草鱼不同地域群体的遗传结构分析及生长性状相关的微卫星标记筛选
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
草鱼(Ctenopharyngodon idella),隶属于鲤形目
     (Cypriniformes),鲤科(Cyprinidae),雅罗鱼亚科(Leuciscus),草鱼属(Ctenopharyngodon),具有生长快、养殖成本低等优点,为池塘、湖泊和水库的主要养殖对象,是我国淡水渔业中最重要的养殖品种之一。草鱼分布在亚洲的各大江河水系,在中国除新疆和青藏高原无自然分布外,在其它主要的河流、湖泊都有分布,形成了草鱼丰富的种质资源。近年来,由于酷捕和水环境的污染使得自然界草鱼种群数量明显下降。因此,为有效利用这一淡水鱼类资源,需对不同水系的草鱼群体的遗传背景进行分析,为草鱼选育奠定基础。另一方面,由于草鱼性成熟周期长,亲鱼个体大等原因,给良种选育带来困难,目前草鱼尚未获得遗传改良的品系。利用DNA遗传标记进行辅助选育已经成为动物育种过程中的重要方法。筛选和利用与草鱼经济性状相关的分子标记,可有效提高选择效率,缩短育种年限,对加快培育具有优良经济性状的草鱼养殖品系,具有重要的意义。本研究拟从草鱼的EST数据库中筛选微卫星分子标记,利用微卫星标记对长江水系群体(石首、监利、长沙)和珠江水系草鱼群体(清远、肇庆)的遗传结构进行分析。同时,筛选与草鱼生长性状相关联的微卫星分子标记,具体研究内容如下:
     1、草鱼EST-SSR标记的开发。以草鱼脑、肌肉、肝等组织构建cDNA文库,经测序获得ESTs序列760000个,再用trf(tandem repeats finder)软件从中筛选微卫星序列共5556个,据此设计EST-SSR引物118对,其中19对EST-SSR引物能够扩增出带型清晰且多态性较高的谱带。
     2、草鱼5个不同地域群体的遗传结构分析。利用已开发的19个EST-SSR标记研究三个长江水系群体(石首CS、监利JL、长沙SS)和两个珠江水系群体(清远QY、肇庆ZQ)草鱼的遗传结构,共获得93个等位基因,每对引物检测到的等位基因数为2~8个,平均为4.89个;群体遗传多样性分析表明:5个群体的平均多态信息含量(PIC)范围为0.4154~0.4604,显示草鱼群体的遗传多样性偏低;平均观测杂合度(Ho)范围为0.4158~0.5013,平均期望杂合度(He)范围为0.4506~0.5028,其中,长沙群体平均期望杂合度最高0.5028,监利群体的平均观察杂合度和平均期望杂合度均最低,分别为0.4158和0.4506,石首群体、肇庆和清远群体居中,即长沙群体的遗传多样性最高,监利群体的遗传多样性最低;对数据进行F-检验,结果表明群体间的遗传分化程度低。Hardy-Weinberg平衡的卡方检验结果表明5个群体均一定程度上偏离了平衡;聚类分析显示长沙群体(CS)、石首群体(SS)与监利群体(JL)聚成一支;肇庆群体(ZQ)与清远群体(QY)聚成一支,这与草鱼群体的流域分布相一致。
     3、草鱼生长性状相关联的EST-SSR标记筛选。利用草鱼EST(expressed sequence tags)数据库开发的18条EST-SSR标记对草鱼养殖群体进行基因型与生长性状关联分析和群体的遗传多样性分析,结果表明:关联分析得到6个微卫星位点(13118、13305、24017、35939和40698)与体重,体长和体高显著或极显著相关(P<0.05或P<0.01)。对差异显著的位点进行不同基因型间与生长性状的多重比较,获得了与体重,体长和体高等生长性状相关的有利基因型,他们是13118位点的BB、13305位点的AD、24017位点的AC、25085位点的BE、35939位点的BB和40698位点的BB。将上述6个微卫星位点上的EST序列与GenBank数据库进行BLAST比对,其中有2条EST序列与已知功能的基因序列高度同源,24017序列与鲤鱼自然杀伤细胞增强因子(NCEF)同源性水平高达86%,25085序列与草鱼反应元件结合蛋白(CREB)的基因同源性水平达到80%。应用这18个微卫星位点对草鱼随机群体进行遗传多样性分析,共检测到82个等位基因,平均等位基因4.556个,每个位点检测到的等位基因数为2~9个,群体的平均观测杂合度为0.4529,平均期望杂合度和平均多态信息含量分别为0.4571和0.4017,表明该群体遗传多样性处于低水平。
Grass carp(Ctenopharyngodon idella) is one of most important cultured freshwater fishes which belongs to Cypriniformes, Cyprinida, Leuciscus, Grass carp. Because of fast growth and low cost farming, it has been the main breeding species in the ponds, lakes and reservoirs. It distributes in major river systems and lakes in Asia except for Xinjiang and Qinghai Tibet Plateau without the natural distribution, forming rich germplasm resources. In recent years, the unclear genetic background of broodstock and inbreeding led to germplasm degradation; executive arrest and pollution of the natural environment makes natural grass carp populations decreased significantly. Therefore, in order to protect and use the freshwater fish resources, the genome of different groups in grass carp should be researched. We need to develop and use a variety of molecular genetic markers to find out their genetic polymorphism and relationship and study their genetic background for the basis of grass carp breeding population. On the other hand, due to long period of sexual maturity of grass carp, big broodstock