Ⅰ、Ⅳ和ⅥB族过渡金属电子结构、物理性质和热力学性质的系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文完善了合金系统科学框架中的纯单质理论,并应用此理论对Ⅰ、Ⅳ和ⅥB族元素fcc,hcp和bcc三种晶体以及液体的电子结构、物理性质和热力学性质随温度的变化关系进行了系统研究,建立了完善的纯单质理论分析系统、纯单质知识库和纯单质数据库。
     本文系统地对ⅠB、ⅣB和ⅥB族过渡金属进行了五个方面的研究:(1)计算了过渡金属稳定和亚稳相的电子结构,并在电子结构保持不变条件下计算了从OK到熔点的物理性质(势能曲线、结合能、体弹性模量、Debye温度、晶格振动能、原子体积、原子动能和原子势能)和热力学性质(恒容热容、恒压热容、焓、熵和Gibbs能);(2)假设液体与熔点之前的固体具有相同的晶体结构,计算了液相的电子结构,并在其电子结构保持不变的条件下计算了液相从OK至沸点的物理性质和热力学性质;(3)对单原子方法(价键理论)和单电子方法(能带理论)的电子结构计算结果进行了比较,并分析了电子结构和晶体结构之间的关系;(4)建立了汇集计算电子结构、晶格常数、势能曲线、物理和热力学性质等公式和计算程序于一体的纯单质知识库;(5)建立了纯单质数据库,主要包括基本原子态的电子结构、结合能和晶格常数数据表,电子结构杂化三角形和每一元素fcc、hcp、bcc晶体和液体的物理性质以及热力学性质随温度变化的数据表和曲线图,为建立元素周期表的fcc,hcp和bcc晶体的电子结构和性质数据库奠定了基础。
     本文重点对纯金属相变时的电子结构转变及其对材料性质的影响进行了系统研究,取得了五个方面的创新成果:(1)金属材料力学和输运性质的价电子判据T_c、X_c和T_f中,共价电子线密度X_c比体密度T_c更适合作为材料力学性质判据,自由电子体密度T_f可以作为材料输运性质的普适判据,T_f与最近邻共价键上的电子线密度X_(c,1)可以联合为合金的成份设计提供最佳判据;(2)对ⅠB族元素Cu、Ag和Au稳定相的研究表明:金属的电子密度决定其物理性质,共价电子密度越大,原子结合越强,熔点越高,抗压强度等力学性质越高,但自由电子的输运性能将因共价电子的阻碍而下降;自由电子密度越大,金属的塑性、延性、导电和导热性等输运性质越好,但共价电子的结合性能因共价电子数目的减少而削弱;液相中的S_f电子同时受到d_c和s_c电子的散射及原子核热振动的影响,且液相的s_c电子对s_f电子的输运过程起主要阻碍作用;(3)ⅣB族元素Ti、Zr和Hf稳定相hcp晶体的轴比c/a偏离了理想值,其对称性较低,定义共价电子线密度X_c,并结合自由电子密度T_f和键参数研究了hcp相的电子结构与物理性质之间的关系,结果表明,d_c电子的对称性比s_c电子更低,原子配位的方向性和选择性更强,但其数目比s_c多,使得Ti、Zr和Hf元素最终形成了轴比分别为1.5884,1.5925和1.5821(理想比为1.633)的hcp结构;高温时,d电子向s电子转化,球对称的s电子对晶格稳定性起主要作用,形成对了称性更高的bcc结构;(4)对ⅥB族元素Cr、Mo和W稳定相同时采用T_c、X_c和T_f三个判据进行研究发现,最近邻共价键上的电子线密度X_(c,1)的变化趋势为X_(c,1)(Cr)<X_(c,1)(Mo)<X_(c,1)(W),它与三种元素的熔点、拉伸强度、维氏硬度、体弹性模量和最强键键能等性质变化规律完全一致,自由电子体密度T_f的变化趋势为T_f(Cr)<T_f(Mo)<T_f(W),它与三种元素的自由电子键能、导电和导热等性质变化规律一致;ⅥB族元素有可能由bcc结构向hcp或fcc转变,且电子结构的分析表明bcc将优先向hcp转变,该结果不仅与SGTE数据库一致,并且从电子结构层次上解释了ⅥB族元素晶格稳定性的差异;(5)对Ⅰ、Ⅳ和ⅥB族元素的电子结构研究的总体结果表明:当自然态固相向液相转变时,d_n电子的增加导致了液相原子的成键电子总数下降,d_c电子的减少导致了原子配位方向性和原子之间结合力的削弱,s_c电子的增加导致了d_n电子在总价电子数中的比例,即单键半径公式中的δ值减小,引起了单键半径和原子体积的增大,在s_f电子变化不大或者减少的情况下,液相的自由电子密度将下降,导电和导热等输运性质也将下降,这与实验结果一致。
The theory of pure elements in the framework of systematic scienceof alloys(SSA)has been improved in this paper, the electronic structures, physical properties and thermodynamic properties of fcc, hcp and bcccrystals of transition metals inⅠB、ⅣB andⅣB groups have beenstudied using this theory, and the theoretical analyses system of pureelements, the knowledge database and information database have beenestablished.
