“吉丽”罗非鱼(尼罗罗非鱼♀×萨罗罗非鱼♂)耐盐相关基因NKCC1amRNA表达研究及耐寒性能评估
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1、慢性盐度胁迫下“吉丽”罗非鱼NKCC1a mRNA表达的盐度-组织特异性
     应用实时荧光定量PCR技术(qRT-PCR),以“吉丽”罗非鱼[尼罗罗非鱼(Oreochromis niloticus,♀)×萨罗罗非鱼(Sarotherodon melanotheron,♂)]为材料,研究NKCC1a基因表达的盐度-组织特异性。研究结果表明: (1)NKCC1a基因mRNA表达量存在显著的组织特异性,在低于25盐度环境中,NKCC1a mRNA在鳃、肝、肾及肠中均有表达;当盐度从0提高到48时,表达量在鳃中与盐度变化呈高度正相关(R>0.9,P<0.01),在肠和肾中与盐度变化呈负相关(R≈-0.7,P<0.05),但在肝中则不受盐度变化的影响。(2)当盐度提高到64,表达量在鳃和肠3 h后达最高值,5 h后下降,前后变化差异显著(P<0.05);表达量在肝中则是在5h后达最高值,变化差异也显著(P<0.05);表达量在肾中持续下降,但差异不显著。以上结果揭示,在盐度高于25的环境中,“吉丽”罗非鱼主要由鳃组织的NKCC1a排出多余的离子以维持鱼体的水盐平衡,由此认为鳃组织在“吉丽”罗非鱼高渗透压调节中起最主要作用。
     2、急性盐度胁迫下“吉丽”罗非鱼NKCC1a mRNA表达变化研究
     “吉丽”罗非鱼[体质量(21.4±5.4)g]从淡水直接转移至盐度为20、25水体中进行急性盐度胁迫实验。结果显示:(1) 20水体中,24h内死亡率仅为12%,之后死亡率几乎没有变化;25水体中,5.35h时死亡率达到100%。(2) 20盐度胁迫下,NKCC1a mRNA相对表达量在鳃中先升高,在6h达到峰值,随后呈下降趋势,6h表达量是淡水对照的37.49倍,12h和24h表达量与淡水对照间差异显著(P<0.05);肠和肾组织中表达量总体呈先下降然后恢复的趋势。在肠中,转移后8h降低至最小值,仅为淡水对照的28.4%, 12h和24h表达水平与淡水对照间差异不显著;在肾中,转移后6h表达量降至最小值,仅为淡水对照的20.86%,24h表达量与淡水对照间差异不显著(P>0.05)。(3) 25盐度胁迫下,NKCC1a mRNA相对表达量在鳃中呈上升趋势,4h表达量是淡水对照的4.31倍;但5h表达量与4h相比呈下降趋势,且二者差异显著(P<0.05)。肾中表达量在5h内无显著变化(P>0.05)。肠中表达量与20盐度下相似,呈显著下降趋势(P<0.05)。结果提示:鳃和肾NKCC1a表达的有限调节能力与“吉丽”罗非鱼不能适应25盐度有关;急性盐度胁迫下可能主要由鳃和肾来完成过多单价离子的分泌。
     3、“吉丽”罗非鱼及其亲本“新吉富”罗非鱼、萨罗罗非鱼耐寒力评估
     在上海地区室外自然降温条件下,连续3年观察测定了“新吉富”罗非鱼、“吉丽”罗非鱼(“新吉富”罗非鱼×萨罗罗非鱼)及萨罗罗非鱼对低温的耐受力,计算和分析了平均半致死水温。2008年,“新吉富”罗非鱼死亡水温范围是7.5~5.8℃,平均半致死水温是6.8℃,对水温降低过程中罗非鱼行为活动的变化进行了观察;2009年,“新吉富”罗非鱼和“吉丽”罗非鱼的死亡水温范围分别是10.8~7.6℃、12.4~9.2℃,平均半致死水温是:9.2℃和11.4℃;2010年,3种实验鱼的死亡水温范围分别是11.0~7.0℃、12.8~11.4℃和13.8~12.4℃,平均半致死水温分别是8.3℃、12.5℃、13.1℃,且3者间差异显著(P<0.05)。综合3年实验结果,开始死亡和100%死亡的水温是:“新吉富”罗非鱼分别为—11℃、5.8℃,“吉丽”罗非鱼分别为—12℃、9.2℃,萨罗罗非鱼分别为—13.8℃、12.4℃。3种遗传型罗非鱼耐寒力之间存在显著或极显著的种间差异,杂交能一定程度地改良耐寒能力。
1、Tissue-specific changes of NKCC1a mRNA under gradual stress of salinity in“GILI”tilapia
     Quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) was used to study the tissue-specific changes of NKCC1a expression by salinity in case of the hybrid (named“GILI”tilapia) by O.niloticus(♀)×S.melanotheron(♂). Being a new variety,“GILI”tilapia is characterized by high salt tolerance and fast growth both and is suitable for marine culture. The present results showed that: (1) The NKCC1a mRNA expression level has a significant tissue specialty: the NKCC1a gene expressed in all the tested tissues of gill, liver, kidney and intestine when salinity below 25. When the salinity increased from 0 to 48, the NKCC1a mRNA expression level showed a positive correlation in gill (R>0.9, P<0.01), but negative correlation in intestine and kidney (R≈-0.7, P<0.05) and no correlation in liver. (1)When the salinity raised to 64, the mRNA