液态挤压ZA43合金的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
液态挤压具有压力下凝固和塑性变形双重作用,是在挤压铸造和固态热挤压的基础上建立起来的一种全新的金属成形工艺。本文以ZA43合金为研究对象,通过正交试验分析了液态挤压工艺参数对ZA43合金力学性能影响的显著性水平,确定了锌铝合金液态挤压的合理工艺参数范围;通过对液态挤压ZA43合金宏观及微观组织的观察分析,研究了其不同部位组织特征的成因及影响因素,探讨了液态挤压件的成形特点,并提出改善和减少过渡区组织的措施;利用上限原理的方法求出了液态挤压中的单位挤压力和半锥角,确定了临界比压值,对挤压过程中变形区内金属的流动速度和等效应变做了分析;并研究了热处理和合金化对液态挤压ZA43合金组织和性能的影响。
     结果表明:工艺参数对液态挤压ZA43合金力学性能影响的主次顺序为:加压前停留时间、浇注温度、模具温度,其中加压前停留时间的影响最显著。本试验条件下,液态挤压的适宜工艺参数为:模具温度160℃左右,浇注温度630-670℃,加压前停留时间15-22s。液态挤压后ZA43合金的强度和塑性均大幅度提高,特别是塑性提高更显著。液态挤压ZA43合金宏观变形特征明显,金属固相率的较大差别是其产生明显侧壁流线的原因。液态挤压ZA43合金的显微组织细小、均匀,并有明显的变形组织特征。宏观及微观组织观察均表明液态挤压制件的外侧部分存在明显的过渡区。断面减缩比,所需制件高径比,摩擦因子,半锥角和金属的高温屈服极限都是影响临界比压的重要因素。变形区内金属的流动速度沿径向分布为由中心向两边逐渐减小,等效应变为由中心向两边逐渐增大。沿轴向分布为越靠近盛料筒出口处,金属的流速和变形程度越大。其中,金属的固相率差是影响金属流动和变形的重要因素。Mg的加入使合金的塑性有很大的提高;Cu和Mn的强化作用比较明显;合理选择热处理工艺也是获得所需性能制件的一种有效的方法。
The liquid extrusion process is a new forming technology which is developed on the basis of the squeeze casting and the hot extrusion. It not only retains the character of liquid metal crystallized under pressure, but also imparts to the alloy significant plastic deformation. The notable level of the effect of the processing parameters in liquid extrusion on the mechanical properties of ZA43 alloy was studied with the help of the orthogonal experiments. A reasonable extent of parameters was determined. The forming reasons and influencing factors to the structure in different sections were analyzed through observing macrostructure.and microstructure of ZA43 alloy by liquid extrusion process. The forming features of the process were discussed and the measures of improving and reducing transition structure were raised. The expressions of unit pressure and half cone angle were established by applying upper limit principle. The value of critical specific pressure was determined. The flow velocity and equivalent
    strain of the metal in the process of liquid extrusion were analyzed. Furthermore, the effect of alloying and heat treatment on the microstructure and mechanical properties of ZA43 alloy were studied.
    The experimental results show that the order of influential factor is deferring period before applying pressure, pouring temperature and die temperature. The influence of the deferring period before applying pressure on mechanical properties of ZA43 Alloy is the most remarkable. The befitting processing parameters obtained in the experiment are that the mold temperature is about 160 , the pouring temperature is 630-670 and the deferring period before applying pressure is 15-22s. The mechanical properties of ZA43 alloy are highly improved. Especially, the elongation of the alloy is greatly improved. The characteristics of macro structure of ZA43 alloy are distinct. The marked streamlines in side wall of workpiece are
    50405
    