     In this paper, the following researches on metals inⅠB、ⅣB andⅥB groups have been performed: (1) the electronic structures of stableand metastable phases of transition metals have been calculated, physicalproperties including potential curve, cohesive energy, bulk moduli, Debyetemperature, isometric heat capacity, vibrating energies of lattice, atomicvolume, atomic vibrating energies and atomic potential, andthermodynamic properties including isobaric heat capacity, enthalpy, entropy and Gibbs energy from OK to melting points have been calculatedunder the assumption of the temperature independence of electronicstructure; (2)the electronic structures of liquid phases have beencalculated with the assumption that the liquid phase at melting point havethe same structure with that of solid phase, and the Properties from OK tothe boiling point, have been calculated; (3) the comparison of electronicstructures between one-atom(OA)method of chemical bonding theoryand energy band theory in first principles have been performed and therelationship between electronic structure and crystalline structure hasbeen analyzed; (4) the knowledge database of pure elements includingseries of calculation formulas of various properties such as single bondradius, lattice constants, cohesive energies, bulk moduli and thermalexpansion coefficients have been established; (5) the information databaseof pure elements including data tables of electronic structures, cohesiveenergies and lattice constants of basic atom states, triangles ofhybridization of basic atom states and tables and figures of temperaturedependence of physical and thermodynamic properties of fcc, hcp and bcc crystals and liquids of each elements inⅠ、ⅣandⅥB groups have beenestablished and it provides the basis for the establishment of periodictable of electronic structures and property database of fcc, hcp and bcccrystalls of elements.
     This paper is focused on the research of relationships betweenelectronic structures and crystalline structures during phase transitions ofpure metals and their influences on the physical and chemical properties.The results of this paper show that (1) in the three criterions of valentelectron density T_c、X_c and T_f, the linear density X_c is a more superiorcriterion than the bulk one T_c for the assessments of mechamic propertiesof metals, while the bulk density of free electrons T_f can be used as auniversal criterion for the assessment of transporting properties of metals, and the combination of T_f and X_c in the nearest covalent bond, i.e. X_(c.1), can provide the best criterions for composition selection in alloy design; (2) the studies on the elements Cu, Ag and Au inⅠB group show that theelectronic density decides the physical properties of metals, on one hand, the larger the density of covalent electrons, the stronger the cohesion ofatoms, the higher the melting point, and the better the compressionresistivity, but the transporting properties are weakened at the same timedue to the blocking of the covalent electrons, on the other hand, the largerthe density of free electrons, the better the plasticity, elongation, electricaland thermal conductivity, but the cohesive properties are weakened due tothe less number of cohesive electrons; and it is found as well that the freeelectrons in s orbital of atoms are influenced by the scattering of thecovalent electrons in both d orbital and s orbital and the vibrating ofatomic nucleus, and it is the covalent electrons in s orbital that mainlyinfluence the transporting function of free electrons in liquid phase; (3)the axial ratios of c/a of Ti, Zr and Hf inⅣB group deviate from the idealvalue, so the crystalline symmetry is low, and the linear density ofcovalent electrons X_c is defined for its application in the research of therelationship between electronic structures and physical properties of hcpphase with the combination of T_f and other bond parameters, and theresults show that the symmetry of d_c electrons is lower than that of s_celectrons, and not only the direction and selection of atom coordination of d_c electrons is stronger but also the number of d_c electrons is more thanthat of s_c electrons, so the hcp structures of Ti, Zr and Hf with c/a beingrespectively 1.5884, 1.5925 and 1.5821 can be formed at low temperature; at high temperature, the electrons in d orbital are transformed into sorbital, so the s electrons play main role in the lattice stability and the bccstructrue can exist stablely; (4)using the criterions T_c, X_c和T_f to the studyon the elements Cr, Mo and W inⅥB group, it is found that theproperties such as melting points, tensile strength, hardness, bulk moduliand the bonding energy of the strongest bond follow the same rule as thelinear density in the nearest covalent bond X_(c, 1), i.e., X_(c, 1) (Cr)<X_(c, 1) (Mo)<X_(c, 1) (W), and the electrical conductivity, thermalconductivity and the bonding energy of the free electrons follow the samerule as the the bulk density of free electrons T_f, i.e., T_f(Cr)<T_f(Mo)<T_f(W); the analyses of electronic structures of elements Cr, Mo and W inⅥB group show that bcc structure is probable to betransformed into hcp or fcc structure and bcc is more preferred to betransformed into hcp due to the more covalent electrons with strongerbonding ability in d orbital and the less covalent electrons with weakerbonding ability in s orbital in hcp than fcc phase, which causes lowerpotential and higher stability of hcp structure, this result agrees well withthat of SGTE database and can explain the difference of lattice stability inSGTE database from the level of electronic structure; (5) when the solidphase of transition metals inⅠ,ⅣandⅥB group is transformed intoliquid phase, both the nonbonding electrons in d orbital and the covalentelectrons in s orbital increase, the covalent electrons in d decrease, andthe free electrons in s orbital have no obvious change or decrease, thischange of electronic structures leads to the decrease of bonding electrons, weakening of bonding direction and cohesion of atoms, increase of singlebond radius and atomic volume, decrease of the density of free electronsand corresponding decrease of electrical conductivity of liquid phase.
