油田结垢处理技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在油田上结垢是一个非常普遍存在的问题,给油田生产带来严重的危害。油井与输油管道的结垢为油田开发过程中遇到的重要问题之一,严重的制约了原油的正常生产与集输,增加了原油生产的成本,给油田带来了较大的经济损失。结垢伤害是油田注水开发所面临的普遍问题之一,到目前为止,仍是尚未解决的世界性难题。
     以马来酸酐(MA)、环氧琥珀酸钠(ESAS)、丙烯酰胺(AM)、烯丙基磺酸钠(SAS)为单体,过硫酸铵为引发剂,合成了一种新型MEAS四元共聚物防垢剂。通过正交试验确定了防垢剂的最佳合成条件,考察了防垢剂用量、体系pH值和温度对防垢剂防垢性能的影响。结果表明,最佳合成条件为:引发剂用量为单体总质量的15%,单体配比n(MA):n(ESAS):n(AM):n(SAS)=1:1:0.6:1,聚合温度90℃,聚合时间3h。在最佳合成条件下测定共聚物的防垢率大于90%,防垢效果较好;
     以丙烯酸(AA)、烯丙基磺酸钠(SAS)、丙烯酰胺(AM)、环氧琥珀酸钠(ESAS)为单体,过硫酸铵为引发剂,水为溶剂,合成出ASAE四元共聚物防垢剂。通过正交试验确定最佳合成条件为,并对其进行了性能评价。最佳合成条件:反应温度80℃;n(AA):n(SAS):n(AM):n(ESAS)=1:1:0.6:1.2引发剂用量为单体总质量的15%;反应时间3h;。在最佳合成条件下共聚物的防垢率为86.72%,防垢效果很好。
     以环氧琥珀酸钠(ESAS)、丙烯酰胺(AM)、烯丙基磺酸钠(SAS)为单体,过硫酸铵为引发剂,合成了EAS三元共聚物防垢剂。通过红外光谱图对其结构表征,结果表明合成的产物为目标产物。通过正交实验研究其最佳合成条件为:共聚温度为90℃,共聚时间为3.5h,单体配比n(ESAS):n(AM):n(SAS)=1.2:0.6:1;引发剂用量为单体总质量的12.5%,合成产物对碳酸钙垢具有较好的防垢性能,防垢率为88.07%。
     在预处理的水溶液升温的同时开启超声波防垢仪,对水质进行处理。以单超声波、双超声波、无超声波实验为研究对象,通过化学滴定法测得易成垢离子防垢前后的变化规律,对超声波防垢措施的效果进行了研究。结果表明,在超声波作用下,超声波辐射能会抑制微晶向碳酸钙化合物方向转变,即能够抑制微晶成长成碳酸钙化合物的速度,从而预防结垢;超声波作用下,管壁结垢物质会振荡脱落,从而能够实现防垢目的;在同样条件下,单超声波作用效果,强于双超声波作用。
Scaling is a very common problem in the oilfield, and brings serious harm to theoilfield production. The scaling of the oil wells and pipelines is one of the important issuesencountered in the oilfield development process, constraints the normal production andgathering transportation of crude oil, and increases the cost of crude oil production, so it hasbrought greater economic losses to the oilfield. Scaling phenomenon is a common problemfaced by the oilfield water flooding, and so far, is still an unresolved global problem.
     A novel quadripolymer scale inhibitor is prepared from maleic anhydride (MA),epoxy succinic acid sodium(ESAS), acrylamide(AM) and sodium vinyl sulfonate(SAS), andthe polymerization is initiated by persulfate ammonium. The study determined the optimalsynthesis conditions for scale inhibitors by orthogonal test, and investigated scale inhibitorsdosage, systematic pH value and temperature on the scale inhibitor anti-scaling properties.The results show that the optimal conditions of synthesis as follows: the mass ratio ofinitiator to total monomer is15%, the monomer's mole ratio ofn(MA):n(ESAS):n(AM):(SAS) is1:1:0.6:1, the reaction temperature is90℃, and thereaction time is3h. Under the optimum conditions, determining the inhibition rate of the ofcopolymer is more than90%, and the scaling effect is good.