    
    caused by the difference of solid phase ratio. The microstructure of ZA43 alloy is tiny and uniform. The characteristics of deformation of the alloy are remarkable. A transitionary section exist in the side wall of the liquid extrusion workpiece by observing macrostructure and microstructure of ZA43 alloy. The influencing factor on the value of critical specific pressure include ratio of section reduced, height to thickness ratio, friction factor, half cone angle and the high temperature yield limit of metal. The flow velocity of metal reduces gradually from center to side along radius in deformation region. The equivalent strain of metal increases from center to side along radius in deformation region. The shorter the distance away from the exit of' the cavity of mould, the greater the flow velocity and equivalent strain of the metal along axes in deformation region. The difference of solid phase ratio is an important influencing factor on flow and deformation of the metal. The element Mg joined to the allo
    y make plasticity increase markedly. Strengthening function of Cu and Mn is quite bright. Choosing heat treatment process reasonably is a effective method to obtain the workpiece required.
引文
[1] 李贺军等.液态挤压过程凝固及热传导的模拟.材料研究学报,1994,12(50):507~512
    [2] 罗守靖等.液态挤压下金属成形的力学研究.锻压技术,1993(2):16~19
    [3] 齐乐华等.金属液体凝固中直接挤压工艺的神经网络模型.材料研究学报,1999,13(5):505~509
    [4] 齐乐华等.基于神经网络建立液态挤压成形管棒材工艺参数知识库.航空学报,1998,19(6):744~747
    [5] 罗守靖等.液态正挤压工艺实验研究.热加工工艺,1991(4):25~27
    [6] 李贺军等.铝合金管液态挤压的成形工艺.轻合金加工技术,1993,121(8):19~22
    [7] 李贺军等.ZA27 合金管材液压模具温度场的实验研究.热加工工艺,1992(7):3~5
    [8] 徐志良.挤压铸造模温对复合材料组织性能的影响.铸造技术,1991(5):3~6
    [9] 王洪敏.挤压温度对ZA27型材机械性能的影响.热加工工艺,1993(4):16~19
    [10] Stephen P. Midson, Brad J. Homiston,et al.The Influence of Key Parameters on the Uniformity of Slug Re-heating During Semi-Solid Metal Forming. Die CastingEngineer,1999:62~69
    [11] S.M.Skolianos, et al. Effect of Applied Pressure on the Microstructure and Mechanical Properties of Squeeze-Cast Aluminum AA6061 Alloy. Materials Science and Engneering,1997, A231:17~24
    [12] 罗守靖等.液态挤压下Al,Zn合金的强韧化.材料科学进展,1993,7(2):110~115
    [13] 齐乐华等.液态挤压过程变形特征.塑性工程学报,1997,4(3):43~46
    
    
    [14] Li Hejun.et al. Eliminating defects of Zn-Al alloy by squeeze casting or Liquid Extrusion. J mater Process Tech,1992(32):489~493
    [15] Clegg A. Squeeze Casting A New Process Technology for Engineer. Foundry Trade Journa, 1993, 166 (3548): 484~485
    [16] 齐丕骧.挤压铸造.北京:国防工业出版社,1984
    [17] 罗守靖等.钢质液态模锻.哈尔滨:哈尔滨工业大学出版社,1990
    [18] 周大隽.液态模锻技术的应用及新发展.锻压技,1993(3):19~20
    [19] Yu H P, Li R D. Strengthening and Toughening Mechanism of ZA27 Squeeze cast Alloy. AFS Transactions, 1997, 105:689~692
    [20] 李荣德等.冲头式挤压铸造ZA合金强韧化机理的探讨.特种铸造及有色合金,1999(增刊1):134~136
    [21] 罗守靖等.液态模锻力学成形理论的研究.锻压技术,1995(5):34~40
    [22] 罗守靖等.液态模锻中的金属塑性流动.锻压技术,1989(1):11~14
    [23] 李贺军等.柱形体液态模锻塑性变形的分析及高向变形程度的计算.锻压技术,1989(6):7~10
    [24] 宋玉泉等.液态模锻力学成形理论的确定及其评价.塑性工程学报,1997,4(3):4~7
    [25] 罗守靖等.固—液态塑性加工技术的新进展.中国机械工程,1997,8(2):96~99
    [26] Balam P. The Structure and Properties of Squeeze Cast Eutectic A1-Si Plates.C-ast Metals Journal,1993, 16 (3): 131~136
    [27] 著,张锦升,罗守靖译.金属和合金在压力下结晶.哈尔滨:哈尔滨工业大学出版社,1987
    [28] Kirkwood J P. Evaluation of Various Processing of Alloys. Metals and Materials, 1989(1): 16~19
    [29] 任向前等.金属液体凝固中直接挤压过程的数值模拟.金属学报,1996,32(7):755~761
    