引文
[1] 谢佑卿.金属材料系统科学.长沙:中南工业大学出版社,1998.3-21
    [2] 熊家炯.材料设计.天津:天津大学出版社,2000.1-32
    [3] Panel on Computational and Theoretical Techniques for Materials Science. Computational and theoretical techniques for materials Science. http://www2.nas.edu/nsb/20fa.html,1995.
    [4] 中国科学院纳米科技网.纳米技术与我们的机会.http://www.casnano.ac.cn/gb/kepu/cailiao/c1024.html, 2004.
    [5] 北京大学力学与工程科学系.弹性力学的理论基础.http://www.mech.pku.edu.cn/elasweb/course/cha0-2.htm, 2004.
    [6] 王孝培,宋国贤.金属板料成型的三维弹塑性大变形有限元模拟.中国机械工程,1994,(2):13-15
    [7] 刘昭培,丁学成.结构动力学.北京:高等教育出版社,1989.
    [8] 陆鑫森.等结构动力学.上海:上海交通大学出版社,1992.
    [9] Chung, D. D. L, Cao, Jingyao. Defect dynamics of cement mortar under repeated loading, studied by electrical resistivity measurement. Cement and Concrete Research, 2002, 32: 379-385
    [10] Rottler, J., Srolovitz, D. J, Car, R.. Point defect dynamics in bcc metals. Physical Review B, 2005, 71: 64109-64120
    [11] McCarty, K. F., Nobel, J. A, Bartelt, N. C.. Surface dynamics dominated by bulk thermal defects: the case of NiAl(110). Physical Review B, 2005, 71: 85421-85432
    [12] 徐婉棠,吴英凯.固体物理学.北京:北京师范大学出版社,1991.
    [13] Olson G B, Beyond discovery: design for a new material world. Calphad, 2001, 25: 175-190
    [14] Posselt, M., Gao, F., Zwicker, D.. Migration of di-and tri-interstitials in silicon. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 2005, 228: 212-217
    [15] Devanathan, R., Corrales, L. R., Weber, W. J, et al. Molecular dynamics simulation of defect production in collision cascades in zircon. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 2005, 228: 299-303
    [16] Rodney, David. Atomic-scale modeling of clear band formation in FCC metals. Nuclear Instruments and Methods in Physics Research, Section B: Beam Interactions with Materials and Atoms, 2005, 228: 100-110
    [17] Frenkel,Smit.分子模拟—从算法到应用(汪文川等译).北京:化学工业出版社,2002.