individuals and other reasons, so it is difficult to breed superior strains. The current has not yet acquired the genetic improvement of grass carp strains. Marker assistant selection(MAS) has become an important method to improve breed. Selection and use of grass carp economic traits associated molecular markers can effectively improve the selection efficiency and shorten the breeding period. It is important significantly to accelerate the development of superior economic traits of grass carp breeding strains. In this paper, microsatellite markers were selected from the EST database of grass carp. They were employed to detect the genetic diversity of three groups of grass carp populations from the Yangtze River System(SS, JL, CS) and two groups from the Pearl River System(QY, ZQ). Meanwhile, we identified microsatellite loci associated with growth traits in grass carp. The detailed content was as follows:
     1. Development of EST derived Microsatellites in grass carp. 5556 microsatellite sequences were found from ESTs database (760000 items) which were constructed from brain, muscle,liver tissues of grass carp. According to these microsatellite sequences, 118 pairs of primers were designed with Primer Premier 5.0. Nineteen pairs of primers can amplified clear and highly polymorphic products by method of PCR.
     2. Development of EST derived Microsatellites and Analysis of Genetic Diversity in Five Populations of Grass Carp. Nineteen pairs of EST SSRs primers were employed to detect the genetic diversity of three groups of grass carp populations from the Yangtze River System(SS, JL, CS) and two groups from the Pearl River System(QY, ZQ) . The result displayed that 93 polymorphic loci were amplified and each primer were detected 2 to 8 alleles or 4.89 alleles by average. Genetic diversity data showed that: the average polymorphism information content(PIC) ranged from 0.4154 to 0.4604 displayed that grass carp population had lower genetic diversity; the average observed heterozygosity was from 0.4158 to 0.5013, the average expected heterozygosity was 0.4506 and 0.5028 , CS had the highest mean expected heterozygosity(0.5028). JL had the lowest mean expected heterozygosity(0.4506) and mean observed heterozygosity(0.4158). SS, QY and ZQ had the middle mean observed heterozygosity and mean expected heterozygosity. These observation indicated that CS has the highest genetic diversity, whereas JL the lowest; Fst value indicated that the populations were lowly differentiated. Chi square test was used to analyze the genotypes based on Hardy Weinberg equilibrium, the P value denoted that the five populations deviated equilibrium partially. The dendrogram based on genetic distance showed two major clusters according with basin distribution of grass carp populations: the stock from CS , SS and JL were in one cluster, which were sampled from the Yangtze River. The other cluster consists of ZQ and QY from sampling localities distributed in the Pearl River.
