P<0.05),且最节省成本。因此,发酵脱毒棉粕的最佳添加量为20%。
     试验一发酵菌种的筛选
     试验筛选了能够高效降解棉酚的微生物菌种。首先以白地霉、扣囊、热带假丝酵母、产朊假丝酵母、3株黑曲霉和2株米曲霉9种菌株为候选菌种,使用无碳源液体培养基各30ml,另加棉粕2g进行液态发酵,25~28℃,250 r/min,摇床48h后取出各菌种发酵液测定游离棉酚含量,结果表明,产朊假丝酵母对棉酚的降解率在70%左右,其他菌种未见显著效果;接着再用产朊假丝酵母固态发酵棉粕和麸皮混合物,150ml三角瓶装料30g,28℃静置培养48h,每12h进行一次搅拌,48h后取出发酵物烘干、粉碎、测定棉酚含量。结果表明,产朊假丝酵母固态发酵棉粕脱毒率在65%~70%之间。这表明产朊假丝酵母具有有效降解棉酚的作用。
     试验二棉籽粕发酵工艺条件的优化
     本试验优化了产朊假丝酵母降解棉粕中游离棉酚的最佳工艺参数。首先利用SAS软件的Plackett-Burman设计法对产朊假丝酵母固态发酵棉粕的发酵参数进行了筛选,得出3个影响较大的重要因素,分别为:料水比、发酵时间和装料量,然后再用SAS软件二次响应面分析法进行回归分析,得到了各因素的最佳水平值。结果表明,料水比1:0.94、发酵时间62.33h、装料量30.96g/150mL时脱毒率(85.99%)最高,与优化前相比提高近20%;随后在响应面优化基础上对麸皮和接种量进行了单因素优化。结果表明,接种量10%、麸皮量为20%时脱毒率相对最高。棉粕发酵后粗蛋白含量未有变化,可溶性蛋白从6.96%提高到10.2%,必需氨基酸——赖氨酸、苏氨酸、亮氨酸、异亮氨酸等的含量增加。发酵工艺参数优化后,棉粕的脱毒率有所提高,且发酵后棉粕的营养价值有所改善。
     试验三发酵棉籽粕对肉仔鸡生产性能及相关指标的影响
     本试验探讨了发酵棉粕对肉仔鸡生产性能、肉品质、免疫器官指数和蛋白能量代谢的影响。选用192只1日龄AA肉仔鸡,随机分为4个处理组,每处理6个重复,每重复8只鸡,对照组饲喂玉米豆粕基础日粮,处理组1-3分别添加发酵棉粕15%、20%和30%替代部分豆粕。试验期6周。试验结果显示,发酵棉粕处理组的肉仔鸡生产性能、肉品质、免疫器官指数和表观蛋白代谢值与对照组相比未有显著差异(p>0.05)。综合考虑经济成本认为,发酵棉粕的最佳添加量为20%。
     试验四发酵棉籽粕对肉仔鸡肠道微生物区系的影响
     本试验采用传统微生物培养和PCR-DGGE两种方法研究了发酵棉粕对肉仔鸡盲肠几种主要微生物的数量及区系的影响。选用192只1日龄AA肉仔鸡,随机分为4个处理组,每处理6个重复,每重复8只鸡,对照组饲喂玉米豆粕基础日粮,处理组1-3分别添加发酵棉粕15%、20%和30%替代部分豆粕。试验期6周。试验最后一天从每个重复中随机抽取1只肉仔鸡进行屠宰,无菌采集盲肠食糜,分析盲肠微生物数量和区系。结果表明,当发酵棉粕添加量为15%和20%时,盲肠乳酸杆菌的数量显著增加(P<0.05),同时大肠杆菌数量显著减少(P<0.05),双歧杆菌的数量增加但未达到显著水平(P>0.05);PCR-DGGE图谱表明,饲喂发酵棉粕后,肠道内微生物种群结构有轻微变化,发酵棉粕增加了微生物种群数量,各处理组中微生物种群类型既有相似又有差异,但未出现显著差异。试验表明,发酵棉粕可调节肉仔鸡肠道的微生态平衡,使有益菌尤其是乳杆菌的数量增加而大肠杆菌数量减少。
The microbe which can degrade free gossypol(FG) in cotton seed meal(CSM) was screened in this study, and optimal fermentation parameters for bio-degradation of FG was studied.The result showed substrate:water (moisture)1:0.94, fermentation time62.33h, material adding 30.96g/150mL, inoculum size 10%, wheat bran 20% where the elimination rate of FG was maximized to 86%.Animal experiment was also conducted to study effects of fermented cottonseed meal(FCSM) in diets on broilers. It showed that growth performance, meat quality, immune organ indices, apparent protein and enegy digestibility were not affected(P>0.05) in FCSM groups compared to the control, and viable count of Lactobacillus was enriched and E.coli was reduced significantly when birds fed a diet containing 20% FCSM. In conclusion, the optimum added proportion of FCSM was 20%.