    [18] Kroll, P. Modelling polymer-derived ceramics. Journal of the European Ceramic Society, 2005, 25: 163-174
    [19] Tan, Xiao-Li, Zeng, Xin-Wu, Wang, Pei, Review on classical molecular dynamics studies of initiation in solid explosives, Energetic Materials, 2005, 13:61-68
    [20] 陈强,曹红红,黄海波.分子动力学中势函数研究.天津理工学院学报,2004,20:101-105
    [21] Girifalco L A, Hodak M, Lee R S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. 2000, 62: 13104-13110
    [22] Gu Tingkun, Bian Xiufang, Qin Jingyu, et al. Ab initio molecular-dynamics simulations of liquid GaSb and InSb. Physical Review B, 2005, 71:104206-104213
    [23] Hart Dong, Song Xiao-hui, Yang Xin'e. Study for diatomic molecule by supersymmetric quantum mechanics approach and an identified method to Morse potential. Physica A, 2005, 345:485-492
    [24] Chen Gang. The exact solutions of the Schrodinger equation with the Morse potential via Laplace transforms. Physics Letters A, 2004, 326:55-57
    [25] Daoud, M., Popov, D.. Statistical properties of Klauder-Perelomov coherent states for the Morse potential. International Journal of Modern Physics B, 2004, 18:325-336
    [26] Chen Shou-Gang, Wang Dao-Ping, Yin Yan-Sheng, et al. Approximation of the interaction of oxygen and nitrogen with Pd and Ni surfaces using the Morse potential. Vacuum, 2004, 72: 393-403
    [27] Rong, Zimei, Kjaergaard, Henrik G., Sage, Martin L.. CoOparison of the Morse and Deng- Fan potentials for X-H bonds in small molecules. Molecular Physics, 2003, 101:2285-2294
    [28] Sangster M J L, Dixon M.. Inter ionic potential in alkali halides and their use in simulations of the molten salts. Adv Phys, 1976, 25:247-342
    [29] Daw M S, Baskes M I.. Embedded-atom method : Derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B, 1984, 29 : 6443-6453
    [30] Daw M S, Foiles S M, Baskes M I. The embedded-atom method : A review of theory and applications. Mater Sci Rep , 1993, 9:251
    [31] Baskes M I. kpllication of the Embedded-Atom Method to Covalent Materials: A Semiempirical Potential for Silicon. Phys. Rev. Lett, 1987, 59:2666-2669
    [32] Sadus, R. J.. Exact calculation of the effect of three-body Axilrod-Teller interactions on vapor-liquid phase coexistence. Fluid Phase Equilibria, 1998, 144(1-2): 351-359
    [33] Chakravarty, C., Hinde, R.J., Leitner, D.M., et al. Effects of three-body(Axilrod-Teller) forces on the classical and quantum behavior of rare-gas trimers. Physical Review E, 1997, 56(1): 363-377
    [34] Stenschke, H. Effective Axilrod-Teller interaction in van der Waals gases and liquids. Journal of Chemical Physics, 1994, 100(6): 4704-4705
    [35] Attard, P. Simulation results for a fluid with the Axilrod-Teller tripole dipole potential. Physical Review A, 1992, 45(8): 5649-5653
    [36] Polymeropoulos, E. E., Bopp, P., Brickmann, J., et al. Molecular-dynamics simulations in systems of rare gases using Axilrod-Teller and exchange three-atom interactions. 1985, 31(6): 3565-3569
    [37] Baskes M I. Modified embedded-atom potentials for cubic materials and impurities. Phys. Rev. B, 1992, 46:2727-2741
    [38] Baskes M I, Nelson J S, Wright A F. Semiempirical modified embedded-atom potentials for silicon and germanium. Phys. Rev. B, 1989, 40:6085-6109
    [39] Brenner D W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys Rev B, 1990, 42(15): 9458-9471
    [40] Tersoff J. New Empirical Modal for the Structural Properties of Silicon. Phys. Rev. Lett, 1986, 56:632-635
    [41] Brenner D W, Shenderoval O A, Harrison J A, et al. A Second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Mat, 2002, 14(4): 783-802
    [42] Stillinger, Weber T. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B, 1985, 31:5262-5271
    [43] Pettifor D. New Many-Body Potential for the bond order. Phys. Rev. Lett, 1989, 63:2480-2483
    [44] Carlsson, A. E., Gelatt, C. D., Jr., Ehrenreich, H.. An ab initio pair potential applied to metals. Philosophical Magazine A, 1980, 41(2): 241-250
    [45] Huisman, L. M., Carlsson, A. E., Gelatt, C. D., Jr., et al. Mechanisms for energetic-vacancy stabilization: TiO and TiC Physical Review B, 1980, 22(2): 991-1006
    [46] Chen N X.. Modified Mobius inverse formula and its physical applications. Phys Rev Lett, 1990, 64:1193
    [47] Maddox J. Mobius and problems of inversion. Nature, 1990, 344: 377
    [48] Chen N X, Chen Z D, Wei Y C. Multidimensional inverse lattice problem and uniformly sampled arithmetic Fourier transform. Phys Rev E, 1997, 55:R5
    [49] Finnis M W, Sinclair J E. A simple empirical N-body potential for transition metals. Philos Mag A, 1984, 50:45-55
    [50] Ackland G J, Vitek V. Many-body potentials and atomic-scale relaxations in noble-metal alloys. Phys. Rev. B, 1990, 41:10324-10333
    [51] Chelikowsky, J. R., Phillips, J. C., Kamal, M., et al. Surface and thermodynamic interatomic force fields for silicon clusters and bulk phases. Physical Review Letters, 1989, 62(3): 292-295
    [52] Chelikowsky, J. R., Phillips, J. C.. Quantum-defect theory of heats of formation and structural transition energies of liquid and solid simple metal alloys and compounds. Physical Review B, 1978, 17:62453-62477
    [53] Kohan A F, Ceder G. Tight-binding calculation of formation energies in multicomponent oxides: Application to the MgO-CaO phase diagram. Phys. Rev. B, 1996, 54:805-811
    [54] 张文清.原子间相互作用势库及其在材料模拟设计中的应用.材料导报,2001,(2):3
    [55] Hohenberg P., Kohn W.. Inhomogeneous electron gas. Physical Review B, 1964, 136(3): 864-871
    [56] Kohn W. Density functional theory: fundamentals and applications. In: Bassani F, PumA F and Tosi M P ed. Highlights of condensed matter theory. North Holand, 1985.