     3. Screening of EST SSRs markers related to growth traits in grass carp. Eighteen pairs of EST SSRs primers selected from EST base of grass carp were employed to examine the associations between their genotypes and growth traints and detect the genetic diversity of random Grass carp populations. Microsatellite loci of 13118, 13305, 24017, 25085, 35939 and 40698 were significantly associated with body weight, body length., and body height (P<0.05 or P <0.01). The most favorable genotypes for growth traits were AA at 13118, AD at 13305, AC at 24017, BE at 25085, BB at 35939 and BB at 40698. In addition, a total of alleles for the loci were detected (2~9 alleles for each locus). The average effective number of alleles(Ne), observed heterozygosity(Ho), expected heterozygosity(He) and mean polymorphic information content(PIC) was 4.556, 0.4529, 0.4571 and 0.4017, respectively, both of which indicated that the population genetic diversity was low. The homology identity of the 6 correlative ESTs was determined by GenBank of NCBI blast programmer on the amino acid levels. It was found, through BLAST analysis, that 2 ESTs with significant similarity to the known functional sequences in GenBank. 24017 was highly homologous to the known natural killer enhancing factor(NKEF) with an identity of 86%. 25085 was highly homologous to the known cAMP response element binding protein with an identity of 80%. The other 4 ESTs were not significantly homologous to any of the known functional genes from GenBank.
引文
[1]Nelson J. Fishes of the world. Wiley. New York, 1994.
    [2]EARL W. CHILTON II, and MAURICE I. MUONEKE. Biology and management of grass carp ( Ctenopharyngodon idella, Cypfinidae) for vegetation control: a North American perspective[J]. Reviews in Fish Biology and Fisheries, 1992, 2:283 320.
    [3]广东草鱼养殖概况及现状分析.中国水产养殖网.
    [4]草鱼养殖遭遇种质退化难道品种改良值得期待.中国水产养殖网.
    [5]渔业简讯[J].水产科技情报, 2010, 37(2): 102.
    [6]沈玉帮,张俊彬,李家乐.草鱼种质资源研究进展[J].中国农学通报, 2011, 27(7): 369 373.
    [7]李思发.长江、珠江、黑龙江三水系的鲢、鳙、草鱼原种种群生化遗传结构与变异[J].水产学报, 1986, 10(4): 351 372.
    [8]李思发,陈永乐,等.长江、珠江、黑龙江三水系的鲢、鳙、草鱼原种种群的生化遗传结构与变异[J].水产学报, 1986, 10(4) :351 372.
    [9]薛国雄,刘棘,刘洁.三江水系草鱼种群RAPD分析[J].中国水产科学, 1998, 5(1): 1 5.
    [10]张四明,汪登强,邓怀,等.长江中游水系鲢和草鱼群体mtDNA遗传变异的研究[J].水生生物学报, 2002, 26(2): 132 147.
    [11]张德春,余来宁,方耀林,等.草鱼自然群体和人工繁殖群体遗传多样性的研究[J].淡水渔业, 2004, 34(4):5 7.
    [12]廖小林,俞小牧,谭德清,等.长江水系草鱼遗传多样性的微卫星DNA分析[J].水生生物学报, 2005, 29(2): 113 119.
    [13]Zhang ZW, Cao ZM, Yang H et al. Microsatellites analysis on genetic variation between wild and cultured populations of Ctenopharyngodon idella[J].Zool Res,2004b,27:189 196.
    [14]Li JL, Zhu ZY, Wang GL, Bai ZY, Yue GH. Isolation and characterization of 17 polymorphic microsatellites in grass carp[J]. Mol Ecol Notes 7:1114–1116, doi:10.1111/j.1471 8286, 2007, 01797.x
    [15]Shanshan Guo, Guiwei Zou et al. Development of microsatellite DNA markers of grass carp (Ctenopharyngodon idella) and their cross species application in black carp (Mylopharyngodon piceus) [J]. Conserv Genet, 2008, doi:10.1007/s10592 008 9777 9
    [16]Jinliang Zhao, Yang Cao, Jiale Li, et al. Population genetic structure and evolutionary history of grass carp Ctenopharyngodon idella in the Yangtze River, China[J]. Environ Biol Fish, 2011,90: 85 93.
    [17]Wei dong Ding, Zhe ming Cao, Li ping Cao. Molecular analysis of grass carp (Ctenopharyngodon idella) by SRAP and SCAR molecular markers[J]. Aquacult Int, 2009, doi:10.1007/s10499 009 9277 z.
    [18]Junhong Xia, Feng Liu, Jiale Li, et al. A consensus linkage map of the grass carp (Ctenopharyngodon idella) based on microsatellites and SNPs[J]. BMC Genomics, 2010, 11:135.