    
    [30] 罗守靖等.ZnAl13Cu2合金液态挤压的实验研究.锻压技术,1990(4):9~14
    [31] J. J. Benbow, S. blackburn, H. Mills. The Effects of Liquid-Phase Rheology on the Extrusion Behaviour of Paste. Journal of Materials Science, 1998,33:5827~5833
    [32] Gervais E. Proceedings of lead Zinc & Cadmium into the 90s ILZIC Silver Jubilee Conf. Dilhi,1998 (1):15~19
    [33] 谢敬佩等.高耐磨高阻尼锌铝合金研究.特种铸造及有色合金,1999(2):10~13
    [34] 张伟.国内外高铝锌基合金的研究现状及发展.铸造技术,1993(2):36~39
    [35] 王洪敏.挤压温度对ZA27型材机械性能的影响.热加工工艺,1993(4):16~19
    [36] Kirkwood JP. Evaluation of Various Processing of Alloys. Metals and Materials, 1989(1): 16~19
    [37] Gervais E. Processdings of lead Zinc & Cadmium into the 90s ILZIC Silver Jubilee Conf. Dilhi, 1988(1): 15~19
    [38] 胡海明.ZA27的研究进展。材料导报,1998,12(3):17~20
    [39] 于海朋等.挤压铸造ZA27合金.特种铸造及有色合金,1996(6):14~17
    [40] 于海朋等.挤压方式对ZA43合金力学性能的影响.特种铸造及有色合金,1999(6):24~26
    [41] 于海朋,李荣德.挤压铸造ZA27合金的组织与性能.特种铸造及有色合金,1997(4)9~12
    [42] 王培毅等.锌铝系列合金的发展概况.金属科学与工艺,1990,9(1):108~117
    [43] Laughlin Dawid E, Fu Wenling. The Kinetics of Transformation in Zn-Al Superplastic Alloy. Metallurgical Transaction, 1997, 10 (A7):921~928
    
    
    [44] Terziev L, et al. Study of Transition Phases during Isothermal Aging at 259℃ of Zn-27%A1 Alloy. Phys. Star. Sol,1989, 116:521~527
    [45] 李兴义.高强度锌合金的生产及其在矿山设备上的应用.特种铸造及有色合金,1989(2):29~34
    [46] 黄国保.代铜高强度锌合金的研究.特种铸造及有色合金,1990 (5):11~16
    [47] 张新志等.高强锌基合金的研制与应用.机械工程材料,1988(2):32~36
    [48] Keneth J A. Zinc Alloy Compete with Beonze in Bearing and Bushing. Metal Progress, 1982, 122 (6): 29~31
    [49] O. P. Modi, et al. Microstruture and Wear of Zinc Aluminium Alloys.Z. Metallkd ,1999,90(6): 439~443
    [50] B.K.Prasad. Effect of Heat Treatment on Tensile Properties of Zinc-37.5mass%Aluminium Alloy Containing Nickel or Silicon. Msterials Transactions,1998, 39(3): 387~390
    [51] L.M.Zhang, et al. Structure and Properties of an as-cast zinc-based alloy with high strength and wear resistance. Journal of Materials Science Letters, 1998, 17:1903~1905
    [52] 王青澄等.铸造锌铝合金的一次结晶和组织特点.沈阳工业大学学报,1991(3):19~29
    [53] 唐孝杰.ZA27合金网状ε和η相的形成.特种铸造及有色合金,1991(3):8~10
    [54] 金钟.硼、钛、稀土元素对ZA27性能影响的初步探讨.铸造,198 8(1):7~11
    [55] 李俊.对ZA27合金几种变质剂的讨论与评价.机械工程材料,1994(5):11~16
    [56] Negrete J, etc. Effect of Copper Modification on Impact Strength of Zinc Aluminum Alloys. Materials Transactions JM, 1994, 35 (4):
    