    [57] Kohn W., Sham L. J.. Self-consistent equations including exchange and correlation effects. Physical Review A, 1965, 140 (4): 1133-1138
    [58] Sham L. Density functional theory and computational materials physics. In: Chelikowsky J R, Louie S G ed. Quantum theory of real materials. Kluwer Academic Publishers, 1996.
    [59] Perdew, J. P., Wang Y.. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Physical Review B, 1992, 46(20): 12947-12954
    [60] Cambell Geoffrey H, Foiles Stephen M, Huang Hanchen. Multi-scale modeling of polycrystal plasticity: a workshop report. Materials sicience and engineering A, 1998, 251:1-22
    [61] Xu S. G., Cao Q. X.. Numerical Simulation of the Microstructure in the Ring Rolling of Hot Steel. Proc. of 4th ICTP, 1993, 4: 1203-1211
    [62] Brand A. J., Kalz S., Henningsen P. et al., 3D-Dimulation of Closed Pass Rolling with Integrated Microstructural Simulation, 2nd Int. Confe. Met. Roll. Proc., London, 1996.2-12
    [63] Colas R., Elizondo L., Leduc h. A.. Mathematical Modelling of a Continuous Thin Strip Mill. 2nd Int. Confe. Met. Roll. Proc., London, 1996.12-22
    [64] Jin D. Q., Hemandez-Zvila V. H., iamarasekera Ⅳ et al. An Integrated Process Model for the Hot Rolling of Plain Carbon Steel. 2nd Int. Confe. Met. Roll. Proc., London, 1996.36-58
    [65] 三岛良绩.新材料开发和材料设计学.Tokyo:Soft Science Inc,1985.
    [66] Haile J. M.. Molecular Dynamics Simulations, Wiley, New York, 1992.
    [67] Metropolis N.. The beginning of the Monte Carlo method. Los Alamos Science, 1987, 12:125-130
    [68] Binder, K.. Monte carlo simulation in statistical physics : an introduction, Berlin: Springer-Verlag, 1988.
    [69] Chelikowsky J R, Louie S G. Quantum theory of real materials. Kluwer Academic Punblishers, 1996.
    [70] Cohen, Marvin L. Theory of real materials. Annual Review of Materials Science, 2000, 30:1-26
    [71] Cohen, Marvin L. Predicting properties and new materials. Solid State Communications, 1994, 92(1-2): 45-50
    [72] Cohen, Marvin L. Theoredtical study superconductivity in high condensed Si. Physica B, 1985, 135(1-3): 229-234
    [73] Cohen, Marvin L. Theory of bulk moduli of hard solids. Materials Science Engineering A, 1988, 105(6): 11-18
    [74] Freeman Arthur J. Electronic structure theory in the new age of computational materials science. Annu. Rev. Mater. Sci., 1995, 25: 1-5
    [75] Freeman Arthur J, Wimmer Erich. Density functional theory as a major tool in computational materials science. Annu. Rev. Mater. Sci. 1995, 25:7-36
    [76] Olson G. B. New age of design. Journal of computer-aided materials design. 2001, 7:143-144
    [77] Olson G. B. Systems design of high performance stainless steels Ⅰ. Conceptual and computational design. Journal of computer-aided materials design. 2001, 7:145-170
    [78] Olson G. B. Computational design of hierarchically structured materials. Science, 1997, 277(29):1237-1242
    [79] Vanderbilt D.. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B, 1990, 41: 7892-7895
    [80] Francis, O. P., Payne, M. C.. Finite Basis Set Corrections to Total Energy Pseudopotential Calculations. J. Phys.: Condens. Matter, 1990, 2:4395-4404
    [81] Wu Ruqian, Freeman A. J.. An efficient step-forward way to solve the Schrodinger eigenvalue equation in self-consistent calculations. Computer Physics Communications, 1993, 1: 58-62
    [82] Yu R., Krakauer H., Singh D.. Phys. Equilibrium geometry and electronic structure of the low-temperature W(001) surface. Phys. Rev. B, 1992, 45:8671-8678
    [83] Andersen O. K.. Linear methods in band theory. Phys. Rev. B, 1975, 12:3060-3083
    [84] Savrasov S. Y.. Linear-response theory and lattice dynamics: a muffin-tin-orbital approach. Phys. Rev. B, 1996, 54:16470-16486
    [85] Andersen O. K., Saha-Dasgupta T., Ezhov S.. Third-generation muffin-tin orbitals. Bulletin of Materials Science, 2003, 1: 19-26
    [86] Freeman A. J.. Materials by design and the exciting role of quantum computation/simulation. Journal of Computational and Applied Mathematics, 2002, 1: 27-56
    [87] Hybertsen M. S., Louie S. G.. Electron correlation in semiconductors and insulators: band gaps and quasiparticle energies. Phys. Rev. B, 1986,34:5390-5413
    [88] Louie S. G.. Quasiparticle theory of electron excitations in solid. In: Chelikowsky J R, Louie S G ed. Quantum theory of real materials, Kluwer Academic Publishers, 1996.