    [19]Becker J, Vos P, Kuiper M, et al. Combined mapping of AFLP and RFLP markers in barley[J]. Mol Gen Genet, 1995, 249(1):65 73.
    [20]Williams J G Kubelik A R, Livak K J, et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers[J]. Nucleic Acids Res, 1990, 18(22): 6531 6535.
    [21]Zietkiewicz E, Rafalski A, Labuda D. Genome fingerprinting by simple sequence repeat (SSR) anchored polymerase chain reaction amplification.[J]. Genomics. 1994, 20(2): 176 183.
    [22]Weber J L. Informativeness of human (dC dT)n. (dG dT)n polymorphisms[J]. Genome, 1990,(7):524 530.
    [23]Wintero A K, Fredholm M, Thomsen P B. Variable (dG dT) n. (dC dA) n sequences in the porcine genome[J]. Genomics, 1992, 12:281 288.
    [24]国伟,沈佐锐.微卫星DNA的多态性及其应用[J].生物技术通讯. 2004, 15(2): 158 159.
    [25]管峰,杨利国,贾名威,等.微卫星的构成及其检测技术[J].生物学杂志. 2004, 21(2): 1 3.
    [26]Chen X, Salamini R and Gebhardt C. A Potato molecularfunction map for carbohydrate metabolism and transport[J]. Theor Appl Genet,2001,102:284 295.
    [27]Thiel T,Miehalek W, Varshney RK, Graner A. Exploiting EST databases for the development and characterization of gen derived SSR markers in barle(Hordeum vulgareL.) [J]. Theor Appl Genet,2003,106:411 422.
    [28]朱振东,贾继增.小麦SSR标记的发展及应用[J].遗传, 2003, 25(3): 355 360.
    [29]Holton RA, Christopher JT,McClure L,Harker N,Henry RJ. Identification and mapping of polymorphic SSR markers from expressed gene sequences of barley and wheat[J]. Mol Breeding,2002,9:63 71.
    [30]Dan Wang, Xiaolin Liao,Lei Cheng, et al. Development of novel EST SSR markers in commom carp by data mining from public EST sequences[J]. Aquaculture, 2007, 271:558 574.
    [31]Hongxia Wang, Fuhua Li, Jianhai Xiang. Polymorphic EST SSR markers and their mode of inheritance in Fenneropenaeus chinensis[J]. Aquaculture, 2005, 249:107 114.
    [32]Xiuli Wang, Xiaoli Guo, Yingming Zhang et al. Development of polymorphic EST derived SSR markers for the shrimp,Fenneropenaeus chinensis[J]. Conserv Genet, 2009, 10:1455 1457.
    [33]Ziniu Yu,Yanhong Wang, Dingkun Fu. Development of Fifty one novel EST SSR loci in the Pacific oyster,Crassostrea gigas by data mining from the public EST database[J]. Conservation Genet Resour, 2009.
    [34]Yongping Wang, Ximing Guo. Development and Characterization of EST SSR Markers in the Eastern Oyster Crassostrea virginica[J]. Marine Biotechnology, 2007, 9:500 511.
    [35]Xuemei Qiu, Shaozhen liu, Xiuli Wang,et al. Eight SSR loci from Oyster Crassostrea gigas EST database and cross species amplification in C.plicatula.Conserv Genet, 2009, 10:1013 1015.
    [36]Rajeev K V, Ralf S, Andreas B, et al. Interspecific transferability and comparative mapping of barley EST SSR markers in wheat, rye and rice[J]. Plant Science,2005, 168: 195 202.
    [37] Perez F, Ortiz J, Zhinaula M, et al. Development of EST SSR markers by data mining in three species of shrimp: Litopenaeus vannamei, Litopenaeus stylirostris, and Trachypenaeus birdy[J]. Mar BiotecCSol, 7,554 569.
    [38]Wang H, Li F, Xiang J, et al. Polymorphic EST SSR markers and their mode of inheritance in Fenneropenaeus chinensis[J]. Aquaculture,2005,249:107 114.
    [39]鲁翠云,全迎春,李大宇,等.用鲤鱼EST SSRs分子标记分析长江黑龙江鲤种群结构[J].农业生物技术学报, 2007, 15(6): 947 952.