     A quadripolymer scale inhibitor as ASAE is prepared from acrylic acid (AA), sodiumvinyl sulfonate(SAS), acrylamide(AM) and epoxy succinic acid sodium(ESAS).Thepolymerization is initiated by persulfate ammonium in aqueous solution. The best syntheticconditions of the quadripolymer was determined through an orthogonal test, and itsproperties had been evaluated. The optimal conditions of synthesis as follows: the reactiontemperature is80℃; the monomer's mole ratio of n(AA):n(SAS):n(AM):(ESAS) is1:1:0.6:1.2; the mass ratio of initiator to total monomer is15%, and the reaction time is3h.Under the optimum conditions, the inhibition rate of the of copolymer is86.72%, and thescaling effect is very good.
     A terpolymer scale inhibitor is prepared from epoxy succinic acid sodium (ESAS),acrylamide (AM) and sodium vinyl sulfonate (SAS), and the polymerization is initiated bypersulfate ammonium. Its structure is characterized by infrared spectroscopy, and the resultsshow that the synthetic product is the target product. Research into the best syntheticconditions through an orthogonal test as follows: the reaction temperature is90℃, thereaction time is3.5h, the mass ratio of persulfate ammonium to total monomer is12.5%,and the monomer's mole ratio of n(ESAS):n(AM):n(AS) is1.2:0.6:1.The synthetic product to calcium carbonate scale has a better inhibition performance, and the inhibition rate canamount to88.07%.
     Open the ultrasonic anti-scaling device, while the aqueous solution of pretreatment iswarming, for water quality processing.Single ultrasound, dual ultrasound, and withoutultrasonic experiments as the research objects, the study researched the anti-scaling effect ofultrasonic measures. Before and after joining the scale inhibitors, through chemical titrationmethod, measured change rule of the easy scaling ion.The results show that, in the role ofultrasound, ultrasonic radiant energy can restrain the change direction of microcrystalline tocalcium carbonate compounds, that is, it can inhibit the speed of the microcrystallinegrowth into calcium carbonate compounds, thereby preventing scaling; in the role ofultrasonic, the scaling materials on the wall can be shaken off, so that it will be able toachieve the the antiscale purpose; under the same conditions, single ultrasonic's effect isstronger than the dual ultrasound's.
引文
[1]罗宪中,李贵平.超声清洗领域新拓展一超声防垢[J].清洗世界,2004,20(6):10-14.
    [2]刘中良,施明恒,戴锅生.垢结垢过程的传热传质模型[J].化工学报,1997,48(4):401-407.
    [3]姚鸿霖,宫俊亭,郭泳等.水处理新技术及其应用[J].工业水处理,2001,21(9):24-26.
    [4]金元宪.朝阳沟油田油井清防垢技术研究[D].大庆:大庆石油学院,2003.
    [5]吴明,雷良才,刘水,等.大庆采油五厂注水系统地面管线结垢原因研究[J].油田化学,2000,17(14):321-326.
    [6]陈新萍,高清河,杨世海.大庆外围低渗透油田结垢分析及解决措施[J].大庆师范学院学报,2005,25(4):1-2.
    [7]白钊.杏六区东部Ⅱ块三元复合驱注入体系防垢剂[J].油气田地面工程,2011,30(8):22-24.
    [8]吴俊红,刘富.鄯善油田高含水期有杆泵配套技术研究与应用[J].长江大学学报(自然科学版),2011,8(6):68-70.
    [9]孙天奇,刘晓勇,李芳,等.宝浪油田中高含水阶段油井结垢机理及治理对策研究[J].价值工程,2011,30(19):44-45.
    [10]牟英华,崔付义,蒋绍辉,等.桩西采油厂油井结垢机理研究及防治[J].化学工程与装备,2011,(8):100-101.
    [11]左景栾,樊泽霞,任韶然,等.纯梁油田樊41块油井挤注防垢技术[J].石油学报,2008,29(4):619-618.
    [12]赵玲莉,赵福麟.三元复合驱注采系统化学防垢除垢技术[J].油气田地面工程,1996,15(5):37240.
    [13]潘爱芳,马润勇,杨彦柳.油田注水开发防垢现状及新技术研究[M].北京:石油工业出版社,2009:42-67.
    [14]李景全,赵群,刘华军.河南油田江河区油井防垢技术[J].石油钻采工艺,2002,24(2):57-60.
    [15]吕向东,董维新,王成华,等.吉林乾安大情字油田腐蚀结垢的对策研究[J].腐蚀科学与防护技术,2004,16(3):185-186.
    [16]闫方平,任韶然.江苏油田W2断块防垢防腐复合技术的应用[J].油气储运,2009,28(10):59-63.
