连续刚构桥梁施工监控及仿真分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着交通事业的不断发展,科学技术的不断提高,经常需要在大江、大河、深沟修建更多更大跨径、更为经济合理的大跨径连续刚构桥梁。大桥的建成要经历一个较长而复杂的施工过程,为确保桥梁结构合龙精度、成桥线形和运营一定时间后能达到设计所要求的标高,施工时预测上部结构在每一施工阶段的挠度,并根据实时监测值来分析、指导施工过程中每个阶段的行为,就非常重要。
     施工过程中,随着悬浇梁段的增加,结构体系不断变化,每一梁段的增加都对现有结构的线形及内力产生一定的影响,种种影响因素将导致施工过程中桥梁线形、内力与理想目标存在一定的偏差,这种偏差积累到一定程度如不及时加以识别和调整,最后使得桥梁线形扭曲、结构失稳,合拢困难,甚至对桥梁结构安全埋下隐患。
     本文介绍了国内外桥梁工程施工监控发展,对连续刚构桥梁的施工监控的目的,原则和方法进行了基本阐述,最终涪江一桥采用正装分析法进行计算,并分析了桥梁结构状态中的误差影响。文章以合川区涪江一桥工程项目为背景,采用空间有限元方法建立结构分析模型,利用大型有限元软件Midas/Civil对桥梁进行理论计算。根据参数的敏感性分析确定了结构设计参数中的主要设计参数,并根据实际情况调整计算参数、修正理想状态、进行反馈控制分析、预测施工立模标高,以更好的指导施工。
     针对涪江一桥监控的实施,介绍了测试中所采用的仪器及其原理,详细的分析了应力测试中存在的误差,通过对测试结果中混凝土收缩、徐变应变及温度应变误差的消除,最终得到较为真实的应力值。在线形监测中,利用灰色原理对立模标高进行修正,取得了较好的效果,通过对温度的监测,分析了温度对线形的影响。
     通过对桥梁施工过程的模拟计算分析,根据涪江一桥监控实测数据与理论计算结果进行对比,分析应力和线形变化情况,严格控制各个控制截面的挠度和应力的发展,最终顺利完成桥梁监控工作。
With the continuous development of transport and the improvement of science and technology, it is need to build more greater span and reasonable bridge in the rivers and deep groove. The completion of the bridge was known to be a long-term and multi-step process. To ensure the accuracy of closure, the bridge line and design requirements after normal operation, it seemed especially important to predict the deflection of the upper structure of each construction stage and guide construction by the real-time measured value.
     With the increase of the girder segment cast with cantilever method and the constantly changing of the structure system, the increment of the girder segment could have effect on the line shape of bridge and the stress of structure. The influencing factors may lead to the difference of the practical value of line shape and stress and the design value. The line shape would be too twisted to shut and the structure would be unsafe if the difference wasn’t controlled timely and even brought some hidden troubles in the structure.
     This paper introduces the development of construction monitoring at home and abroad. Detailed summary and analyze the theories of monitoring, the objective and the methods of construction monitoring and the error influence of the structure state. At last the Fu River Bridge adoptted orderly-erecting analysis method for calculation. The Fu River Bridge in hechuan district is a continuous rigid frame bridge. Based on the finite element theory,it was relatively right to adopt software Midas/Civil for calculation. The main design parameters were determined by the consequence of sensitivity analysis. According to the actual state, the correction of structure parameters and the model, the feedback of analysis results and the prediction of formwork erection elevation were completed for guiding construction better.
     Aiming at implementation of monitoring, this paper presented the principle of test instruments and detailed analysis about stress test errors. Through the elimination of the strain of concrete shrinkage and creep and the strain caused by temperature, the more realistic stress value was acquired.. Based on the grey theory, the formwork erection elevation was modified. And through the temperature monitoring, the effect of temperature on line shape was analyzed.
     Through the calculation of construction process, the monitoring results were analyzed compare to the theoretical results. The change of stress and line shape were mastered. At last the monitoring of the bridge was completed successfully.
引文
[1]任志刚,彭苗,卢哲安,王佶.府河盘龙大桥施工预拱度预测与分析[J].武汉理工大学学报.2005,27(6):26-28.
    [2]肖汝诚.桥梁结构分析和程序系统[M].北京:人民交通出版社.2002.
    [3]张元海.变截面梁的应力计算及其分布规律研究[J].工程力学.2007,24(3):78-82.
    [4]刘苗.大跨度连续刚构桥施工过程控制分析[J].城市道桥与防洪.2009,2:46-47.
    [5]王卫锋,颜全胜,徐金勇.京珠北段高速公路观音沙特大桥预应力连续刚构应力监测[J].桥梁建设.2006,5:62-64.
    [6] Sevket Ates, Numerical modelling of continuous concrete box girder bridges considering construction stages[J], Applied Mathematical Modelling. Vol.35(8)(2011):3809-3820.
    [7] Richard Malm, and Hakan Sundquist. Time-dependent analyses of segmentally constructed balanced cantilever bridges[J]. Engineering Structures. Vol.32(4)(2010):1038-1045.
    [8] John Leander , Andreas Andersson and Raid Karoumi. Monitoring and enhanced fatigue evaluation of a steel railway bridge[J]. Engineering Structures. Vol.32(3)(2010):854-863.
    [9] Kihyon Kwon, and Dan M.Frangopol. Bridge fatigue reliability assessment using probability density functions of equivalent stress range based on field monitoring data[J]. International Journal of Fatigue. Vol.32(8)(2010):1221-1232.
    [10]宋丽加.悬臂施工连续梁桥的线形控制技术[J].四川建筑.2008,28(2):184-187.