    [40]顾颖,曹顶臣,等.鲤与生长性状相关的EST SSRs标记筛选[J].中国水产科学, 2009, 16(1):15 21.
    [41]徐美佳,张研,等.利用EST SSR座位对鲤鱼几种生长性状的单标记回归分析[J].湖南农业大学学报(自然科学版), 2009, 35(2):155 157.
    [42]徐美佳,张研,等.利用EST SSR座位对鲤鱼4种生长性状的单标记回归分析[J].水产学杂志, 2009, 22(1):15 18.
    [43] Vignal A, Milan D, Sancristobal M, et al. A review on SNP and other types of molecular markers and their use in animal genetics[J]. Genet Sel Evol. 2002: 275 305.
    [44] Authony B. SNP attack on complex traits[J]. Nature Genet. 1998: 217 218.
    [45]金素娟,柳武革,朱小源,等.利用分子标记辅助选择改良温敏核不育系GD 8S的稻瘟病抗性[J].中国水稻科学, 2007, 21(6): 599 604.
    [46]周元飞,戚华雄,万丙良,等.运用分子标记辅助选择技术改良9311白叶枯病抗性的研究[J].分子植物育种, 2003: 835 836.
    [47]柳武革,王丰,金素娟,等.利用分子标记辅助选择聚合Pi 1和Pi 2基因改良两系不育系稻瘟病抗性[J].作物学报, 2008, 34(7): 1128 1136.
    [48]沈圣泉,舒庆尧,吴殿星,等.利用分子标记辅助选择育成抗螟虫籼稻不育系科龙A[J].杂交水稻. 2008, 23(2): 15 18.
    [49]王才林,陈涛,张亚东,等.通过分子标记辅助选择培育优良食味水稻新品种[J].中国水稻科学. 2009: 25 30.
    [50]Yu Y G. RFLP and microsatellite mpping of a gene for soy2 bean mosaic virus resistanse[J]. Phytopat hology, 1994: 602 641.
    [51]郭瑞星,刘小红,荣廷昭,等.植物SSR标记的发展及其在遗传育种中的应用[J].玉米科学, 2005, 13(2): 8 11.
    [52]马磊,张晓峰,张天奇,等.微卫星标记与镜鲤部分生长性状的相关分析[J].湖南农业大学学报(自然科学版), 2010, 36(4):453 458.
    [53]樊佳佳,白俊杰,等.大口黑鲈生长性状的微卫星DNA标记筛选[J].遗传, 2009, 31(5):515 522.
    [54]陈晓汉,曾地刚,等.凡纳滨对虾生长性状的微卫星DNA标记分析[J].武汉大学学报(理学版), 2006, 52(4):498 502.
    [55]李建林,唐永凯,陈文华,等.吉富罗非鱼微卫星标记与体质量、体形性状相关性分析[J] .中国水产科学, 2009, 16(6): 824 832.
    [56]赵海燕,李池陶,贾智英,等.德国镜鲤微卫星标记与形态性状的相关分析及亲本的选育[J].上海海洋大学学报, 2009, 18(5): 513 519.
    [57]张天时,刘萍,李健,等.中国对虾与生长性状相关微卫星DNA分子标记的初步研究[J].海洋水产研究, 2006, 27(5): 34 38.
    [58]卢钟磊,池信才,王义权,等.褐牙鲆耐热性状相关的微卫星分子标记筛选[J].厦门大学学报(自然科学版), 2007, 46(3): 396 402.
    [59] Cnaani A, Zilberman N, Tinman S, et al. Genome scan analysis for quantitative trait loci in an F2 tilapia hybrid[J]. Mol Gen Genomics. 2004: 210 230.
    [60]Liusuo Zhang, Changjian Yang, Yang Zhang, et a1. A genetic linkage map of Pacific white shrimp (Litopenaeus vannamei): sex 1inked microsatellite markers and high recombination rates[J]. Genome, 2007, 50(3):329 332.
    [61]Yanjie Qin, Xiao Liu, Haibin Zhang, et a1. Identification and Mapping of Amplified Fragment Length Polymorphism Markers Linked to shellColor in Bay Scallop, Argopecten irradians irradians (Lamarck, 1819) [J]. Marine Biotechnology, 2007, 9 (1):66 73.