     Experiment 1. The Screening of Microbe for Detoxification of Free Gossypol in Cootonseed Meal
     This experiment was conducted to screen a microbe which can degrade FG in CSM.The liquid-state CSM culture without other carbon source was used to screen the microbe needed from 9 strains, 25~28℃, 250 r/min, and FG level was determined after 48h shaking culture, the result showed Candida utilis can degrade 70% FG in CSM, and no difference was observed in other 8 strains, then Candida utilis was used to ferment CSM in solid state substrate, 28℃, FG level was determined in fermented substrate after 48h static-culture. The result showed that elimination rate was around 65%~70%. The tested Candida utilis in this trial could largely degrade FG in CSM.
     Experiment 2. The Optimization for Bio-detoxification of Free Gossypol in Cottonseed Meal
     The optimal condition for biodegradation of FG was studied. Plackett-burman and response surface analysis method were applied to optimize fermentation parameters. The results indicated the elimination rate was mainly influenced by moisture, material adding,and fermentation time by Plackett-burman.In the second step, the levels of those three main factors were further optimized by using Box-Behnken design, the optimal levels of the variables were as follows: moisture 48% (water:substrate=0.94:1), material adding 30.96g, fermentation time 62.33h. Under the optimal conditions, the elimination rate was increased by almost 20%, up to 85.99%. At three fermentation batches under optimization, the experiment values were almost close to the predictive values. After fermentation, the crude protein level was not affected, and soluble protein was enhanced from 6.96% to 10.2%, some essential amino acids levels were also increased, but arginine was decreased. After optimization, FG was reduced largely, and the quality of cottonseed meal was improved remarkably.
     Experiment 3. Studies on Application of Fermented Cottonseed Meal in Broiler Diet
     This experiment was conducted to study the effects of fermented cottonseed meal (FCSM) in broiler diets on growth performance, meat quality, immune organ and digestibility of gross energy and crude protein.A total of one hundred and ninty-two day-old broiler chickens were alloted to 4 treatments with 6 replicates of 8 chickens each. The experiment lasted 6 weeks. The dietary treatments were: (1) 15% FCSM; (2) 20% FCSM;(3) 30% FCSM ; (4) the control (corn-soybean diet without FCSM) . The result showed no significant differences in growth performance were found between FCSM and the control group (P>0.05). Compared with the control, meat quality, immune organ and metabolism of gross energy and crude protein in broilers of FCSM groups were not affected (P>0.05). Taking economic cost into consideration, the optimum added amount of FCSM was 20%.
     Experiment 4. Effect of Fermented Cottonseed Meal on Intestinal Microbial Flora in Broilers
     The effect of FCSM on intestinal microbial community in broilers was studied by traditional method and denaturing gradient gel electrophoresis (DGGE) analysis of 16S ribosomal RNA. A total of one hundred and ninty-two day-old broiler chickens were alloted into 4 treatments with 6 replicates of 8 chickens each.The experiment lasted 6 weeks. The dietary treatments were: (1) 15% FCSM; (2) 20% FCSM; (3) 30% FCSM ; (4) the control (corn-soybean diet without FCSM). At the end of the experiment, 24 randomly selected chickens from each replicate were sacrified to study microflora of caecum contents. The traditional method showed that compared with the control, FCSM groups did not affect Bifidobacterium enumeration (P>0.05), whereas, viable count of Lactobacillus was enriched and E. coli was reduced significantly when birds were fed diets containing 15% and 20% FCSM(P<0.05). DGGE analysis showed there were no abnormity of the microflora in the cecum. In conclusion, FCSM can improve intestinal micro-ecosystem, increased beneficial bacteria and reduced harmful bacteria.The optimum added amount of FCSM was 20%.