    32~35
    [57] Dorman M, Murphy S. Identification of the Metastable Phase α_m in a Zn/Al Alloy Containing Cu and Mg. Journal of Materials Science, 1992 (27): 3215~3220
    [58] 孙连超,田荣璋.ZA-27wt%Al合金中化合物相的分析.特种铸造及有色合金,1989(1)23~25
    [59] Rosiza Kovacheva, Russi Dobrev, Sfoyan Zadhorski. Phase Transformations in Zn-Al-Cu Alloys. Materials Characterization, 1993, 31: 217~224
    [60] 苏德煌.添加铁和锰对ZA27合金高温拉伸性能的影响.材料科学与工艺,1998,6(3):52~55
    [61] 赵沛廉.锰对ZA27合金高温性能的影响.材料科学与工艺,1996(3):34~37
    [62] 王狂飞.0.45wt%Mn、2wt%Si对ZA27合金淬火时效组织及性能的影响.热加工工艺,1998(3):10~12
    [63] 于海朋,李荣德,尹井田.挤压铸造ZA27合金的硅锰合金化.特种铸造与有色合金,1997,(4):12~16
    [64] 宫本硅等.锰硅合金化对ZA27合金机械性能和耐磨性能的影响.第五届全国磨损学术会议论文集,1989
    [65] Robert M. Aikin, Jr.and Gautham Ramachandran. Mechanical Properties of A356 Squeeze and A357 Semi-Solid Castings. Die Casting Engineer, 1999:44~54
    [66] M. Gallerneault, G.Durrant, B.Cantor. The Squeeze Casting of Hypoeutectic Binary Al-Cu. Metallurgical and Materials Transactions A, 1996,27(12):4121~4129
    [67] T. Rolland, et al. Macrosegregation in indirectly squeeze cast Al-0.9wt%Si. Materials Science and Engneering, 1996,(A212): 235~241
    [68] M. A. Savas, H. Erturan, S. Altintas. Effects of Squeeze Casting on
    
    the Properties of Zn-Bi Monotectic Alloy. Metallurgical and Materials Transactions A ,1997, (28A):1509~1515
    [69] M. A. Savas, S. Altintas. Effects of Squeeze Casting on the Wide Freezing Range Binary Alloys. Materials Science and Engneering,1993, (A173):227~231
    [70] Sahoo M, Whiting L V. Foundry Characteristics of Sand Cast Zn-Al Alloys. AFS Transactions, 1984, 92: 861~870
    [71] Barnhurst R J, Gerais E. Gravity Casting of Zinc Alumimum (ZA) Alloys: Dependence of Mechanical Properties on Soundness, Microstructure, and Inclusion Content. AFS Transactions, 1985, 93: 591~601
    [72] Argo D, et al. Practical Aspects of Iron Permanent Mold Casting of ZA Alloys. AFS Transactions, 1989, 97:757~766
    [73] Chakrabarti A K. Centrifugally Cast ZA Alloys. Foundry Management &Technology, 1996, (8): 77~79
    [74] 赵沛廉.高铝锌基合金的离心铸造.铸造,1992(5):20~23
    [75] 佟铭铎.离心铸造锌铝合金.特种铸造及有色合金,1989(3):36~37
    [76] John R D. ZA Alloy Die Casting. Proc. of ZA Casting Alloys Conference, Michigan, U. S. A, 1984
    [77] 骆灼旋.压铸技术的现状及展望.特种铸造及有色合金,1998(4):23~27
    [78] Genvais E. Properties and Die Casting of the Zn-27%A1-2%Cu-0.01%MgAlloy. Die Casting Engineer, 1981, 25:44~49
    [79] Morris C Rowlett. Die Casting in the Next Millennium. Die Casting Engineer, 1999:93~98
    [80] William A. Butler. Research in Action: Squeeze Casting and Semi-Solid Metal Processing. Die Casting Engineer,1999:35~43
    [81] Sahoo M, Whiting L V. Control of Underside Shrinkage in Zinc
    