    [17]吴凤琴,张国珍.挪威Smorbukk油田结垢成因[J].国外油田工程,2006,22(11):13-15.
    [18]薛红波,邓志安.俄罗斯Rosneft石油公司解决油田结垢问题的方法研究[J].国外油田工程,2009,25(3):23-25.
    [19]路遥,陈立滇.油田水结垢问题[J].油田化学,1995,12(3):281-286.
    [20]张波,唐星华,苏玉春,等.合成阻垢剂研究现状及展望[J].江西化工,2009,(4):12-15.
    [21]宋光顺,王九思,马艳飞.阻垢分散剂的研究现状及特点[J].环境研究与监测,2004,17(1):26-28.
    [22] W O S Doherty,CM Fellows,SGorjian,et al.Inhi-bition ofCalcium OxalateMonohydrate byPoly(acrylicacid) s withDifferent End Groups[J].Journal of ap-plied PolymerScience,2004,91:2035-2041.
    [23] Cuisia D G,Hwa C M.Method of inhibition scale[P].US4,048,066.1977.
    [24] Godlewski I T,Schuck J J,Libutti B L.Polymers for use in water treatment[P].US4,029,577.1977.
    [25] Masler W F,Amjad Z.Scale inhibition in water systems[P].US4,566,973.1986.
    [26]张东亮,罗士平,许云胜.多元共聚物阻垢分散剂的合成工艺的研究[J].江苏石油化工学院学报,1998,10(1):24-26.
    [27]曹新庄.碱性水处理的沉积控制与TS-609[J].工业水处理,1986,6(4):32-35.
    [28]牛清泉,郑邦乾,蔡淑姜.用作防垢剂的顺丁烯二酸酐共聚物的合成[J].工业水处理,1985,5(1):31-36.
    [29]沈小雷,熊莺.丙烯酸/2-丙烯酰胺基-2-甲基丙磺酸共聚物的合成[J].化学工业与工程技术,1997,18(1):6-8.
    [30] Zakikhani Mohsen,Walker David Robert Edward,Hasling Peter David,et al.Phosphonic acidPolymers[P].US5,980,776.1999.
    [31] Kuo L.Allylamine copolymers having phosphonic,carboxylic or sulfonic groups and N-oxidederivativesthereof [P].US5,629,385.1997.
    [32] Porz C,Reinhardt G,Hoffmann H.Alkenylaminomethylenephosphonic acids and copolymers thereofwithunsaturated carboxylic acids[P].US5,126,418.1992.
    [33] Becker L W.Poly(alkenyl) phosphonic acid and methods of use thereof[P].US4,446,046.1984.
    [34]赵彦升.异丙烯磷酸-丙烯酸共聚物的阻垢效果[J].水处理技术,1998,24(1):43-46.
    [35]崔小明,金栋.含磷丙烯酸-AMPS二元共聚物的合成及性能研究[J].精细石油化工进展,2000,1(6):26-29.
    [36]吴振德,鲍其鼎,罗伟君.AA/2-甲基-2-AM基丙烯磺酸共聚物的合成及性能研究[J].工业水处理,1996,16(4):20-21.
    [37]马志,魏天俊,冯光瑛,等.AA-MAn-AMPS共聚物的合成及其阻垢分散性能[J].精细化工,2000,17(1):1-3.
    [38]靳晓霞,揣效忠,江红.新型磺酸共聚物的合成及其阻垢性能研究[J].工业水处理,2003,23(11):21-23
    [39]梅平,刘华荣,陈武.聚合物阻垢剂研究进展[J].化学工程师,2007,143(8):26-29.
    [40] Bush R D,Heinzman S W.Ether hydroxylpolycarboxylate deter-gency builders[P].US4,654,15.1987.
    [41] Brown M J, McDowell J F. Method of controlling scale formation inaqueous systems[P].US,5062962,1991.
    [42] Brown M J, Mcdowell J F. Method of controlling scale formation inaqueous systems[P].US,5147555,1992.
    [43] Kesser S M.Method of inhibiting corrosion in aqueous systems[P].US,5256332.1993.
    [44] Fuknmoto Y,Tangiuchi T.Water treating agents for prevention ofmetal corrosion and scalegeneration[P].JP,04166298,1991.
    [45] Carter C G,Fan L D.Method for inhibiting corrosion of metals us-ing polytartaric acid[P].US,5344590,1994.
