GaN基双异质结特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于出色的高频大功率处理能力,AlGaN/GaN高电子迁移率晶体管(HEMT)器件成为下一代RF和微波功率放大器的理想继任者。近些年来,随着材料质量和器件工艺的不断进步,AlGaN/GaN HEMT器件的性能不断提升。与此同时,为了满足国防电子通讯应用领域和飞速发展的移动通信领域的需求,人们已经开始探求一些更高性能的器件结构,GaN基双异质结HEMT器件就是其中较为成功的一种。和传统的单异质结相比,双异质结构HEMT器件具有更强的载流子限域性,这不仅有助于提高载流子迁移率和器件的关断特性,而且有利于抑制电流崩塌效应。因此,开展GaN基双异质结HEMT器件研究是十分有意义的。
     本文首先从GaN基双异质结构的理论研究入手,通过一维自洽求解薛定谔/泊松方程,模拟研究了各种GaN基双异质结构中的能带结构和载流子的分布特性。模拟中主要考虑了不同背势垒层结构对载流子分布和限域性的影响。模拟结果对实验研究起到了很好的指导作用。
     之后,本文利用MOCVD技术生长了具有不同背势垒层结构的AlGaN/GaN双异质结材料。通过各种表征手段,对材料的结晶质量和电特性进行了对比分析。结果表明,材料具有较好的结晶质量和电学特性。采用较高Al组分的背势垒层会引起较大的界面失配,采用较厚的背势垒层会引起晶格应变驰豫,这两种情况下双异质结材料的结晶质量均受到了不利影响。从霍尔效应结果来看,由于背势垒层的引入,增加了材料的合金无序散射和界面粗糙度散射,因而双异质结构的2DEG迁移率并没有显著提高。另外,本文通过汞探针CV测试对AlGaN/GaN双异质结材料的载流子分布特性进行了研究,取得了载流子分布以及主沟道载流子限域性随背势垒层Al组分和厚度变化的规律,这些规律和本文理论计算的结果非常一致,验证了理论计算的正确性。
     最后,本文通过器件制造和测试,对AlGaN/GaN双异质结HEMT器件的直流输出特性、转移特性、RF小信号特性以及电流崩塌效应进行了较为深入的研究。结果表明,该器件表现非常好的直流特性和RF小信号特性。另外,受载流子浓度非常低的寄生沟道的影响,器件的跨导曲线中出现了微弱的双沟道行为;AlGaN/GaN双异质结HEMT器件中较强的载流子限域性,减弱了载流子迁移率对载流子面密度的依赖关系,因而在很宽的栅压偏置范围内,器件仍保持着较高跨导;和传统的单异质结HEMT器件相比,由于主沟道载流子限域性的增强,AlGaN/GaN双异质结HEMT器件中发生了较少的电流崩塌。
Owing to their high power handling capability at high frequencies, wide bandgap AlGaN/GaN high electron mobility transistors (HEMTs) are emerging as promising candidates for next-generation RF and microwave power amplifiers. With tremendous progresses made during the last decade in material quality and device processing, AlGaN/GaN HEMTs have been improved significantly in both dc and RF performances. Meanwhile, more advanced device structures are being explored for further performance improvement. The GaN-based double-heterojunction HEMTs, for example, are one of these structures, which have been carried out successfully. Comparaed to the conventional GaN-based heterojunction, the improved carrier confinement in GaN-based double-heterojunction HEMTs may not only result in improved carrier mobility and HEMTs'pinch-off behavior, but also help to restrain the Current collapse effect. So there is great meaning to investigate the double-heterojunction HEMTs.
     In this paper, firstly, the theory research was carried out by the one-dimensional self-consistent simulation of the band diagram and carrier distribution of the GaN-based double heterostructures. The effect of different AlGaN back-barrier layer on the carrier distribution and confinement was mainly studied in our simulation.
     Secondly, the AlGaN/GaN double heterostructure materials with different back-barrier layers were designed and grown by MOCVD method on c-plane sapphire substrate. These materials show good crystal quality and high electrical characteristics. The higher interface mismatch arosed from the high Al-content in the back barrier layer, as well as the release of crystal lattice brought by the larger thickness of the back barrier layer, have bad effect on the crystal quality. Moreover, the mercury probe CV measurement was carried out to study the effect of the Al content and thickness of the AlGaN back-barrier layer on the carrier distribution and the carrier confinement. The conclusions we made from the mercury probe CV measurement are the same with the results of theoretical simulation, so the results of theoretical simulation were verified.