    [62]Li Li, Xiang Jianhai, Liu Xiao, et a1. Construction of AFLP based genetic linkage map for Zhikong scallop, Chlamys farreri Jones et Preston and mapping of sex linked markers [J]. Aquaculture, 2005, 245(1):63 73.
    [63]Xiande Liu, Xiao Liu, Guofan Zhang. Identification of quantitative trait loci for growth related traits in the Pacific abalone Haliotis discus hannai Ino[J]. Aquaculture Research, 2007, 38 (8):789 797.
    [64] CHEN S, LIN XH, XU C G, et al. Improve ment of bacterial blight resistance of Minghui 63,an elite restorer line of hybrid rice, by molecular marker assisted selection[J] . Crop Science, 2000, 40: 239 244.
    [65]彭应财,李文宏,樊叶扬,等.利用分子标记辅助选择技术育成抗白叶枯病杂交稻协优218[J].杂交水稻, 2003, 18( 5) : 5 7.
    [66]童海军,薛庆中.抗病杂交水稻新组合%优8220[J] .杂交水稻, 2003, 18(5) : 73 74.
    [67]王春明,安井秀,吉村醇,等.水稻叶蝉抗性基因回交转育和CAPS标记辅助选择[J] .中国农业科学, 2003( 36) : 237 241.
    [68] LIU S P, LI X, WANG CY, et al. Improvement of resi stance to rice blast in Zhenshan 97 by molecular marker aided selection[J] . Acta Botanica Sinica, 2003, 45: 1346 1350.
    [69]王新望,赖菁茹,刘广田.农艺性状优良冬小麦ph1b系的创造及标记辅助选择的应用[J].作物学报, 2000, 26: 327 333.
    [70]夏军红,郑用琏.玉米恢复系的分子标记辅助回交选育与效益分析[J].作物学报, 2002(28): 339 344.
    [71]霍金龙,曾嵘,潘伟荣等.微卫星PCR聚丙烯酰胺凝胶银染法影响因素的分析研究[J].云南农业大学学报, 2005, 20(1): 67 71.
    [72] Wang Y P, Guo X M. Development and Characterization of EST SSRs Markers in the Eeastern Oyster Crassostrea virginica. BioTechnology, 2007, 7(9): 500 511.
    [73]Hu J J, Wang X L, Hu X L et al. Extence of microsatellites in expressed sequence tags of common carp (6 3prinus carpio L.)available in Gen Bank db EST Data base. Joumal of Ocean University of China , 2006, 5(1): 12 20.
    [74] Wang X L, Guo X L , Zhang Y M, et al. Development of polymorphic EST derived SSR markers for the shrimp, Fenneropenaeus chinensis. Conserv Genet,2009, 10: 1455 1457.
    [75]张晓峰,杨晶,孙效文.基于EST序列的鲤鱼生长相关SNP发掘[J].水产学杂志, 2009, 22(4): 1 7.
    [76]Edwards Y J, Elgar G , Clark M S, et al. The identification and characterization of microsatellites in the compact genome of the Japanese pufferfish, Fugu rubripes: perspectives in functional and comparative genomic analyses[J]. Mol. Biol, 1998, 278: 843 854.
    [77] David L, Rajasekaran P, Fang J, et al. Polymorphism in ornamental and common carp strains (Cyprinus carpio L.) as revealed by AFLP analysis and a new set of microsatellite marker[J]. Mol. Genet. Genomics, 2001, 266: 353 362.
    [78] Serapion J, Kucuktas H, Feng J N, et al. Bioinformatic mining of type I microsatellites from expressed sequence tags of channel catfish (Ictalurus punctatus) [J]. Mar. Biotechnol, 2004, 6: 364 377.
    [79]Botstein D, White R L, Skolnick M. Construction of genetic linkage map in mail using restriction fragment length polymorphisms[J]. Am J Anim Gen, 1980, 32: 314 341.
    [80]Powell W,Morgante M,Andre C,et al.The comparison of RFLP,RAPD,AFLP and SSR markers for germplasm analysis [J]. Mol Breeding, 1996, 2: 225 228.
    [81] Nei M. The rheory of gentic distance and evolution of human races.[J]. Human Genetics, 1978, 23(4): 341 369.
    [82]全迎春,孙效文,梁利群.应用微卫星多态分析四个鲤鱼群体的遗传多样性[J].动物学研究,2005, 26(6): 595 602.
