新型CuSO_4-CeO_2/TS催化处理NO_x活性及抗毒化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,氨选择性催化还原(Selective Catalytic Reduction, NH3-SCR)技术是火电厂等固定源烟气脱硝的主流技术。研发具有高活性的低温SCR催化剂有利于将脱硝装置置于电除尘器之后,避免商用催化剂V2O5/TiO_2或V_2O_5-WO_3/TiO_2由于高温(350℃以上)、高尘区操作所必需的烟气预热能耗,缓解催化剂的堵塞、磨损和毒化,延长催化剂寿命,降低脱硝成本;且便于与我国现有锅炉系统匹配。另一方面,烟气NOx中90%~95%为NO,NO除生成络合物外,无论在水中或碱液中都不被吸收。为了有效地吸收NOx,需寻找一种有效的催化剂将烟气中的NO部分地氧化为NO_2,使NOx氧化度达到50%~60%,再用湿法脱硫的吸收剂吸收,实现湿法一步同时脱硫脱硝。若能达到此目的,将是最具竞争力的硫、硝同脱技术。本文采用共沉淀法制备TiO_2-SiO_2复合载体(TS),用浸渍法负载CuSO_4和CeO_2,制备了CuSO_4–CeO_2/TS催化剂应用于NOx的催化处理,从选择性催化还原和选择性催化氧化两个角度进行了系统研究。
     在NOx的氨选择性催化还原研究中,在制得最优催化剂的基础上,考察了各种操作条件以及H_2O和SO_2对CuSO_4-CeO_2/TS催化剂NH3低温选择性催化还原NOx活性的影响。结果表明,在O_2浓度为4%(?) , NO浓度1,000×10-6(?) ,氨氮比NH3/NOx=1.1 ,GHSV=5,000 h-1条件下,当反应温度低于240℃时,水蒸汽(10%, ?)在一定程度上降低了催化活性;当反应温度超过240℃时,这种影响可以完全消除。在单独抗SO_2(350×10?6, ?)试验中,CuSO_4-CeO_2/TS催化剂的活性不仅没有降低,反而从97.9%增加到了99.2%。在同时存在H_2O和SO_2条件下,35h内的催化活性始终保持在95%左右的高水平,这是目前文献报道中同时抗高浓度SO_2和高浓度H_2O毒化能力最强的催化剂。经过51h同时抗SO_2、H_2O之后由于SCR反应中缓慢生成的硫酸铵盐堵塞催化剂微孔、覆盖催化剂表面活性位,以及活性组分CeO_2被缓慢硫酸盐化,导致催化剂逐渐失活。中毒催化剂在350℃下活化热处理后活性基本没有恢复,400℃下活化热处理后活性反而有所下降。在NO的选择性催化氧化研究中,考察了温度、空速、NO进口浓度和O_2浓度等因素对NO氧化活性的影响,结果显示,在进口NO浓度800×10-6(?)、O_2浓度8%(?),空速为5,000h-1和300~350℃条件下,NO氧化活性可维持在55%左右,能满足高效液体吸收的氧化度要求。350℃下,单独通入10% (?)的水,由于H_2O与NO分子的竞争吸附,活性急剧下降;同时通入10% (?)的H_2O和200×10-6(?)的SO_2后,因CeO_2被硫酸盐化和铅室反应导致NO氧化率迅速下降。
     在以往国内外SCR和SCO催化剂研究中,都没有见到与CuSO_4-CeO_2/TS组成相同催化剂的报道。
At present, selective catalytic reduction (SCR) technology with ammonia has become the best technique in the flue gas De-NOx of thermal power plants and other stationary sources for its mature and highly efficient. However, presently commercial SCR catalyst V2O5/TiO_2 or V2O5-WO3/TiO_2 must be operated at above 350℃. Researching and developing low-temperature catalysts with high activity can make the SCR unit followed by the electrostatic precipitator, which can greatly depress the operation cost and prolong the catalyst life. This disposal avoids flue gas reheating, which is necessary for the commercial catalyst, and decreases the jam, abrasion and poison on the catalyst. Besides, the low-temperature SCR technology can match the existing boiler system without impact on the other related devices. On the other hand, 90%~95% of NOx is NO in flue gas, NO can not be absorbed, either in water or alkali solution except for generation of complex. An effective catalyst for the flue gas in part of the NO oxidation to NO_2 is needed in order to absorb the NOx effectively. When NO was oxidized into NO_2, and enhance the NO_2/NOx between 50%~60%, the NOx after oxidation is adsorbed by desulfurizer. By this processing technique, we can realize desulfurization and denitration simultaneously. The technique will be the most competitive simultaneously desulfurization and denitration method.