expression level reached the highest peak after 3h in gill and intestine, and decreased after 5h, and there were significant differences from 1h to 3h and 3h to 5h (P<0.05). In liver, the maximum level appealed in 5h and significantly higher than those in 1h and 3h(P<0.05). In kidney, the levels descended continually with the increase of time, but no statisticaly significant differences were detected among them. (2)Above results revealed that, in the“GILI”fish which acclimates to environmental salinity over 25, it is primarily the gill chloride cell to secrete the cation ions and to maintain water and salt balance. So, it is considered that gill plays a leading role in hyper-osmoregulatory of“GILI”tilapia. Meanwhile, we are expected to provide a guidline for revealing the expression mode of NKCC1a gene in euryhaline teleosts in fresh, saline and hypersaline water.
     2、The expression changes of NKCC1a mRNA under sharp stress of salinity in“GILI”tilapia
     The stress response of“GILI”tilapia, juveniles[body mass(21.4±5.4)g],following abrupt transfer to salinities 20 and 25 were studied. The present results showed that: (1) the mortality was only 12% at salinity 20 during the first 24h, and almost unchanged after that; a mortality of 100% was observed at salinity 25 within 5.35h. (2) At salinity 20, The NKCC1a mRNA expression in the gill increased rapidly, and reached the peak at 6h, being 17.49-fold of the control, then gradually decreased; and the level of 12h and 24h were significantly higher than the fresh water (P<0.05); The expression of the intestine and kidney appeared to have the initial level after a decline trend. In the intestine, it decreased to the minimum at 8h, being 28.4% of the freshwater, but there were no significant difference among 12h、24h and freshwater(P>0.05); In the kidney, the level of 6h was 20.86% of the control, and there were no significant difference between 24h and freshwater. (3) At salinity 25, The mRNA expression of the gill content a decline trend after a rise of 4hs, the level of 4h were 4.31 times higher than the control, and there were significant difference between 4h and 5h (P<0.05); in the kidney, there were no significant changes during the 5hs; the expression of the intestine were similarly with that at 20 ppt, and decreased significantly (P<0.05). Collectively, above results indicated that:“GILI”tilapia could not directly adaption to salinity 25 may be related to the limit capacity of gill and kidney to up/down-regulate NKCC1a expression, and gill and kidney plays a leading role in the process of secrete the monovalent ions after abrupt salinity transfer.