    [46]陈琛,杨红刚,李淑柱,等.环境友好型阻垢剂阻CaCO3垢的性能研究[J].武汉理工大学学报,2010,32(8):70-73.
    [47]戴倩倩,刘炜,马喜平,等.环保型阻垢剂聚天冬氨酸的合成及性能评价[J].精细石油化工进展,2010,11(2):40-42.
    [48] Ross R J,Low K C,Shannon J E.Polyaspartate scale inhibitors-biodegradable alternatives topolyacrylates[J].Materials Perfor-mance,1997,(2):53.
    [49] Takesi Nasako,Masako Yoshitake,Koshi Matasubara,et al.Rela-tionships of structure and propertiesof poly(aspartic acid)s [J].Macromolecules.1998,31:2107-2113·
    [50] Koweton S,Huang S J,Swift G.Polyaspartic acid:Synthesis,biodegra-dation and currentapplication[J].Environ.Polym.Degrad,1997,5(3):175-181.
    [51] Sikes C S,WeelerAP.Inhibition of Inorganic or Biological CaCO3Dep-osition by Polyamino AcidDerivatives[P].US4534881,1985.
    [52] Nakato T,Kesser.Relationship between structure and properties of polyas-partic acids[J].Macromolecules,1998,31(7):2107-2113.
    [53] Koskan LP,Low K C,Meah A R Y,et al.PolyasPartie acid manufacture[P].US Patent,5391764,1995-01-11.
    [54] Mazo G Y,Mazo J,Vallion J B,et al.Production of D L-aspartie acid[P].US Patent,5907057,1999-01-10.
    [55]陈先庆.超声波防垢技术在油田中的应用研究[J].钻采工艺,2000,23(3):58-61.
    [56]张锡波,张群正,林文兴,等.超声波防垢技术在孤岛油田的现场应用[J].西安石油学院学报(自然科学版),2000,15(3):14-15.
    [57]魏淑娟.超声波防垢[J].国外油田工程,1991,7(2):61-64.
    [58]沈耀亚,赵德智,许凤军.功率超声在化工领域中的应用现状和发展趋势措施[J].现代化工,2000,20(12):6-10.
    [59]念保义,陈金平.超声波抑制积垢的影响因素与作用原理的研究[J].三明高等专科学校学报,2011,18(2):49-52.
    [60]周爱东,杨红晓,张志炳.超声波在防除结垢中的应用[J].应用化工,2005,34(11):659-661.
    [61] PanditAB, Joshi JB. Hydronamib of fatty oils:Effect of cavitation[J].Chemical Engineering,Science.1993,48(19):3440-3442.
    [62] Botha CJ,BuckleyCA.Disinfection of potable water:The role of hydrodynamic cavitation[J].Watersupply.1994,13:219.
    [63] Kalumuck KM, Chahine GL The use of cavitation jets to oxidize organic compounds inwater[J].FED(AmSoc Mech.eng).1998,45(3):245.
    [64] SivakumarM,PanditAB.Hudronamic cavitation assisted rodaminc B degradation:Atechnologicallyviable water treatment technique,The int Confon Science and tecniology,new Deti India,2000.
    [65] P. Senthil Kumar,M Siva Kumar,A.B.Pandit Experimental quantification of chemical effects ofhydrodynamic cavitation[J].Chemical Engineering Science.2000,55:1633-1639.
    [66] Harrison,J B Joshi.Hydrodynamic of Fatty oils:Effect of Cavitation[J].Chemical EngineeringScience.1993,48(19):3440-3442.
    [67] Jyoti K K,Pandit AB.Water disinfection acoustic And hydrodynamic cavitation[J].BiochemEngJoumal.2001,(7):201-212.
    [68]沈忠厚,李根生,王瑞和.水射流技术在石油I:城中的应用及前景展望[J].中国工程科学,2002,4(12):60-65.
    [69]刘峰.空化水射流破碎岩石的机理研究[J].岩土学,2008,26(8):1233-1236.
    [70]任晓光,李铁凤,宋永吉,等.传热系数法评定超声波的抗垢作用[J].2006,6(4):527-530.
    [71]常巧利.超声阻垢技术的理论及应用研究进展[J].榆林学院学报,2006,16(6):42-44.
    [72]王阳恩.超声波采油技术的原理及应用[J].物理,2002,31(11):725-728.
    [73]李凡修,辛焰,陈武.共聚物类阻垢剂的研制进展[J].工业水处理,2000,20(3):7-10.