     In this work, TiO_2-SiO_2 composite support (TS) was prepared by coprecipitation method. CuSO_4–CeO_2/TS catalyst was prepared and applied for SCR of NOx with ammonia as well as for selective catalytic oxidation (SCO) of NO in the presence of excessive oxygen at different temperatures.
     For the SCR of NOx with ammonia, the effects of H_2O and SO_2 as well as a variety of operating conditions on the catalyst were studied on the base of optimized catalyst. The results showed that H_2O (10%, ?) had not negative impact on the activity when the SCR reaction temperature was above 240℃, in the presence of 4% O_2, NO ( 1,000×10-6, ?), molar ratio of NH3/ NOx =1.1 GHSV=5,000 h-1. In the test of anti- SO_2 (350×10?6, ?) separately, the activity of CuSO_4-CeO_2/TS catalyst not only did not reduce, but also increased from 97.9% to 99.2%. In addition, as the SCR reaction proceeded in the presence of H_2O and SO_2, the catalytic activity remained at a high level of around 95% within 35h. which was the strongest catalyst of anti-high concentrations of SO_2 and H_2O poison simultaneously to the best of our knowledge. The catalyst was deactivated gradually, in the presence of H_2O and SO_2 for 51h, because of formation of ammonium sulfate and sulfation of CeO_2. There was no resumption of activity after heat treatment at 350℃, and activity of the catalyst declined further after heat treatment at 400℃.
     For the SCO of NO in this work, the effects of reaction temperature, space velocity, NO inlet concentration and O_2 concentration were studied over the catalyst. The results showed that about 55% NO oxidation activity could be maintained over CuSO_4?CeO_2/TS catalyst between 300~350℃with space velocity of 5000 h?1, NO inlet concentration of 800×10-6(?) and O_2 concentration of 8%(?),which could meet the oxidation degree demands of high-performance liquid absorption. Activity declined sharply in the presence of H_2O (10%, ?) at 350℃, because of the competitive adsorption of H_2O and NO molecules. when H_2O (10%, ?) and SO_2 (200×10?6, ?) were added to the reactants, the oxidation rate of NO declined rapidly, which was due to sulfation of CeO_2 and Lead chamber reaction.
引文
[1] Hao J M,Tian H Z,Lu Y Q.Emission inventories of NOx from commercial energyconsumption in China,1995-1998.Environmental Science&Technology,2002,36(4):552-560.
    [2]田贺忠.中国氮氧化物排放现状、趋势及综合控制对策研究[博士学位论文].北京:清华大学环境科学与工程系, 2003.
    [3]田贺忠,郝吉明,陆永琪,等.中国氮氧化物排放清单及分布特征.中国环境科学,2001,21(6):493-497.
    [4]成玉琪,俞珠峰.洁净煤技术是中国洁净能源新技术的重点领域[J].洁净煤技术, 2000, 6(2): 5-15.
    [5]王建华. V2O5-WO3-SiO2/TiO2和Ag/Al2O3催化剂选择性催化还原(SCR)氮氧化物的试验研究[D].浙江:浙江大学, 2005.
    [6] Energy Information Adminstration(EIA).International energy outlook 2006.Washington D C:EIA,2006.
    [7]叶代启.烟气中氮氧化物污染的治理.环境保护科学,(1999)第4期
    [8]曾汉才.燃烧与污染.华中理工大学出版社,1992.
    [9] [日]《公害防止技术和法规》编委会编.陈振兴等人译.公害防止技术——大气篇[M].北京:科学出版社,1993.
    [10]中国能源统计年鉴,1991,中国统计出版社,1992.
    [11]童志权.工业废气净化与利用[M].北京:化学工业出版社, 2001.
    [12] Zeldovich, J. The oxidation of nitrogen in combustion and explosions [J]. Acta Physicochim URSS, 1946, 21(4): 577-628.
    [13] Hayhurst A N, Mclean H G. Mechanism for production NO from nitrogen in flame [J]. Nature, 1974, 251: 303-305.
    [14] Fenimore C P,Formation of nitric oxide from fuel nitrogen of ethylene flames [J], Combustion and Flame, 1972, 19(2): 289-296.
    [15]赵惠富,污染气体NOx的形成和控制[M].科学出版社, 1993: 157~163.