     3、Cold tolerance of GILI Tilapia, NEW GIFT Nile tilapia and Black-chin tilapia
     Cold tolerances of three tilapias(NEW GIFT Nile tilapia、GILI Tilapia and Black-chin tilapia)to low temperatures naturally decreased in the Shanghai area were studied and the average lethal temperature of 50% individuals were calculated continuously for 3 years. It is found that Low lethal water temperatures ranged from 7.5℃to 5.8℃,and the average lethal temperatures of 50% individuals was 6.8℃for NEW GIFT Nile tilapia in 2008. Meanwhile, behaviors of tilapias under decreasing water temperatures were observed. The range of Low lethal water temperatures were 10.8~7.6℃、12.4~9.2℃for NEW GIFT Nile tilapia and GILI Tilapia in 2009, and the average lethal temperatures of 50% individuals were 9.2℃and 11.4℃. But they were 10.8~7.6℃、12.4~9.2℃and 13.8~12.4℃for NEW GIFT Nile tilapia、GILI Tilapia and Black-chin tilapia in 2010. The average lethal temperatures of 50% individuals were 8.3℃, 12.5℃and13.1℃, separately , also there were significant differences among them. The comprehensive results showed that:water temperatures that beginning die and100% die were 11℃、5.8℃respectively for NEW GIFT Nile tilapia, 12.4℃、9.2℃respectively for GILI Tilapia,13.8℃、12.4℃respectively for Black-chin tilapia. There were significant or highly significant species/strain-specific differences among these three genotypic tilapias in cold tolerance. The hybridization could improve cold tolerance to a certain extent.
引文
[1] Trewavas E. Tilapiine Fishes of the Genera Sarotherodon, Oreochromis and Danakilia [M]. London:British Museum (Natural History), 1983, 583.
    [2] Pullin R S V, Eknath A E, Gjedrem T, et al.The genetic improvement of farmed tilapias (GIFT) project: the story so far [J].The ICLARM Quarterly, 1991, 14(2): 3-6.
    [3]李先仁,李思发,唐首杰等.尼罗罗非鱼8个养殖群体遗传差异的微卫星分析[J].上海海洋大学学报, 2009, 18(1): 1-7.
    [4] Trewavas E. Tilapia and Sarotherodon [J]. Buntbarsche Bulletin, 1980, 81(1): 1-6.
    [5] Ouattara N G, Bodinier C, Negre-Sadargues G, et al. Changes in gill ionocyte morphology and function following transfer from fresh to hypersaline waters in the tilapia Sarotherodon melanotheron [J]. Aquaculture, (2009), 290(1-2): 155-164.
    [6] Jennings D P, Williams J D. Factors influencing the distribution of black-chin tilapia Sarotherodon melanotheron (Osteichthyes: Cichlidae) in the Indian River system, Florida [J]. Northeast Gulf Sci., 1992, 12(2):111-117.
    [7]陈敏容,陈宏溪.三种罗非色染色体组型的比较研究[J].遗传学报, 1983, 10(1):56-62.
    [8] Kornfield I L. Descriptive genetics of cichlid fishes [M]. New York: Evolutionary genetics of fishes, Plenum Publishing Corporation, 1984, 12: 591-616.
    [9]李思发,颜标,蔡完其等.尼罗罗非鱼与萨罗罗非鱼正反杂交后代耐盐性能的杂种优势及其遗传相关性的SSR分析[J].中国水产科学,2008,15(2):189-198.
    [10]李思发,颜标,蔡完其等.尼罗罗非鱼与萨罗罗非鱼正反交鱼自繁后代F2耐盐性、生长性能及亲本对杂种优势贡献力的评估[J].水产学报, 2008, 32(3):335-340.
    [11] Watanabe W O, Fitzsimmons K, Yi Y. Farming tilapia in saline waters [M]. Lim C, Webster C D. Tilapia: biology, culture, and nutrition. The Haworth Press, 2006:347-447.
    [12]李思发,蔡完其,范武江等.“吉丽”罗非鱼—海水养殖新品种[C].罗非鱼海水养殖论坛论文报告集,2010,1-25.
    [13]Suresh A V, Lin C K. Tilapia culture in saline waters: a review [J]. Aquaculture, 1992, 106 (3-4):201-206.
    [14] Marshall W S. Na(+), Cl(-), Ca(2+) and Zn(2+) transport by fish gills: retrospective review and prospective synthesis[J]. J Exp Zool, 2002, 293(3): 264-283.
    [15] Russell J M. Sodium-Potassium-Chloride Cotransport[J]. Physiological Reviews, 2000, 80(1): 211-276.
    [16] Hebert S C, Mount D B, Gamba G. Molecular physiology of cation-coupled Cl- cotransport: the SLC12 family[J]. Pflugers Arch, 2004, 447(5): 580-593.