    [89] Car R., Parrinello M.. Unified approach for molecular dynamics density-functional theory. Phys. Rev. Lett. 1985,55:2471-2474
    [90] Car R..Modeling materials by ab initio molecular dynamics. In: helikowsky J R, Louie S G ed. Quantum theory.of real materials, Kluwer Academic Publishers, 1996.
    [91] Parr R G, Yang W. Density-functional theory of atoms and molecules. Oxford: Oxford Science, 1989.
    [92] Chen Nianyi, Lu Wencong, Chen Ruiliang, et al. Chemometric methods applied to industrial optimization and materials optimal design. Chemometrics and Intelligent Laboratory Systmem, 1999, 45:329-333
    [93] Chen Nianyi, Lu Wencong, Chen Ruiliang, et al. On the formation of ternary alloy phases. Journal of Alloys and Compounds, 1998, 279:8-13
    [94] 余瑞璜.固体与分子经验电子理论.科学通报,1978,4:217-225
    [95] 张瑞林.固体与分子经验电子理论.长春:吉林科学技术出版社,1993.
    [96] 吕振家,王绍铿.碱金属和碱土金属晶体结合能的计算.科学通报,1979,24:742-745
    [97] 谢佑卿,马柳莺,谢昭春.Fe-Ni金属的价电子结构.中南矿冶学院学报,1984,(1):1-10
    [98] 徐万东,张瑞林,余瑞璜.过渡金属化合物晶体结合能计算.中国科学(A辑),1988,(3):323-330
    [99] 万纾民.固体中原子间相互作用势能函数与碱金属、碱土金属弹性的电子理论.中国科学(A辑),1987,(2):170-178
    [100] 刘志林,孙振国,李志林.奥氏体/马氏体异相界面的电子密度.科学通报,1995,22:2240-2241
    [101] 胡安广.经验电子理论对二元合金形成热,高温超导T_c及Ni-Al相图计算的应用:[博士学位论文].长春:吉林大学,1991
    [102] 郑伟涛.Cu-Ag,Cu-Au,Ag-Au二元合金的价电子结构、相平衡电子理论:[博士学位论文].长春:吉林大学,1989
    [103] Xie Youqing. A new potential function with many-atom interactions in solid. Science in China, Ser. A, 1993,1:90-99
    [104] Xie Y. Q.. Relationship of Lennard-Jones potential and Morse potential with W_x(r) potential. Transactions of Nonferrous Metals Society of China, 1994, (4): 63-66
    [105] Xie, Y.Q., Liu, X.B., Peng, K.. Atomic states, potential energies, volumes, stability, and brittleness of ordered FCC TiAl_3-type alloys. Physica B, 2004, 353:15-33
    [106] Xie, Y.Q. , Peng, K., Liu, X.B.. Influences of X_(Ti)/X_(Al) on atomic states, lattice constants and potential-energy planes of ordered FCC TiAl-type alloys, Physica B, 2004, 344:5-20
    [107] Xie Y.Q., Peng H.J., Liu X.B., et al. Atomic states, potential energies, volumes, brittleness and phase stability of ordered FCC Ti_3Al type alloys. Physica. B, 2005, 362:1-17
    [108] Xie Y.Q., Tao H.J., Peng H.J., et al. Atomic states, potential energies, volumes, stability and brittleness of ordered FCC TiAl_2 type alloys, Physica. B, 2005, 366:17-37
    [109] XIE Y Q. The electronic structure and properties of pure iron. Acta metall. Mater., 1994,11:3705-3715
    [110] Xie Youqing, Zhang Xiaodong, Chen J. Y.. Electronic structure and properties of Cobalt, Science in China, Ser. E, 1996, (4): 394-403
    [111] Xie Youqing. Electronic structure and properties of Ni metal. Science in China, Ser. A, 1993, (4): 495-503
    [112] Xie Youqing, Liu Xinbi. Electronic structure and physical properties of pure aluminum metal. Science in China Ser. E, 1999, (6): 603-608
    [113] PENG Kun, XIE You-qing, PENG Hao, et al. Structures and properties of Sc and Y metals. Journal of central south university of technology, 2000,7(3):136-139.