     Finally, the AlGaN/GaN double-heterojunction HEMTs were fabricated and researched to analyse the DC characterization、RF small-signal characterization and the effect of current collapse. The results we made show that our AlGaN/GaN double-heterojunction HEMT have good DC and RF characterization, and the devices are suitable for the application occasion with high power and high frequencies. Morever, a slight double channel behavior was found and explained deeply in the double-heterojunction HEMT; Attributed to the improved carrier confinement in GaN-based double-heterojunction HEMT, the dependency relationship of the carrier mobility on the carrier sheet density was weakened, which made the double-heterojunction HEMT keep higher transconductance under wide gate bias range; The improved carrier confinement also made the current collapse in the double-heterojunction HEMT is much less than that in the single-heterojunction.
引文
[1.1]袁明文,潘静,氮化镓微波电子学的进展,半导体情报,1999,36(3):1
    [1.2]李彦平,关兴国,Ⅲ-Ⅴ族氮化物半导体的进展,半导体情报,1999,33(5):1
    [1.3]Ambacher. O., Growth and applications of group Ⅲ-nitrides, J. Phys. D. Appl. Phys,1998,31:2653
    [1.4]Bernardini. F., Fiorentini. V., Vanderbilt. D., Spontaneous polarization and piezoelectric constants of Ⅲ—Ⅴ nitrides, Phys. Rev. B,1997,56(16):10024
    [1.5]Gaska. R, Yang J W, Osinky. A, et al, Electron transport in AlGaN/GaN heterostructures grown on 6H-SiC substrates, Appl. Phys. Lett.,1998,72(6):707
    [1.6]Baliga. A. J., Power semiconductor device figure of merit for high frequency applications, IEEE Electron Device Lett,1989,10:455.
    [1.7]Johnson. E. O., Physical limitations on frequency and power parameters of transistors, RCA Rev,1965:163.
    [1.8]M. Asif Khan, J. N. Kuznia, J. M. Van Hove, N. Pan, J. Carter, Observation of a two-dimensional electron gas in low pressure metalorganic chemical vapor deposited GaN/AlxGa1-xN heterojunctions, Appl. Phys. Lett.,1992,60(24):3027
    [1.9]Khan M. A., Chen Q., Sun C. J., et al, Gated photodetector based on GaN/AlGaN heterostructure field effect transistor, Appl. Phys. Lett.1995,67:1429
    [1.10]Redwing J. M., Tischler M. A., Flynn J. S., et al, Two-dimensional electron gas properties of AlGaN/GaN heterostructures grown on 6H-SiC and sapphire substrates, Appl. Phys. Lett.1996,69(7):963
    1.11]Wang T., Ohno Y., Electron mobility exceeding 104 cm2/Vs in an AlGaN/GaN heterostructure grown on a sapphire substrate, Appl. Phys. Lett.,1999, 74(23):3531
    [1.12]Gaska R., Shur M. S., Bykhovski A. D., et al, Electron mobility in modulation-doped AlGaN-GaN heterostructures, Appl. Phys. Lett.1999,74:287
    [1.13]S. M. Sze, Semiconductor devices:physics and technoloty (2nd Edition), John Wiley & Sons, Inc,2002
    [1.14]J. C. Zolper, Wide bandgap semiconductor microwave technologies:From promise to practice, IEDM Tech. Dig.,1999:389
    [1.15]Tkikkawa T., Highly reliable 250 W GaN high electron mobility transistor power
    amplifier, J. Appl. Phys.,2005,44(7):4896
    [1.16]Vetury R., Wei Y.; Green D.S., et al, High power, high efficiency, AlGaN/GaN HEMT technology for wireless base station applications, IEEE MTT-S International Microwave Symposium Digest,2005:487
    [1.17]Boutros K.S.; Luo W.B., Vertically-scaled 100nm T-gate AlGaN/GaN HEMTs with 125GHz fT and 174GHz FMAX, 63rd Device Research Conference Digest, 2005:183
    [1.18]Maekawa A., Yamamoto T., Mitani E., et al,500W push-pull AlGaN/GaN HEMT amplifier for L-band high power application,2006 IEEE MTT-S International Microwave Symposium Digest,2006:722
    [1.19]Eizo M., Makoto A., Arata M.; et al, An 800-W AlGaN/GaN HEMT for S-band High-Power Application, CS MANTECH Conference,2007, Austin:213
    [1.20]Koudymov A., Wang C. X, Adivarahan V, et al, Power stability of AlGaN/GaN HFETs at 20W/mm in the pinched-off operation mode, IEEE Electron Devices Letters,2007,28(1):5