    [17] Cutler C P, Cramb G. Two isoforms of the Na+/K+/2Cl- cotransporter are expressed in the European eel (Anguilla anguilla)[J]. Biochim Biophys Acta, 2002, 1566(1-2): 92-103.
    [18] Hiroi J, Miyazaki H, Katoh F, et al. Chloride turnover and ion-transporting activities of yolk-sac preparations (yolk balls) separated from Mozambique tilapia embryos and incubated in freshwater and seawater[J]. J Exp Biol, 2005, 208(Pt 20): 3851-3858.
    [19] Cutler C P, Cramb G. Differential expression of absorptive cation-chloride-cotransporters in the intestinal and renal tissues of the European eel (Anguilla anguilla)[J]. Comp Biochem Physiol B Biochem Mol Biol, 2008, 149(1): 63-73.
    [20] Inokuchi M, Hiroi J, Watanabe S, et al. Gene expression and morphological localization of NHE3, NCC and NKCC1a in branchial mitochondria-rich cells of Mozambique tilapia (Oreochromis mossambicus) acclimated to a wide range of salinities[J]. Comp Biochem Physiol A Mol Integr Physiol, 2008, 151(2): 151-158.
    [21] Woo N Y S, Hg T B, Leung T C, et al. Enhancement of growth of tilapia Oreochromis niloticus in iso-osmotic medium[J]. J Appl Ichthyol, 1997, 13(2): 67-71.
    [22] Lemari G, Baroiller J F, Clota F, et al. A simple test to estimate the salinity resistance of fish with specific application to O. niloticus and S. melanotheron[J]. Aquaculture, 2004, 240(1-4): 575?587.
    [23] Livak, KJ, Schmittgen, TD. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2-⊿⊿CT Method [J]. Methods, 2001, 25(4): 402-408.
    [24] Al-Amoudi M M. Acclimation of commercially cultured oreochromis species to sea water—an experimental study. [J]. Aquaculture 1987, 65: 333-342.
    [25] Villegas C T. Evaluation of the salinity tolerance of Oreochromis mossambicus, O. niloticus and their F1 hybrids[J]. Aquaculture, 1990, 85(1-4): 281-292.
    [26] Perschbacher P W. A review of seawater acclimation procedures for commercially important euryhaline tilapias. [J]. Asian Fish. Sci. , 1992, 5: 241-148.
    [27] Scott G R, Claiborne J B, Edwards S L, et al. Gene expression after freshwater transfer in gills and opercular epithelia of killifish: insight into divergent mechanisms of ion transport[J]. J Exp Biol, 2005, 208(14): 2719-2729.
    [28] Tipsmark C K, Madsen S S, Borski R J. Effect of salinity on expression of branchial ion transporters in striped bass (Morone saxatilis)[J]. J Exp Zool A Comp Exp Biol, 2004, 301(12): 979-991.
    [29] Hiroi J, Yasumasu S, McCormick S D, et al. Evidence for an apical Na-Cl cotransporter involved in ion uptake in a teleost fish[J]. J Exp Biol, 2008, 211(Pt 16): 2584-2599.
    [30] Marshall W S.Grosell M, Ion transport, osmoregulation, and acidbase balance, in The Physiology of Fishes, D. H. Evans, Claiborne, J.B., Editor.Boca Raton:CRC Press, 2006: 177-230.
    [31] Grosell M, Wood C M, Wilson R W, et al. Bicarbonate secretion plays a role in chloride and water absorption of the European flounder intestine[J]. Am J Physiol Regul Integr Comp Physiol, 2005, 288(4): R936-946
    [32] Evans D H, Piermarini P M, Choe K P. The multifunctional fish gill: dominant site of gas exchange, osmoregulation, acid-base regulation, and excretion of nitrogenous waste[J]. Physiol Rev, 2005, 85(1): 97-177.
    [33] Hwang P-P, Lee T-H. New insights into fish ion regulation and mitochondrion-rich cells[J]. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 2007, 148(3): 479-497.
    [34]林浩然,鱼类生理学[M].排泄和渗透压调节. 1999,广州:广东高等教育出版社. 109-139.
    [35]左映平,曹劲松.鱼体内催乳素的渗透调节作用[J].生命的化学, 2007, 27(5): 455-457.