    Aluminium Foudry Alloy by Addition of Trace Elements. AFS Transactions, 1985, 93:475~480
    [82] Habiby F, McNallan M J. Macrosegregation and Underside Shrinkage in sang Cast Zinc 27%-Aluminum Alloy (ZA 27). AFS Transactions, 1984, 92:263~269
    [83] Barnhurst R J, et al. Gravity Casting of Zinc Aluminum Alloys Solidification Behavior of ZA-8, ZA-12 and ZA-27. AFS Transactions, 1983, 91:569~584
    [84] Kishori Lal Mahanti R K, Sivaramakrishnan C. Jain K B. Microstructure Property Correlation in Indigenously Produced Zinc Aluminium Foundry Alloys. Materials Transactions JIM, 1991, 32 (7): 621~625
    [85] Savas M, Altintas A. The Microstructural Control of Cast and Mechanical Properties of Zinc Aluminium Alloys. Journal of Materials Science, 1993, 28: 1775~1780
    [86] Lamberigts M, et al. Friction and Ductility Behaviors of a High Strength Zinc Foundry Alloy. AFS Transactions, 1985, 93: 569~578
    [87] Skenazel A F, et al. Some Recent Developments in the Improvement of the Mechanical Properties of Zinc Foundry Alloys. Metall,1983(9): 898~902
    [88] Gervais E, et al. An Analysis of Selected Properties of ZAAlloys. Journal of Metals, 1985, (11): 43~47
    [89] Aliorfer K J. The Properties and Application of ZA Alloy. Metal Progress, 1982, 122 (6): 29~32
    [90] 刘胜斌,于以蘩.锌铝合金的发展与应用.材料导报,1994(5):30~32
    [91] Apedelian D J. The Development of a Family of Zinc based Alloys. Metals, 1983, 33(11): 12~15
    [92] Barber M J, Jones P E. A new Family of Foundry Alloys.
    
    Journdry of Foundry Trade, 1980, 148: 114~118
    [93] Houghtton M E, Murray M T. An Introduction to Zinc Alloys. Metals Forum, 1984, 6 (4): 217~222
    [94] 舒震,刘金水.高强度铸造锌合金的新发展.铸造,1987(6):40~42
    [95] M.Kiuehi, S.Suglyama. Application of Mashy State Extrution. J.Mater.Shaping Technology, 1990(8): 183~189
    [96] John Vickery et al. An investigation of the early stages of a forging/extrusion process. J.of Mater.Process.Tech, 1994(43):37~50
    [97] 李荣德,于海朋,张尚洲等.挤压铸造过程的临界比压及其影响因素.第二界中国国际压铸会议论文集,2000:34~43
    [98] М.З.埃尔马诺克等.有色金属拉伸.北京:冶金工业出版社,1988
    [99] 陈金德等.材料成形技术基础.北京:机械工业出版社,2000
    [100] 吴诗惇等.挤压理论.北京:国防工业出版社,1994
    [101] А.И.柯尔巴什尼可夫等.金属材料的热液体挤压.北京:国防工业出版社,1984
    [102] 张强.塑性加工变形物理场.沈阳:东北工学院出版社,1990

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700