    [16] Schmitz P J, Kudla R J, Drews A R, et al. NO oxidation over supported Pt: Impact of precursor, support, loading, and processing conditions evaluated via high throughput experimentation [J]. Applied Catalysis B: Environmental, 2006, 67(3-4): 246-256.
    [17]高志明,杨向光,吴越.活性炭表面含氧基团的生成及对NO的还原作用[J].催化学报, 1996, 17(4): 327-329.
    [18] Liese T, L?ffler E, Grünert W. Selective Catalytic Reduction of NO by Methane over CeO2-zeotite catalysts-active sites and reaction steps [J].Journal of Catalysis,2001,197(1): 123-130.
    [19] Wang Xiang, Chen Haiying, Sachtler W M H. Mechanism of the selective reduction of NOx over Co/MFI: Comparison with Fe/MFI [J]. Journal of Catalysis, 2001, 197(2): 281-291.
    [20]Seijger G B F, Oudshoorn O L, Boekhorst A, et al. Selective catalytic reduction of NOx over zeolite-coated structured catalyst packings [J]. Chemical Engineering Science, 2001, 56(3): 849-857.
    [21] Nakatsuji T, Komppa V. A catalytic NOx reduction system using periodic two steps: an operation in reducing conditions [J]. Applied Catalysis B:Environmental,2001,30(1-2): 209-223.
    [22] Nakatsuji T, Yasukawa R, Tabata K, et al. A highly durable catalytic NOx reduction in the present of SOx using periodic two steps,an operation in oxidizing conditions and a relatively short operation in reducing conditions [J]. Applied Catalysis B:Environmental,1999,21(2): 121-131.
    [23] Miyamoto A, Yamazaki Y, Hattori T, et al. Study on the Pulse Reaction Technique: VI Kinetics of the Reaction of NO with NH3 on a V2O5 Catalyst [J]. J. Catal., 1982, 74(1): 144?155.
    [24] A Kokkinos. Selective catalytic reduction principles and application[C].中-美低氧化氮燃烧与二氧化硫控制研讨会,中国沈阳,2003,(11):4-7.
    [25]胡永锋,白永锋. SCR法烟气脱硝技术在火电厂的应用.节能技术,2007 ,3(2):152-156.
    [26] Guoyong Xie, Zhenyu Liu, Zhenping Zhu, et a1. Simultaneous removal of SO2 and NOx from flue gas using a CuO/Al2O3 catalys sorbent I Deactivation of SCR activity by SO2 at low temperatures[J].Journal ofCatalysis,2004,224: 36-41.
    [27]滕加伟,宋庆英,于岚低温脱除NOx催化剂的开发[J].工业催化,2003,11(12).
    [28] Singoredjo L, Korver R, Kapteijn F, et al. Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia [J]. Applied Catalysis B: Environmental, 1992, 1(4): 297-316.
    [29] Xie G Y, Liu Z Y, Zhu Z P, et al. Reductive regeneration of sulfated CuO/Al2O3 catalyst-sorbent in ammonia [J]. Applied Catalysis B: Environmental, 2003, 45(3): 213-221.
    [30] Pe?a D A, Uphade B S, Smirniotis P G, et al. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3 [J]. Journal of catalysis, 2004, 221(4): 421-431.
    [31] Ramis G, Li Yi, Busca G, et al. Ammonia activation over catalysts for the selective catalytic reduction of NOx and the selective catalytic oxidation of NH3 [J]. Catalysis Today, 1996, 28(4): 373-380.
    [32] Fabrizioli P, Bürgi T, Baiker A. Environmental catalysis on iron oxide-silica aerogels: selective oxidation of NH3 and reduction of NO by NH3 [J].Journal of Catalysis, 2002, 206(1): 143-154.
    [33] Kijlstra W S, Biervliet M, Poels E K, et al. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures [J]. Applied Catalysis B: Environmental, 1998, 16(4): 327-337.
    [34] Pasel J, K??ner P, Montanari B, et al. Transition metal oxides supported active carbons as low temperature catalysts for the selective catalytic reduction of NO with NH3 [J]. Applied Catalysis B: Environmental, 1998 (3-4): 199-213.
    [35] Odenbrand C U I, Gabrielsson P L T, Brandin J G M, et al. Effect of water vapor on the selectivity in the reduction of nitric oxide with ammonia over vanadia supported on silica-titania [J]. Applied Catalysis, 1991, 78(1): 109-122.