引文
1. 蔡 俊.复合菌发酵乳酸废渣生产蛋自质饲料的研究. 中国饲料,2006,3:12~13.
    2. 陈曦,赵建国.混株发酵混合酒糟生产含酶蛋白饲料的研究. 中国酿造,2006,5:30~31.
    3. 陈庆森,刘剑虹,蔡红远.多菌种共发酵生物转化天然纤维素材料的研究. 天津商学院学报,2000,20(3):1 ~ 6.
    4. 陈天寿.微生物培养基的制造与应用. 北京:中国农业出版社,1995.
    5. 陈洪章,徐建.现代固态发酵原理及应用. 北京:化学工业出版社,2004.
    6. 德英,往亚青,张景宏,陆书凯,任志兰.固态发酵及其在饲料工业中的应用.中国饲料,2000,10:29~31.
    7. 杜红方.转基因水稻作为肉子鸡日粮原料的安全性评价 [博士论文] .北京:中国农业科学院,2006.
    8. 范代娣.细胞培养与蛋白质工程. 北京:化学工业出版社,2000,30~32.
    9. 郭翠华,李胜利,唐金全,刘瑞.脱酚棉籽蛋白及其在奶牛中的应用.中国畜牧杂志,2006,42(6):63~64.
    10. 郭维烈,郭庆华.新型发酵蛋白饲料.北京:科学技术出版社,1996,147~352.
    11. 顾赛红,孙建义,李卫芬.黑曲霉PES固态发酵对棉籽粕营养价值的影响.中国粮油学报,2003,18(1):71~72.
    12. 何学东.利用棉籽粕生产单细胞饲料蛋白的研究.高等函授学报(自然科学版),1999,5:44-45.
    13. 黄达明,吴其飞,陆建明,管国强.固态发酵技术及其设备的研究进展.食品与发酵工业,2006,29 (6):87~88.
    14. 胡文锋,郭志忠,陈羡美.固态发酵技术生产蛋白饲料的研究进展.农机化研究,2005,1(6):46~47.
    15. 李爱科.畜禽无鱼粉无豆粕日粮研究(二).粮油食品科技,1998,(1):20~21.
    16. 李爱科.我国主要饼粕类饲料资源开发及利用技术进展.动物营养研究进展,2004.
    17. 李树鹏, 赵献军,黄芪多糖及益生菌合生元对雏鸡肠道微生态区系的影响. 家畜生态学报,2005, 26(3):24~25.
    18. 刘德海,安明理,王红云,周伏忠,陈小鸽.固态发酵复合酶培养条件的优化及工艺研究.饲料工业,2004,25(6):37~38.
    19. 罗明朗.论固体发酵对物料蛋白质含量的提高.粮食与饲料工业,1996,(11):25~28.
    20. 李贤柏.固态发酵鸡粪生产蛋白饲料用菌种的筛选.重庆师范学院学报,2002,(19)3:47~48.
    21. 李发生,谷庆宝,菅小东.双菌联合固态发酵生产酒糟菌体蛋白饲料的试验研究.环境科学研究,1999,12(6):39 ~ 42.
    22. 李建军.实验犬棉籽饼中毒.畜牧与兽医,2002,32(5):291.
    23. 聂宇燕,李延云,白云龙,朱杰.棉饼生物脱毒菌种的筛选及生物蛋白饲料生产工艺的试验研究.饲料工业,1997,18(6):4-5.
    24. 潘天玲,张东峰,赵昌盛,李坤平.混菌固态发酵豆渣生产菌体蛋白的研究.化学与生物工程,2004,6:35~36.
    25. 乔莉娟.猪肉滴水损失不同测定方法的比较以及与猪肉品质和胴体性状的关系.中国畜牧兽医, 2004,31( 11):43.
    26. 任道群,唐玉明,姚万春,熊 洪.廖建明高效生物饲料菌株的选育及应用研究.中国饲料,2005,2:17~18.