    [1.21]Okamoto,Y, et al, Improved power performance for a recessed-gate AlGaN-GaN heterojunction FET with a field-modulating plate, IEEE Transcations on Microwave Theory and Tech.,2004.52(11):2536
    [1.22]R. Gaska, M. S. Shur, T. A. Fjeldly, and A. D. Bykhovski, Two-channel AlGaN/GaN heterostructure field-effect transistors for high power applications, J. Appl. Phys.1999.Vol.85, No.5:3009
    [1.23]M. Zervos, A. Kostopoulos, G. Constantinidis, M. Kayambaki, Investigation into the charge distribution and barrier profile tailoringin AlGaN/GaN double heterostructures by self-consistent Poisson-Schrodinger calculations and capacitance-voltage profiling. J. Appl. Phys.,2002.Vol.91, No.7:1
    [1.24]M. Zervos, A. Kostopoulos, G. Constantinidis, et al, The pinch-off behaviour and charge distribution in AlGaN/GaN/AlGaN/GaN double heterostructure field effect transistors. Phys. Stat. Sol.2001. (a)188, No.1:259
    [1.25]G. Simin, X. Hu, A. Tarakji, J. Zhang, A. Koudymov, et al, AlGaN/InGaN/GaN double heterostructure field-effect transistor, J. Appl. Phys.,2002. Vol.40, No. 11A:L1142
    [1.26]Chu R M, Zheng Y D. Strong quantum confinement and high carrier concentration in AlGaN/InGaN/GaN hetero-srtacture field-effect transistors. Appl Phys Lett.,2003. Vol.77(5):669
    [1.27]Grigory Simin, Alexei Koudymov, H. Fatima, Jianping Zhang, JinweiYang, et al,
    SiO2/AlGaN/InGaN/GaN MOSDHFETs, IEEE Electron Device Lett.,2002,Vol. 23, No.8:458
    [1.28]Zhifang Fan, Changzhi Lu, A.E. Botchkarev, H. Tang, et al, AIGaN/GaN double heterostructure channel modulation doped field effect transistors(MODFETs), Electronics Letters.1997 Vol.33 No.9:814
    [1.29]N. Maeda, T. Saitoh, K. Tsubaki, T. Nishida, N. Kobayashi, Enhanced effect of polarization on electron transport properties in AIGaN/GaN double-heterostructure field-effect transistors, Appl.Phys.Lett.,2000,Vol.76, No.21:3118
    [1.30]C. Q. Chen, J. P. Zhang, V. Adivarahan, A. Koudymov, H. Fatima, et al, AlGaN/GaN/AlGaN double heterostructure for high-power III-N field-effect Transistors. Appl. Phys. Lett.,2003.Vol.82, No.25:23
    [1.31]M. Micovic et al., GaN double heterojunction field effect transistorfor microwave and millimeterwave power applications,in IEDM Tech.Dig., San Francisco,2004, 807
    [1.32]C. X. Wang, K. Tsubaki, N. Kobayashi, T. Makimoto. Electron transport properties in AlGaN/InGaN/GaN double heterostructures grown by metalorganic vapor phase epitaxy. Appl. Phys. Lett.,2004.Vol.84, No.13:2313
    [1.33]R. M. Chu, Y. G. Zhou, J. Liu, D. Wang, K. J. Chen, K. M. Lau, AlGaN/GaN double-channel HEMTs, IEEE Trans. Electron Devices,2005.Vol.52,No.4:438
    [1.34]Jie Liu, Yugang Zhou, Jia Zhu, Kei May Lau. AlGaN/GaN/InGaN/GaN DH-HEMTS with an InGaN notch for enhanced carrier confinement, IEEE Electron Device Lett.,2006. Vol.27, No.1:10
    [1.35]Yanqing Deng, Vinod Adivarahan, Asif Khan, Deep submicron GaN-based heterostructure field effect transistors with InGaN channel and InGaN back-barrier designs, CS MANTECH Conference,2008, Chicago, Illinois, USA
    [1.36]Sten Heikman, Stacia Keller, Daniel S. Green, Steven P, et al, High conductivity modulation doped AIGaN/GaN multiple channel heterostructures, J. Appl. Phys., 2003.Vol.94, No.8:5321
    [1.37]Y. C. Kong, Y. D. Zheng, C. H. Zhou, Two-dimensional electron gas density in high-Al-content AlxGa1-xN/GaN double heterostructure, IEEE Electron Device Lett.,2004.Vol.27, No.1:194
    [2.1]张进成,AlGaN/GaN异质结材料生长与HEMT器件制造研究,西安电子科技大学博士论文,2003:35
    [2.2]A. D. Bykhovski, V. V. Kaminski, M. S. Shur, Q. C. Chen, M. A. Khan, Piezoresistive effect in wurtzite n-type GaN, Appl. Phys. Lett.1996,68:818
    [2.3]F. Bernardini, V. Fiorentini, D. Vanderbilt, Spontaneous polarization and piezoelectric constants in III-V Nitrides, Phys. Rev. B.,1997,56:R10024,.