    [36] Tufano V, Turcoet M, et al. Kinetic modeling of nitric oxide reduction over a high surface area V2O5 -TiO2 catalyst [J]. Applied Catalysis B: Environmental, 1993, 2(1): 9-26.
    [37] Lucian Chmielarz,PiotrKu’strowski,Alicja Rafalska-Lasocha,et a1.Catalytic activity of Co-Mg-AI,Cu-Mg-Al and Cu-Co-Mg-Al mixed oxides derived from hydrotalcites in SCR of NO with ammonia[J]. Applied Catalysis B:Environmental,2002,35:195- 210.
    [38] Huang Z G, Zhu Z P, Liu Z Y. Combined effect of H2O and SO2 on V2O5/AC catalysts for NO reduction with ammonia at lower temperature [J]. Applied Catalysis B: Environmental, 2002, 39(4): 361-368.
    [39] Zhu Z P, Liu Z Y, Liu S J, et al. Catalytic NO reduction with ammonia at low temperatures on V2O5/AC catalysts: effect of metal oxides addition and SO2. Applied Catalysis B: Environmental, 2001, 30(3): 267-276.
    [40]黄张根,朱珍平,刘振宇.水对V2O5/AC催化剂低温还原NO的影响.催化学报, 2001,22(6): 532-536.
    [41]唐晓龙,郝吉明,徐文国,等.新型MnOx催化剂用于低温NH3选择性催化还原NOx [J].催化学报, 2006, 27(10): 843?848.
    [42]唐晓龙,郝吉明,徐文国,等.低温条件下Nano-MnOx上NH3选择性催化还原NO [J].环境科学, 2007, 28(2): 289?294.
    [43]伍斌,黄妍,郑毅,等. SO2对Mn?Cu?Ce/TiO2低温选择催化还原NO的影响[J].环境科学学报, 2008, 28(5): 960?964.
    [44] Huang J H, Tong Z Q, Huang Y, et al. Selective Catalytic Reduction of NO with NH3 at Low Temperatures over Iron and Manganese Oxides Supported on Mesoporous Silica [J]. Appl. Catal. B: Environ., 2008, 78(3/4): 309?314.
    [45]陆育辉,付名利,叶代启.硫酸化NOx选择性催化还原脱硝催化剂的研究进展[J].工业催化, 2007, 15(3): 20?23.
    [46] Ke R, Li J H, Liang X, et al. Novel promoting effect of SO2 on the selective catalytic reduction of NOx by ammonia over Co3O4 catalyst [J]. Catalysis Communications, 2007, 8: 2096-2099.
    [47] R.Q. Long, M.T. Chang, R.T. Yang. Enhancement of activities by sulfation on Fe-exchanged TiO2-pillared clay for selective catalytic reduction of NO by ammonia [J]. Appl. Catal. B: Environ., 2001, 33: 97-107.
    [48]翼晓静,郑经堂,石建稳,赵玉翠.钛硅复合氧化物光催化剂的研究进展[J].化工进展, 2007 , 26 (4) :472-475.
    [49]邹建,高家诚,王勇,李易东,文敏.纳米TiO2表面包覆致密SiO2膜的试验研究[J] .材料科学与工程学报,2004 , 22 (1) :71-73.
    [50] Cheng P , Zheng M P , Jin Y P. Preparation and characterization of silica-doped titania photocatalyst t hrough sol-gel met hod [J ] . Materials Let ters , 2003 , 57 ( 20) : 2989-2994.
    [51] Chen Y X , Wang K, Lou L P. Photodegradation of dye pollutant s on silica gel supported TiO2 particles under visible light irradiation [J ] . Journal of Photochemist ry and Photobiology A : Chemist ry , 2004 , 163 (1/ 2) :281-287.
    [52]吴淑杰,刘钢,李雪梅,贾明君,张文祥. Ti2Si复合氧化物催化剂的合成,表征及邻苯二酚O2单醚化反应性能[J ] .吉林大学学报(理学版) , 2006 , 44 (2) :265-268.
    [53] Kobayashi M, Kuma R, Sinyuki, et al. TiO2?SiO2 and V2O5/TiO2-SiO2 Catalyst: Physico-chemical Characteristics and Catalytic Behavior in Selective Catalytic Reduction of NO by NH3 [J]. Appl. Catal. B: Environ., 2005, 60(3/4): 173?179.
    [54] Kobayashi M, Kuma R, Sinyuki, et al. Low Temperature Selective Catalytic Reduction of NO by NH3 over V2O5 Supported on TiO2?SiO2?MoO3 [J]. Catal. Lett., 2006, 112(1/2): 37-44.