    27. 史小丽,潘锋,杨树林.固态发酵秸秆生产单细胞蛋白的初步研究.粮食与饲料工业,2000,12:27~28.
    28. 施安辉,张 勇,曲 品.高效降解棉酚菌株的选育及脱毒条件的研究.微生物学报,1998,38 (4):318~320.
    29. 孙建义,许梓荣.利用假丝酵母进行棉籽饼脱毒的研究.中国粮油学报,1995,10 (1):61~64.
    30. 王利,汪开毓.动物棉酚中毒的研究进展.畜禽业,2002,(5):26~28.
    31. 王治华,蔡治华,江汪洋,王连仲.膨化棉籽对荷斯坦肥育牛的饲喂效果.中国牛业科学,2006,32(1):28~29.
    32. 王冬梅,郭书贤,臧晋,薛刚,赵丰利.利用 EM 菌剂对棉籽饼粕发酵脱毒的研究.中国棉花,2002,29(8):14~15.
    33. 王冬梅,郭书贤,薛刚.EM 技术在啤酒糟发酵饲料上的应用研究.粮食与饲料工业,1999(4):25 ~ 26.
    34. 王红云,高占峰,付 才.棉籽饼粕脱毒方法研究进展.河北农业科学,2004,8(1):67~68.
    35. 王金全,蔡辉益,周岩华,刘国华,张 姝,印遇龙.小麦日粮非淀粉多糖和木聚糖酶对肉仔鸡肠道微生物区系的影响.畜牧兽医学报,2005,36 (10):1014~1020.
    36. 汪仁官.试验设计与分析.北京:中国统计出版社,1998.
    37. 吴小月,陈金湘.利用微生物降解棉仁饼粕中游离棉酚的研究.中国农业科学,1989,22 (2):82~86.
    38. 徐福建,陈洪章,李佐虎.固态发酵工程研究进展.生物工程进展,2002,122(1):44~48.
    39. 徐坚平,刘均松,孔维.利用秸杆类物质进行微生物共发酵生产单细胞蛋白.微生物学通报,1995,22(4):222 ~ 225.
    40. 徐岩.棉粕替代豆粕对蛋种鸡生产性能影响的研究.河北畜牧兽医,2003,19(11):22~23.
    41. 阎轶洁,宋维平,张建云.棉籽饼粕在畜禽中的应用及棉酚的脱毒方法研究.饲料工业,2005,26(3):47~49.
    42. 姚晓红,吴逸飞,汤江武,罗明.微生物混合发酵去除生豆粕中胰蛋白酶抑制剂的研究.中国饲料,2005,24:16~17.
    43. 尹清强.棉仁粕菜籽粕和葵花粕对 1~2 月龄肉仔鸡生长性能的影响.畜牧与兽医,1999,31(4):12~14.
    44. 杨景芝,孙衍华,牛钟相,张维德,薛连红.棉酚脱毒微生物的筛选及其脱毒效果的研究. 山东农业大学学报,1999,30(1):45~48.
    45. 杨继良,周大云,杨伟华,朱荷琴,许红霞,夏俊英,冯新爱,项时康.高效降解棉酚菌种的筛选及棉饼脱毒参数的研究.棉花学报,2000,12(5):225~229.
    46. 闫轶洁.黑曲霉固体发酵棉仁粕优化工艺的研究[硕士论文] .北京:北京首都师范大学,2005.
    47. 张润楚,郑海涛,兰燕.试验设计与分析及参数优化.北京:中国统计出版社,2003.
    48. 张荣森.蛋鸡棉籽饼慢性中毒.中国兽医杂志,1992,7(2):321~322.
    49. 张跃顺.棉籽饼的脱毒方法及其效果.畜牧生产,2004,(1):13~14.
    50. 赵春法,韩记用,靳玉芬.蛋鸡日粮中添加饼粕发酵蛋白取代鱼粉.中国家禽,2004,26(1):22~23.
    51. 周立新,黄凤洪.蛋白饲料资源的开发利用.粮食与饲料工业,1999(4):23 ~ 24.
    52. 钟世荣,余伯良,林琦.菜籽饼粕与酱油渣混合发酵生产蛋白饲料的研究.粮食与饲料工业,2001,8:32~33.