    [2.4]I. P. Smorchkova, C. R. Elsass, J. P. Inbetson, et al, Polarization-induced charge and electron mobility in AlGaN/GaN heterostructure grown by plasma-assisted molecular-beam epitaxy, J. Appl. Phys.,1999,86(8):4520
    [2.5]Sten Heikman, Stacia Keller, Yuan Wu, et al, Polarization effects in AlGaN/GaN and GaN/AlGaN/GaN heterostructures, J. Appl. Phys.,2003,93(12):10114
    [2.6]Ho Won Jang, Chang Min Jeon, Ki Hong Kim, Jong Kyu Kim, Sung-Bum Bae,et al, Mechanism of two-dimensional electron gas formation in AlxGa1-xN/GaN heterostructures, Appl. Phys. Lett.,2002,81(7):1249
    [2.7]Hashizume T, Ootomo S, Oyama S,et al, Chemistry and electrical properties of surfaces of GaN and GaN/AlGaN heterostructures, J Vac Sci Technol,2001,B19 (4):1675
    [2.8]薛丽君,刘明,王燕等,AlGaN/GaN异质结极化行为与二维电子气,半导体技术,2004.7,29(7):63
    [2.9]张金凤,GaN基异质结及高电子迁移率晶体管的关键机理研究,西安电子科技大学博士论文,2006:21
    [2.10]G. L. Snider, Computer program 1D Poisson/Schrodinger-A band diagram calculator, University of Notre Dame, Notre Dame, In (1996).
    [2.11]H. Tan, G. L. Snider, L. D. Chang, E. L. Hu, A self-consistent solution of Schrodinger/Poisson equations using a nonuniform mesh. J.Appl.Phys.1990, 68(8),4071
    [3.1]Feng, Z C, S J Chua, K Tone and J H Zhao, Recrystallization of carbon-aluminum ion coimplanted epitaxial silicon carbide—evidenced by room temperature optical measurements, Appl. Phys. Lett.,1999,75, No.4:472
    [3.2]Li, P, S J Chua, G Li, W Wang, X C Wang and Y P Guo, Study of phase-separated InGaN grown by metalorganic vapour phase epitaxy, Physica Status Solidi B-Basic Research,1999,216:145
    [3.3]Yang J W, Sun C J, ChEn Q, et al, High qulity GaN/InGaN heterostructures grown on (111) silicon substrutes, Appl. Phys. Lett,1996,69:3566.
    [3.4]Borzenko T., Gould C., Schmidt G., Metallic air-bridges fabricated by multiple acceleration voltage electron beam lithography, Microelectronic Engineering,2004, 75:210
    [3.5]I. Ahmad, M. Holtz, N. N. Faleev, H. Temkin, Dependence of the stress-temperature coefficient on dislocation density in epitaxial GaN grown on a-Al2O3 and 6H-SiC substrates, J. Appl. Phys.,2004.Vol.95, No.4:15.
    [3.6]丁志博,姚淑德,王坤,程凯,Si(111)衬底上生长有多缓冲层的六方GaN晶格常数计算和应变分析,物理学报,2006,Vol.55,No.6:2977.
    [3.7]Shen B, Zhou Y G, Chen Z Z, et al, Growth of wurtzite GaN films on a-Al2O3 substrates using light-radiation heating metal-organic chemical vapor deposition, Appl. Phys.Lett,1999,68:593.