    [36]马细兰,易诗白,张勇,等.荧光实时定量PCR检测尼罗罗非鱼GH、GHR、IGF-Ⅰ基因方法的建立及初步应用[J].中山大学学报:自然科学版, 2009, 48(3): 74-79.
    [37] Jobling M. Osmotic and ionic regulation-water and salt balance [M]. //Jobling M. Environmental Biology of Fishes. London: Chapman & Hall, 1995:211-249.
    [38] Kaneko T, Watanabe S, Lee K M. Functional Morphology of Mitochondrion-Rich Cells in Euryhaline and Stenohaline Teleosts[J]. Aqua-BioSci. Monogr. (ABSM), 2008, 1(1): 1-62.
    [39] Riley L, Hirano T, Grau E G. Effects of transfer from seawater to fresh water on the growth hormone/insulin-like growth factor-I axis and prolactin in the Tilapia, O. mossambicus [J]. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology 2003, 136(4): 647-655.
    [40] Silva P, Solomon R, Spokes K, et al. Ouabain inhibition of gill Na-K-ATPase: relationship to active chloride transport [J]. J. exp. Zool. 1977, 199(3):419-426.
    [41] Cutler CP, Cramb G. Molecular physiology of osmoregulation in eels and other teleosts: the role of transporter isoforms and gene duplication [J]. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 2001,130(3): 551-564.
    [42] Hoffmann EK, Dunham PB. Membrane mechanisms and intracellular signalling in cell volume regulation [J]. International review of cytology, 1995, 161(2):173-262.
    [43] Prodocimo V, Freire CA. The Na+-K+-2Cl? cotransporter of estuarine pufferfishes (S. testudineus and S. greeleyi) in hypo- and hyper-regulation of plasma osmolality [J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 2006, 142(3-4): 347-355.
    [44] Haas M, Forbush BIII. The Na+-K+-Cl? cotransporter of secretory epithelia [J].Annual review of physiology, 2000, 62(1): 515-534.
    [45] Tipsmark C K, Madsen S S, Ceidelin M, et al. Dynamics of Na+-K+-2Cl? cotransporter and Na+-K+-ATPase expression in the branchial epithelium of brown trout (Salmo trutta) and Atlantic salmon (Salmo salar) [J]. J. Exp.Zool., 2002, 293(2): 106-118.
    [46] Scott G R, Richards J G, Forbush B, et al. Changes in gene expression in gills of the euryhaline killifish Fundulus heteroclitus after abrupt salinity transfer [J]. Am. J. Physiol., 2004, 287(2):300-309.
    [47] Tse WK, Au DW, Wong CK. Characterization of ion channel and transporter mRNA expressions in isolated gill chloride and pavement cells of seawater acclimating eels [J]. Biochemical and biophysical research communications, 2006, 346(4):1181-1190.
    [48] Kammerer B, Sardella BA, Kültz D. Salinity stress results in rapid changes in cell cycle of tilapia (Oreochromis mossambicus) gill epithelial cells [J]. J. Exp. Zool. 2009, 311(2):80-90.
    [49] Kammerer B, Kültz D. Prolonged apoptosis in mitochondria-rich cells of tilapia(Oreochromis mossambicus) exposed to elevated salinity [J]. J. Comp. Physiol., 2009, 179(4):535-542.
    [50] Hwang P, Sun CM, Wu SM. Changes of plasma osmolarity, chloride concentration, and gill Na+-K+ -ATPase activity in tilapia (O. mossambicus) during seawater acclimation [J]. Mar. Biol., 1989, 100(3):295-299.
    [51] Alabaster J S, Lloyd R. Water Quality Criteria for Freshwater Fish [M]. London: Butterworth, 1992, 361.
    [52] Watanabe W O, Kuo C M, Huang, M C. The ontogeny of salinity tolerance in the tilapias Oreochromis aureus, O. niloticus, and an O. mossambicus×O. niloticus hybrid, spawned and reared in freshwater. [J]. Aquaculture, 1985, 47(4): 353-367.
    [53]Hwang P P, Hirano R. Effects of environmental salinity on intercellular organization and junctional structure of chloride cells in early stages of teleost development [J]. J. Exp. Zool., 1985, 236 (2):115-126.