    53. 钟世博,赵建国,朱中原.混种固态发酵大曲酒糟生产蛋白饲料研究.粮食与饲料工业,2000(11):23 ~ 25.
    54. Apajalahti J. Comparative gut microflora,metabolic challenges and potential opportunities. Journal of Applied Poultry Research 2005, 14:444~453.
    55. Barraza M.L., Coppock C.E., Brooks K.N. Iron sulfate and feed pelleting to detoxify free gossypol in cottonseed diets for dairy cattle[J]. Journal of Dairy Science 1991,74 (10) : 3457~3467.
    56. Box G.E.P., Behnken D.W. Some new three level designs for the study of quantitative variables. Technometrics 1960, (2) :455~476.
    57. Canella M, Sodini G. Extraction of gossypol and oligosaccharides from oil seed meals. Journal of Food Science 1977, 42: 1218~1219.
    58. Carter W.H., Wampler G.L., Stablein D.M. Review of the application of response surface methodology in the combination therapy of cancer . Cancer Treatment Reports 1983, 70:133~140.
    59. Dapkevicius Mlne, Rombouts F.M., Houben J.H. Biogenic amine formation and degradation by potential fish silage starter icroorganisms. International Journal of Food Microbiology 2000, 57(1) : 107 ~ 114.
    60. David A Mitchell, Nadia Krieger, Deidre MStuart, Ashok Pandey. New developments in solid statefermentation : I~bioprocesses and products. Process Biochem 2000, 35 : 121 ~ 122.
    61. Donskey C.J., Hujer A.M., Das S.M. Use of denaturing gradient gel electrophoresis for analysis of the stool microbiota of hospitalized patients. Journal of Microbiological Methods 2003, 39 (2) :249~256.
    62. Dunbar J, White S, Forney L. Genetic diversity through the looking glass:effect of enrichment bias. Appl Environ Microbiol 1997, (63):1326~ 1330.
    63. Eisele G.R. A perspective on gossypol ingestion in swine, Vet. Hum. Toxicol 1986, 28: 118–122.
    64. Fischer S.G., Lerman L.S. DNA fragments differing by single base~pair substitutions separated in denaturing gradient gels: Correspondence With Melting Theory. Proc Natl Acad Sci USA ,1983,80:1579~158.
    65. Hammoumi A ,EYachioui M,Amarouch H. Characterization of fermented fish waste used in feeding trials with broilers. Process Biochemistry 1998, 33(4) : 423 ~ 427.
    66. Henika R.G., Palmer G.M. Response surface methodology revisited. Cereal Food Science 1976, 21:432~445.
    67. Hill W.J., Hunter W.G.A. Review of response surface methodology:A Literature Review . Technometrics 1966, 8:571~590.
    68. Hillman K. Manipulation of the intestinal microflora for improved health and growth in pigs. Proceedings of the World’s Poultry Science Association Spring Meeting[C] . 1999. 59~61.
    69. Jensen. Are peptides needed for optimum animal nutrition. Feed management 1991, 114:1122~1129.
    70. Jin L.Z., Ho Y.W., Abdullah N. Effects of adherent Lactobacillus cultures on growth, weight of organs and intestinal microflora and volatile fatty acids in broilers. Anim Feed Sci Technol 1998, 70: 197~209.
    71. Kephart, Sheritte. Performance and nutrent balance in growing swince fedlow-protein diet supplemented with amino acids and potassium . Anim Sci 1990, 68(7): 1999~2008.
    72. Kocherginskaya S.A., Aminov R.I., White B.A. Analysis of the rumen bacterial diversity under two different diet conditions using denaturing gradient gel electrophoresis random sequencing and statistically ecology approaches. Anaerobe 2001, 7:l19~134.
    73. McCracken V.J., Simpson J.M., Mackie R.L. Molecular ecological analysis of dietary and antibiotic induced alterations of the mouse intestinal microbiota. Journal of Nutrition 2001, 131 :1862~1870.
    74. Muyzer G, Waal E.C., Uttrlinden A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction~amplified genes coding for 16SrRNA . Appl Environ Microbiol 1993, 59(3):695~700.
    75. Nagalakshmi D, Sastry V.R.B., Agrawal D.K. Detoxification of undecorticated cottonseed meal byvarious physical and chemical methods. Animal Nutrition and Feed Technology 2002, 2(2) : 117~126.