    [11]朱静秋,谭伟.大跨连续梁桥施工挠度的控制和分析[J].城市道桥与防洪.2008,5:34-36.
    [12] JTG D62-2004.公路钢筋混凝土及预应力混凝土桥涵设计规范[S].
    [13] NorioTerada,Toshiaki Moshiaki.theDesign and Construetion of the Niyakodagawa Bridge in the 2nd Tomei Expressway; Proeeedings of the 1st FBI Congess,Session2:71-80,Japan.
    [14] Sakai F,Isoe A,Umeda A.A new methodology for control of construction accuracy in cable一stayed bridges[A].Fan L C.Proc 3th EASEC.Shanghai:Tongji University Press,1991:847855
    [15] Jacques Mathivat.The Cantilever Construction of Prestressed Conerete Bridges.John Wiley&Sons,1983.
    [16] Wada K,Tomita N,Takano H.Construction of theYokohama Bay Bridge superstrueture [A].Zurich:IABSE,1988:177~182.
    [17] Kalman R E.A new Approach to Linear Filtering and Prediction Problems.ASME,Journal of Basic Engineering,1960:82.
    [18] Doebling S W,Farrar C R.Computation of Srructural flexility for bridge health monitoring using ambient modal dama[Al.In:Proc.of 11st ASCE Engineering MechanicsConference[C].Ft.Lauderdale,and USA:1996:1114~1117.
    [19]石现峰.预应力混凝土曲线连续梁桥施工及使用过程时效仿真分析[J].中国铁道科学.2007,28(4):61-65.
    [20]宋增斌.西江特大桥主桥线形施工控制[J].中外公路.2004,24(4):81-84.
    [21]李志勇.预应力混凝土连续刚构主梁线形控制[J].山西建筑.2008,34(10):326-327.
    [22]姚波,郑青青.大跨径预应力连续梁桥悬臂浇筑施工监控[J].山西建筑.2007,33(2):269-270.
    [23] Yamada,Takeshi;Two-girder rigid frame bridge combining girders and RC pier,R and D: Research and Development Kobe Steel Engineering Reports,v 53,n 1,2003: 19-26.
    [24] Knight,D.W.,Lastudy of Local Scour at Bridge Pires,SAE Special Publications,v 2,1975:243-250.
    [25]葛耀君.分段施工桥梁分析与控制[M].人民交通出版社.2003.
    [26]贺拴海.桥梁结构理论与计算方法[M].人民交通出版社,2003.
    [27]王勖成等.有限单元法基本原理和数值方法[M].北京:清华大学出版社,1997.
    [28]齐林.连续刚构桥施工线形和应力的分析与控制[J].铁道科学与工程学报.2007,4(2):29-33.
    [29] Theodoros Adamakos, Ioannis Vayas, Stelios Petridis and Aristidis Iliopoulos. Modeling of curved composite I-girder bridges using spatial systems of beam elements[J]. Journal of Constructional Steel Research. Vol.67(3)(2011):462-470.
    [30]张继尧,王昌将.悬臂浇筑预应力混凝土连续梁桥[M].人民交通出版社,2004.
    [31]顾安邦,常英,乐云祥.大跨径预应力连续刚构桥施工控制的理论与方法[J].重庆交通学院学报.1999,.12(4):47-52
    [32]项海帆.高等桥梁结构理论[M].人民交通出版社,2000.
    [33]陈宇.基于有限元模型修正的施工参数识别[J].桥梁建设.2010,(5):32-34.
    [34]杜国华,毛昌时,司徒妙龄.桥梁结构分析[M].同济大学出版社,1994.
    [35]向中富.桥梁施工控制技术[M].人民交通出版社.2001
    [36]李传习,夏桂云.大跨度桥梁结构计算理论[M].人民交通出版社.2002.
    [37]赵丽丽,陈思甜,王静.大跨度连续刚构桥施工中的变形控制研究[J].现代交通技术.2006,12(8):97-99
    [38]江见鲸.混凝土结构有限元分析[M].清华大学出版社.2005
    [39]黄伟.大跨度连续梁桥施工监测控制技术[J].土工基础.2009,23(3):92-95.
    [40]张鸣,秦向杰.悬臂浇筑连续箱梁线形控制探讨[J].山西建筑.2007,33(8):281-282.
    [41] H.Yoshioka, Ramallo JC, Spencer Jr. B.F.“Smart”Base Isolation Strategies Employing Magnet or heological Dampers [J]. Journal of BridgeEngineering Mechanics, MAY 2002: 880~885.
    [42]王辉,徐洪磊.巴江河特大桥预应力现浇连续梁应力监测[J].湖南交通科技.2009,35(3):117-120.
    [43]向木生,陆伟,朱红明等.大跨径PC连续梁桥悬臂施工中的工艺控制[J].公路交通科技技,2004,21(1):71-73.
    [44]向木生.预应力混凝土梁桥应力测试技术[J].武汉理工大学学报. 2001,(3): 266-269.
    [45]范林眼.包树高速公路黄河特大桥施工监控数据分析[J].公路.2010,(12):32-35.
    [46]李君.灰色理论在大跨度连续梁桥线形控制中的应用[J].四川建筑,2009,29(2):198-199.
    [47]刘思峰,党耀国,方志耕等.灰色系统理论及其应用[M].科学出版社,2004.
    [48]肖新平,宋中民,李峰.灰技术基础及其应用[M].科学出版社,2005.
    [49]陈纪胜.箱形输水桥不同日照温差模式下的温度应力研究[J].城市道桥与防洪.2009,(5):175-178.
    [50]王全录.温度对混凝土箱梁应力和变形影响的测试与分析[J].武汉理工大学学报(交通科学与工程版).2008,32(5):790-793.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700