    [114] XIE You-qing, PENG Kun, YANG Xin-xin. Electronic strctures and Properties of Ti, Zr and Hf metals. Journal of central south university of technology, 2001,8(2):83-88
    [115] HE Yu, XIE You-qing. Electronic structures and properties of V, Nb and Ta metals. Journal of central south university of technology, 2000,7(1):7-11
    [116] XIE You-qing, DENG Yong-ping, LIU Xin-bi. Electronic structures and physical properties of pure Cr, Mo and W. Transactions of Nonferrous Metals Society of China, 2003, 13(5):1102-1107
    [117] 彭红建,谢佑卿,陶辉锦.金属Pd的原子状态和物理性质,中国有色金属学报,2006,16(1):100-104
    [118] 彭红建,谢佑卿,陶辉锦.金属Pt的电子结构和物理性质,材料导报,2006,16(1):121-123
    [119] 彭浩,谢佑卿,彭坤等.用DV—Xα法与用单原子理论计算单质铁电子结构及性质的比较.中国有色金属学报,2001,3:477-480
    [120] 谢佑卿,杨昕昕,彭坤.贵金属铑和铱的电子结构和物理性质.贵金属,2001,22(4):7-12
    [121] 谢佑卿,张晓东.金属Cu的电子结构和物理性质.中国科学(A辑),1993,8:875-880
    [122] 谢佑卿,张晓东.金属Ag的电子结构和物理性质.中国科学(A辑),1992,4:418-422
    [123] 谢佑卿,张晓东.金属Au的电子结构和物理性质.中国有色金属学报,1992.2:51-55
    [124] 吕维洁,谢佑卿,张迎九等.金属锌的电子结构及物理性质.中南工业大学学报,1997,28(1):60-63
    [125] 张迎九,谢佑卿,李为民等.Ni_3Al的德拜温度及物理性质.中国有色金属学报,1996,6(4):114-118
    [126] 张迎九,谢佑卿,李为民等.Li对Ni_3Al力学性能的影响.金属学报,1996,32(5):479-483
    [127] 李小波,谢佑卿,余方新.用特征晶体模型计算Ta-W相图,稀有金属 2005.29(3):302-306
    [128] Xie Youqing. Atomic energies and Gibbs energy functions of Ag-Cu alloys. Science in China, Ser. E, 1998,41(2): 146-156
    [129] Xie Youqing. Atomic volume and volume function of Ag-Cu alloys. Science in China, Ser. E, 1998, (2): 157-168
    [130] Xie Youqing. Electronic structures of Ag-Cu alloys. Science in China, Ser. E, 1998, (3): 225-236
    [131] Yu, Fang-xin, Xie, Y.Q., Nie, Y.Z., et al. Electronic structure of Au-Cu alloys. Trans. Nonferrous Met. Soc. China, 2004,6: 1041-1049
    [132] Xie Youqing, Zhang Xiaodong. Phase diagram and thermodynamic properties of Ag-Cu alloys. Science in China, Ser. E, 1998, (4):348-356
    [133] Raju S, Mohandas E, Raghunathan V S. Engel-brewer electron correlation model-a critical discussion and revision of con-cepts. Mater. Trans. JIM, 1996, 37:195-202
    [134] Mehl Michael J, Papacostantpoulos D A. Applications of a tight-binding total-energy method for transition and noble metal: elastic constants, vacancies and surfaces of monatomic metals. Phys. Rev. B, 1996,54:4519-4530
    [135] Sigalas M, Papacostantpoulos D A, Bacalis N C. Total energy and band structure of the 3d, 4d and 5d metals. Phys. Rev. B, 1992, 45:5777-5783
    [136] Bakonyi I, Ebert H, Liechtenstein A I. Electronic structure and magnetic susceptibility of the different structural modifications of Ti, Zr and Hf metals. Phys. Rev. B, 1993, 48:7841-7849
    [137] Blaha P, Schwarz K, Dederichs P H. Electronic structure of hcp metals. Phys. Rev. B, 1988, 38:9368-9374
    [138] Petry W, Heiming A. Phonon dispersion of the bcc phase of group-Ⅳ metals. Phys. Rev. B, 1991, 43:10933-10963
    [139] Ahuja Rajeev, Wills John M, Eriksson Olle. Crystal structure of Ti, Zr and Hf under compression. Phys. Rev. B, 1993, 48:16269-16279
    [140] Salomons E. hcp-bcc transition and the free energy of the hcp and bcc structures of zirconium. Phys. Rev. B, 1991, 43:6167-6173
    [141] Willaime F, Massobro C. Temperature-induced hcp-bcc phase transformation in zirconium-a lattice and molecular-dynamics study based on an N-body potential. Phys. Rev. hett., 1989, 63: 2244-2247
    [142] Lupis C H P. Chemical thermodynamics of materials. Amsterdam, North-Holland: 1983,438-469
    [143] Lupis C H P, Elliott J F. Prediction of enthalpy and entropy interaction coefficients by the central atoms theory. Acta Metall., 1967, 15:265-276
    [144] Eckardt H, Fritsche L, Noffke J. Self-consistent relativistic band structure of the noble metals. J. Phys. F:Met. Phys., 1984, 14:97-112.