    76. Nagalakshmi D, Sastry V.R.B., Pawde A. Rumen fermentation patterns and nutrient digestion in lambs fed cottonseed meal supplemental diets . Animal Feed Science and Technology 2003, 103: 1~4.
    77. Nwuka C.F.I., Adetiloye P.O., Afolami C.A. Use of household wastes and crop residues in small ruminant feeding in Nigeria. Small Ruminant Research 1997, 24(3) : 233 ~ 237.
    78. Pandey A., Carlos R., David Mitchell . New developments in solid state fermentation : I~bioprocesses and products. Process Biochem 2000, 35 :1153 ~ 1169.
    79. Plackett R.L., Burman J.P. The design of optimum multifactorial experiments. Biometrika 1946, 33:305–325.
    80. Pons W.A., Eaves P.H. Aqueous acetone extraction of cottonseed. U.S. patent 3, 557,168 (1971).
    81. Mead R, Pike D.J. A Review of response surface methodology from a biometrics viewpoint. Biometrics 1975,31(12):803~851.
    82. Rahma E.H., Narasingo Rao M.S. Gossypol removal and functional properties of protein produced by extraction of glanded cottonseed with different solvents. Journal of Food Science 1984, 49:1057~1060.
    83. Raymond, Myers. Response surface methodology-current status and future directions. Journal of Quality Technology 1999, 31(1): 110~113.
    84. Reid C.A., Hillman K. The effects of ret rogradation and amylase amylopectin ratio of starches on carbohydrate fermentation and micrrobial populations in the porcine colon. Animal Science 1999, 68 : 503~510.
    85. Robinson P.H., Getachew G, De Peters E.J. Influence of variety and storage for up to 22 Days on nutrient composition and gossypol level of pima cottonseed (Gossypium spp. ) . Animal Feed Science and Tcchnology 2001, 91: 149~156.
    86. Sarrette M, Nout M.J.R., Gervais. Appll Microbial Biotechnol 1992, 37 (4) : 420~425.
    87. Savory C.J. Enzyme supplementation degradation and metabolism of three U-l4C-labelled cell-wall substrates in the fowl . British Journal of Nutrition 1992, 67 (1) : 91~102.
    88. Scerra V, Caridi A, Foti F. Influence of dairy penicillium spp. on nutrient content of citrus fruit peel . Animal Feed Science and Technology 1999, 78(2) : 169 ~ 176.
    89. Scott T.A. Balanced amino acid diets increase bird health and reduce ammonia emissions. World Poultry 1997(13): 23~25.
    90. Simpson J.M, McCracken V.J., White B.A. Application of denaturing gradient gel electrophoresis for the analysis of the porcine gastrointestinal microbiota. Journal of Microbiological Methods1999, 36: 167~ 179.
    91. Smirnova I. E., Moin R.K. Mixed cultures of cellulolytic bacteria and yeasts for preparation of feed protein based on plant waste material . Vestn S - kh Nauki Kaz(Russian), 2000(6) : 62 ~ 63.
    92. Stackebrandt E, Goebel B.M. Taxonomie note: a place for DNA reassociation and 16S rDNA sequence analysis in the present species definition in bacteriology. International Journal of Systematic Bacteriology 1994,44:846~849
    93. Tabatabai F., Golian A., Salarmoeini M. Determination and detoxification methods of cottonseed meal gossypol for Broiler chicken rations. Agricultural Sciences and Technology 2002, 16(1) : 3~15.
    94. Tannock G.W, Munro K, Harmsen H.J.M. Analysis of the fecal microflora of human subjects consuming a probiotic product containing lactobacillus rhamnosus. Appl Environ Microbiol 2000, 66 (6) :2578~2588.
    95. Tompson D.R. Response surface experimentation. New York: Food Proc Pres 1982:155.
    96. Wanger D.D., Thomas O.P. Influence of diets containing rye or pectin on the intestinal flora of chicks. Poultry Science 1987, 57 : 971~975.
    97. Willard S.T., Neuendorff D.A., Lewis A.W. Effect of free gossypol in the diet of pregnant and postpartum brahman cows on calf development and cow performance . Journal of Animal Science 1995, 73: 496~507.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700