    [74]梁海燕,路嫔.聚合物阻垢分散剂研究进展[J].化学工程师,2002,88(1):40-41.
    [75]盖军.油田用水溶性聚合物防垢剂[J].工业水处理,1996,16(5):7-10.
    [76]郑承超,李海风.水为溶剂合成的马-丙共聚物的阻垢性能研究[J].工业水处理,1994,14(5):17-9.
    [77]梅平,刘华荣,陈武.聚合物阻垢剂研究进展[J].化学工程师,2007,(8):26-29.
    [78]林芸,李万捷,沈敬之.马来酸-丙烯酸-丙烯酰胺共聚物的阻垢效果[J].水处理技术,1995,21(2):117-119.
    [79]马艳然,靳通收,李珊,等.阻垢剂马来酸酐-丙烯酰胺共聚物的合成及其阻垢性能[J].河北大学学报(自然科学版),2006,26(6):612-515.
    [80]廖刚,卿大咏.带螯合性基团水溶性单体的合成研究[J].应用化工,2010,39(4):494-496.
    [81]王平.一种新型四元聚合缓蚀阻垢剂的合成和性能评价[J].工业水处理,2009,29(3):43-46.
    [82]齐松桥.新型绿色阻垢剂的合成及阻垢性能评价新方法的研究[D].武汉:华中科技大学,2007,32.
    [83] IR Collins,B.Hedges,LM Harris.The Develop-ment of a Novel Environmentally Friendly DualFunc-tion Corrosion and Scale Inhibitor/[C].2001SPE In-ternational Sympositum on OilfieldChemist ry.Hous-ton:TX,2002:1316.
    [84]王冬华.油田阻垢剂的研究进展[J].广州化工,2011,39(15):25-27.
    [85] Control of shape and formof calcium car-bonate[J].colloid Polym.Sci.1992,270(12):1176-1181.
    [85] Gutierrez Elizabeth, et al. Characterization of immobilized poly-L-aspartate as a metalchelator[J].Environ.Sci.Technol,1999,33(10):1664-1670.
    [86] Addadi L,et al.Resolution of conglomerates by stereoselective habitmodifications[J].Nature(London),1982,296(5852):21-27.
    [87] Van der LeedenMC, Van Rosmalen GM. Adsoption behavior of poly-electrolytes on barium sulfatecrystals[J].Colloid Interface Sci,1995,171(1):142-149.
    [88] Ian Ralph Collins.Surface electrical properties of barium sulfate modi-fied by adsorption of polyα,β-aspartic acid[J].Journal of Colloid andInterface Science,1999,212(2):535-544.
    [89]张斌,李奎东,高婷,等.环境友好型防垢剂DH-1的合成及其性能研究[J].石油化工腐蚀与防护,2011,28(2):7-10.
    [90] Koweton S, Huang S, Swift G. Polyaspartic acid: synthesis biodegradation and currentapplication[J].Environ.Polym.Degrad,1997,5(3):175-181.
    [91]严瑞瑄.水溶性高分子[M].北京:化学工业出版社,2002:1-10.
    [92]杨文忠,朱栋,唐永明,等.聚合物分子量对其阻垢分散性能的影响[J].水处理技术,2005,31(12):11-12.
    [93]张其平,朱西挺,张跃华,等.荧光标记马来酸酐-丙烯酰胺水处理药剂性能研究[J].精细石油化工进展,2009,10(11):46-49.
    [94]郭茹辉,刘振法,高玉华,等.环保型阻垢分散剂乌头酸-烯丙基磺酸共聚物的合成[J].水处理技术,2009,35(3):46-61.
    [95]余育新,李建军.聚环氧琥珀酸钠阻碳酸钙垢性能研究[J].环境工程,2005,23(1):85-87.
    [96]王毅,冯辉霞,张婷,等.聚环氧琥珀酸(钠)的合成及阻垢性能研究[J].环境科学与技术,2009,32(3):18-21.
    [97]张丽华,郑成松,张严,等.环境友好聚环氧琥珀酸的研究进展[J].工业水处理,2010,30(5):5-8.
    [98]赵瑞英,赵新.丙烯酸与2-丙烯酰胺-2-甲基丙磺酸共聚物的合成及阻垢性能[J].水处理技术,2010,36(9):53-55.
    [99]艾承泗.八一糖厂应用超声波防垢器研究查试报告摘录[J].甘蔗糖业,1998,(4):40-43.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700