    [145] Guo Y Q, Yu R H, Zhang R L, et al. Calculation of magnetic properties and analysis of valence electronic structures of LaT_(13-x)Al_x (T=Fe, Co) compounds. Journal of Physical Chemistry B, 1998, 102(1):9-16
    [146] Pauling L. The Nature of the Chemical Bond. Ithaca: Cornell University Press, 1960:56-80
    [147] American Institute of Physics. American Institute of Physics Handbook, 3rd ed. New York: McGraw-Hill Book CoGpany, 1972:4-119
    [148] 周如松.金属物理.北京:高等教育出版社,1992:201-202
    [149] 侯增寿,卢光熙.金属学原理.上海:上海科学技术出版社,1990:36-37
    [150] Kittel C. Introduction to solid state physics, 6th ed. New York: John Wiley and Sons, Inc, 1986: 55, 57, 144, 110
    [151] Ozolin V, Wolverton S C, Zunger A. Cu-Au, Ag-Au, Cu-Ag, and Ni-Au intermetallics: first-principles study of temperature-composition phase diagrams and structures. Phys. Rev. B, 1998, 57(11): 6427-6443
    [152] Grigorovich V K. The metallic bond and structure of metals. New York: Nova Science, 1989:58-77
    [153] Dinsdale A T. SGTE data for pure elements. CALPHAD, 1991, 15(4): 317-425
    [154] WEAST R C. CRC Handbook of Chemistry and Physics, 70th ed. Florida: CRC Press Inc, 1990:B-216
    [155] Sundman Bo, Aldinger Fritz. The Ringberg workshop 1995 on unary data for elements and other end-members of solutions. Calphad, 1995, 19 (4): 433-436
    [156] Saunders N, Miodowik A P, Dinsdale A T. Metastable lattice stabilities for the elements. Calphad-Computer Coupling of Phase Diagrams and thermochemistry, 1988, 12:351-374
    [157] Wang Y, Curtarolo S, Jiang C, et al. Ab initio lattice stability in comparison with CALPHAD lattice stability. CALPHAD, 2004, 28: 79-90
    [158] Zhang Z J. Reassessmentculation of the properties of some metals and alloys. Journal of Physics: Condens. Matter, 1998, 10:495-499
    [159] Chase M W. NIST-SANAF thermochemical tables(Fourth Edition Part Ⅰ). Gaithersburg: National Institute of Standards and technology, 1998.1005-1009
    [160] McBride Bonnie J, Zehe Michael J, Sanford Gordon. NASA Glenn Coefficients for calculating thermodynamic Properties of Individual Species. Glenn Research Center, Cleveland, Ohio, 2002 http://gltrs.grc.nasa.gov/reports/2002/tP-2002-211556.pdf
    [161] Zhang Z J. Calculation of the properties of some metals and alloys. Journal of Physics: Condens.Matter, 1998,10: L495-L499
    [162] Cusach N E. The electronic properties of liquid metals. Reports on Progress in Physics, 1963, 26(1): 361-409
    [163] Hultgren R, Desai P D, Hawkins D T, et al. Selected values of the thermodynamic properties of the elements. Ohio: American Society for Metals, 1973: 17-24,47-53
    [164] ASM International Handbook Committee. Metals handbook, 10~(th) ed, vol 2:Properties and selection: nonferrous alloys and special-purpose materials. OH: Materials Park, 1990: 1113, 1117, 1157
    [165] Mark Winter. http://www. webelements. com/. The University of Sheffield and Webelements Ltd, 2006, 4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700