    [54]Sardella B A, Matey V, Cooper J, et al. Physiological, biochemical and morphological indicators of osmoregulatory stress in ?California‘Mozambique tilapia (Oreochromis mossambicus×O.urolepis hornorum) exposed to hypersaline water [J]. J. Exp. Biol., 2004, 207 (8):1399-1413.
    [55] McGuire A, Aluru N, Takemura A, et al. Hyperosmotic shock adaptation by cortisol involves upregulation of branchial osmotic stress transcription factor 1 gene expression in Mozambique Tilapia [J]. General and comparative endocrinology, 2010, 165(2): 321-329.
    [56] Fiol D F, Kültz D. Rapid hyperosmotic coinduction of two tilapia (Oreochromis mossambicus) transcription factors in gill cells [J]. PNAS, 2005, 102(3): 929-932.
    [57] Tse W K, Au D W, Wong C K. Effect of osmotic shrinkage and hormones on the expression of Na+/H+ exchanger-1, Na+-K+-2Cl- cotransporter and Na+-K+-ATPase in gill pavement cells of freshwater adapted Japanese eel, Anguilla japonica. The Journal of experimental biology, 2007, 210(12): 2113-2120.
    [58] Breves J P, Seale A P, Helms R E, et al. Dynamic gene expression of GH/PRL-family hormone receptors in gill and kidney during freshwater-acclimation of Mozambique tilapia[J]. Comparative Biochemistry and Physiology - Part A: Molecular & Integrative Physiology, 2011, 158(2): 194-200.
    [59] Breves J P, Hasegawa S, Yoshioka M, et al. Acute salinity challenges in Mozambique and Nile tilapia: Differential responses of plasma prolactin, growthhormone and branchial expression of ion transporters [J]. General and comparative endocrinology, 2010, 167(1): 135-142.
    [60]林华英,姜明.不同生境中鲈鱼肾脏显微和亚微结构变化的初步研究[J].中国海洋大学学报(自然科学版),1985,15 (4):64-69.
    [61] Nebel C, Boulo V, Bodinier C,et al. The Na+/K+/2Cl– cotransporter in the sea bass Dicentrarchus labrax during ontogeny: involvement in osmoregulation [J]. J. Exp. Biol., 2006, 209 (24):4908-4922.
    [62]李晨虹,李思发.不同品系尼罗罗非鱼致死低温的研究[J].水产科技情报, 1996, 23(5):195-198.
    [63]杜荣骞.生物统计[M].北京:高等教育出版社, 1985, 146-159.
    [64]吕耀平.影响越冬罗非鱼死亡率环境因子的灰色关联分析[J].水产科学, 2005, 24(8):14-16.
    [65] CNAANI A, GALL G E, HULATA G. Cold tolerance of tilapia species and hybrids [J]. Aquaculture International, 2000, 8(4):289-298.
    [66]吴福煌,刘寒文.尼罗罗非鱼抗寒性状若干指标初探[J].淡水渔业, 1997, 27(5):14-15.
    [67]方树淼,苏改珍,李强.温差对尼罗罗非鱼养殖的危害[J].淡水渔业, 1988, (2):24-25.
    [68] LAHAV, E, RATANAN, Z. Cold tolerance of genetically produced all-male tilapia hybrids (Oreochromis aureus) [C]. //FITZIMMONS, K, The Fourth International Symposium on Tilapia Aquaculture Northeast Regional Agricultural Engineering Service. Ithaca, NY, USA, 1998, 662-670.
    [69] HARRISON C K, MAHMOUD A, HENK B, et al. Heritability of cold tolerance in Nile tilapia, Oreochromis niloticus, juveniles [J]. Aquaculture, 2005, 249(1):115-123.
    [70]汪锡钧,吴定安.几种淡水鱼类温度基准值的研究[J].水产学报, 1994, 18(2):93-100.
    [71]马旦梅,程光平,喻海燕,等.吉富罗非鱼对不同降温速率胁迫的死亡反应研究[J].广西畜牧兽医, 2010, 26(4) :200-203.
    [72]李思发,李晨虹,李家乐,等.尼罗罗非鱼选育三代效果评价[J].上海水产大学学报, 2001, 10(4) :289 - 292.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700