    [4.1]王冲,AlGaN/GaN异质结高电子迁移率晶体管的研制与特性分析,西安电子科技大学博士论文,2006:68
    [4.2]Saunier, R. J. Matyi, and K. Bradshaw, A double-heterojunction doped-channel pseudomorphic power HEMT with a power density of 0.85 W/mm at 55 GHz, IEEE Electron Device Lett.,9(8):397
    [4.3]Liu Q. Z., Lau S. S., Review of the metal-GaN contact technology, Solid-State Electronics,1998.05,42(5):677
    [4.4]S. N. Mohammad, A. A. Salvador, H. Morkoc, Emerging gallium nitride based devices, Proceedings of the IEEE,1995,83(10):1306
    [4.5]Rumyantsev S. L, Pala N, Shur M. S, et al, Effect of gate leakage current on noise properties of AlGaN/GaN field effect transistors, J.Appl.Phys.2000.11, (88):6726
    [4.6]Tan WS, Houston PA, Parbrook PJ, et al, Gate leakage effects and breakdown voltage in metalorgani cvapor phase epitaxy AlGaN/GaN heterostructure field-effect transistors, Appl. Phys. Lett,2002.03, (80):3207
    [4.7]万辉、郝跃、王充等,n-AlGaN/GaN上Ni/Au肖特基接触性能研究,西安电子科技大学研究生学术年会,2005.11
    [4.8]董作典,张进城,秦雪雪,郑鹏天,刘林杰,郝跃,GaN基异质结缓冲层漏电分析,物理学报,2009,第3期,已录用。
    [4.9]N. Pala, S. Rumyantsev, M. Shur, R. Gaska, et al, Low frequency noise in AlGaN/InGaN/GaN double heterostructure field effect transistors, Solid State Electronics,2003,47:1099
    [4.10]Ivanov PA, Levinshtein ME, Simin G, Hu X, Yang J, Asif Khan M, et al, Drift mobility of electrons in AlGaN/GaN/MOSHFET, Electron Lett,2001;
    37(24):1479
    [4.1 1]Weimann NG, Eastman LF, Doppalapudi D, Ng HM, Maustakus TD, Scattering of electrons at threading dislocations in GaN, J Appl Phys 1998;83(7):3656
    [4.12]Ando T, Fowler AB, Stern F, Electronic properties of two dimensional systems, Rev Modern Phys,1982,54(2)
    [4.13]Gaska R, Shur MS, Bykhovski AD, Orlov AO, Snider GL, Electron mobility in modulation doped AlGaN/GaNheterostructures, Appl Phys Lett,1999;74(2):287
    [4.14]Dang XZ, Asbeck PM, Yu ET, Sullivan GJ, Chen MY, McDermott BT, et al, Measurement of drift mobility in AlGaN/GaN heterostructure field-effect transistor, Appl Phys Lett,1999,74(25):3890
    [4.15]Knap W, Borovitskaya E, Shur MS, Gaska R, et al, High magnetic field studies of AlGaN/GaN heterostructures grown on bulk GaN,SiC, and sapphire substrates, Materials Research Society Symposium Proceedings,2001, Vol.639, G7.3
    [4.16]Khan M A, Shur M S, Chen Q C, et al, Current-voltage characteristic collapse in AlGaN/GaN heterostructure insulated gate field effect transistors at high drain bias. Electron Letters,1994,30, p2175
    [4.17]Klein P B, Binari S C, kossi-Anaistasiou K,et al, Investigation of traps producing current collapse in AlGaN/GaN high electron mobility transistors, Electron Letters, 2001,37(10), p661
    [4.18]Kohn E, Daumiller I, Schmid P, et al, Large signal frequency dispersion of AlGaN/GaN heterostructure field effect transistors, Electron Letters,1999,35(12), p1022
    [4.19]Nguyen C, Nguyen N X, Grider D E, Drain current compression in GaN MODFETs under large-signal modulation at microwave frequencies, Electron Letters,1999,35(16), p1380
    [4.20]Green B M, Chu K K, Chumbes E M, et al, The effect of surface passivation on the microwave characteristics of undoped AlGaN/GaN HEMTs, IEEE Electron Device Letters,2000,21,p268
    [4.21]Alexei V, Vertiatchikh, Lester F, Eastman, Effect of the surface and barrier defects on th AlGaN/GaN HEMT low-frequency noise performance, IEEE Electron Device Letters,2004,24(9), p535
    [4.22]薛舫时,Ⅲ族氮化物HFET中的电流崩塌和二维电子气,纳米电子技术,2004.1,1: 15
    [4.23]马香柏,AlGaN/GaN HEMT电流崩塌的实验研究,西安电子科技大学硕士论文,2007:33

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700