    [813]李鸥,赵莹莹,郭娜,等.草鱼种群SSR分析中样本量及标记数量对遗传多度的影响[J].动物学研究, 2009, 30(2): 121 130.
    [84]李莉,孙振兴,杨树德,等.用微卫星标记分析皱纹盘鲍群体的遗传变异.遗传, 2006, 28(12): 1549 1554.
    [85] DeWoody J A, Avise J C. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. J Fish Biol., 2005, 6: 461 473.
    [86]谭书贞,董仕,边春媛,等.长江流域3个群体草鱼mtDNA D loop区段的PCR PFLP分析.南开大学学报, 2007, 40(3): 106 112.
    [87]吴海防,董仕,单淇,等. 3个群体草鱼mtDNA D Loop的PCR RFLP分析.水产科学, 2006, 25(4): 185 188.
    [88] Luikart G, Sherwin W B, Steele B M, et al. Usefulness of molecular markers for detecting population bottlenecks via montitoring genetic change. Mol Ecol j 1998, 7: 963 974.
    [89]薛国雄,刘棘,刘洁.三江水系草鱼种群RAPD分析.中国水产科学, 1998, 5(1): 1 5.
    [90]赵金良,李思发.长江中下游鲢、鳙、草鱼、青鱼种群分化的同工酶分析.水产学报, 1996, 20(2): 104 110.
    [91]长江四大家鱼产卵场调查队.葛洲坝水利枢纽工程截流后长江四大家鱼产卵场调查.水产学报, 1982, 6(4): 287 305.
    [92]刘乐和,吴国犀.葛洲坝水利枢纽兴建后长江中上游鱼类资源状况及增殖途径初探.水利渔业, 1992, 55: 3 7.
    [93]伍献文.中国鲤科鱼类志[M].上海:科学技术出版社, 1964.
    [94]王高富,吴登俊.凉山半细毛羊微卫星标记与羊毛性状的相关分析[J].遗传, 2006 , 28(12): 1505 1512.
    [95]Stack S, Campbell L, Henderson K, et a1.Develoment of EST derived microsatellite markers for mapping and germplasm analysis in wheat [C].Plant&Animal GenomeⅧConference, San Diego,Cali fornia, USA, January, 2000:9 12.
    [96]Shau H, Gupta R K, Golub S H. Identification of natural killer enhancing factor (NKEF) from human erythroid cells[J]. Cell Immunol, 1993, 147(1): 1.
    [97]Hungyi Shau·Lisa H, Robert Chiu Anthony Kim. Cloning and sequence analysis of candidate human natural killer enhancing factor genes[J]. Immunogenetics, 1994, 40: 129 134.
    [98]Sauri H, Ashjian P H, Kim A, et al. Recombinant natural killer enhancing factor augments natural killer cytotoxicity[J]. JLeukoc Biol,1996, 59: 925.
    [99]Kim A T, Saralian T A, Shau H. Characterization of antioxidant properties of natural killer enhancing factor B and induction of its expression by hydrogen peroxide[J]. Toxicol Appl Pharmacol,1997, 147(1): 135.
    [100]Anastasia M, Zimmerman·Jason P, Evenhuis·Gary H, et al. A single major chromosomal region controls natural killer cell like activity in rainbow trout[J]. Immunogenetics, 2004, 55: 825 835.
    [101]Montminy, M.R., Bilezikjian, L.M. Binding of a nuclear protein to the cyclic AMP response element of the somatostatin gene[J]. Nature, 1987, 328: 175 178.
    [102]Mantamadiotis T., Kretz O., Ridder S., et al. Hypothalamic 3`,5` cyclic adenosine monophoshate response element binding protein loss causes anterior pituitary hypoplasia and dwarfism in mice[J]. Mol, Endocrinol, 2006, 20: 204 211.
    [103]van Eeden F.J., Granto M., Schach U., et al. Genetic analysis of fin formation in the zebrafish, Danio rerio[J]. Development, 1996, 123: 255 262.
    [104]Sebastian Dworkin, Joan K. Heath, Tanya A. deJong Curtain, et al. CREB activity modulates neural cell proliferation, midbrain hindbrain organization and patterning in zebrafish[J]. Developmental Biloogy, 2007, 307: 127 141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700