    [55] Singoredjo L, Slagt M, Kapteijn F, et al. Selective Catalytic Reduction of NO with NH3 over Carbon Supported Copper Catalysts [J]. Catal. Today, 1990, 7(2): 157-165.
    [56] Kantcheva M. FT-IR Spectroscopic Investigation of the Reactivity of NOx Species Adsorbed on Cu2+/ZrO2 and CuSO4/ZrO2 Catalysts toward Decane [J]. Appl. Catal. B: Environ., 2003, 42(1): 89-109.
    [57] Pietrogiacomi D, Sannino D, Magliano A, et al. The catalytic activity of CuSO4/ZrO2 for the selective catalytic reduction of NOx with NH3 in the presence of excess O2 [J]. Appl. Catal. B: Environ., 2002, 36: 217-230.
    [58] Zhu Z P, Liu Z Y, Liu S J. NO Reduction with NH3 over an Activated Carbon-supported Copper Oxide Catalysts at Low Temperatures [J]. Applied Catalysis B: Environmental, 2000, 26(1): 25-35.
    [59] Kang M, Park E D, Kim J M, et al. Manganese Oxide Catalysts for NOx Reduction with NH3 at Low Temperatures [J]. Applied Catalysis A: General, 2007, 327(2): 261-269.
    [60] Tang X L, Hao J M, Yi H H, et al. Low-temperature SCR of NO with NH3 over AC/C supported anganese-based monolithic catalysts [J]. Catalysis Today, 2007, 126(3-4): 406-411.
    [61] Huang B C, Huang R, Jin D J, et al. Low Temperature SCR of NO with NH3 over Carbon Nanotubes Supported Vanadium Oxides [J]. Catalysis Today, 2007, 126(3-4): 279-283.
    [62] Bosch H, Janssen F. Formation and control of nitrogen oxides [J]. Catalysis Today, 1988, 2 (4): 369-379.
    [63] Goo J H, Irfan M F, Kim S D, et al. Effects of NO2 and SO2 on Selective Catalytic Reduction of Nitrogen Oxides by Ammonia [J]. Chemosphere., 2007, 67(4): 718-723.
    [64]刘炜,童志权,罗婕. Ce?Mn/TiO2催化剂选择性催化还原NO的低温活性及抗毒化性能[J].环境科学学报, 2006, 26(8): 1240-1245.
    [65]杨超,童志权,黄妍.活性炭上氨低温选择催化还原NOx研究[J].煤炭转化, 2006, 29(1): 77-80.
    [66]寻洲,童华,黄妍,等. Mn?Ce?Fe/TiO2低温催化还原NO的性能[J].环境科学学报, 2008, 28(9): 1733-1738.
    [67] Curry-Hyde E, Baiker A. Amorphous Chromia for Low-temperature Selective Catalytic Reduction of Nitric Oxide [J]. Industrial & Engineering Chemistry Research, 1990, 29(10): 1985-1989.
    [68] Inomata M, Miyamoto A, Murakami Y. Mechanism of the Reaction of NO and NH3 on Vanadium Oxide Catalyst in the Presence of Oxygen under the Dilute Gas Condition [J]. J. Catal., 1980, 62(1): 140-148.
    [69] Clark F T, Springman M C, Willcox D, et al. Interactions in Alumina-based Iron Oxide?Vanadium Oxide Catalysts under High Temperature Calcination and SO2 Oxidation Conditions [J]. J. Catal., 1993, 139(1): 1-18.
    [70] Ramis G, Busca G, Bregani F, et al. Fourier transform-infrared study of the adsorption and coadsorption of nitric oxide, nitrogen dioxide and ammonia on vanadia-titania and mechanism of selective catalytic reduction [J]. Applied Catalysis, 1990, 64: 259-278.
    [71] Iwamoto M, Yahiro H. Novel catalytic decomposition and reduction of NO [J]. Catalysis Today, 1994, 22(1): 5-18.
    [72] Qi G, Yang R T, Chang R. MnOx-CeO2 mixed oxides prepared by co-precipitation for selective catalytic reduction of NO with NH3 at low temperatures [J]. Applied Catalysis B: Environmental, 2004, 51(2): 93-106.
    [73] Centi G, Perathoner S. Adsorption and reactivity of NO on copper-on-alumina catalysts: II. Adsorbed species and competitive pathways in the reaction of NO with NH3 and O2 [J]. Journal of Catalysis, 1995, 152(1): 93-102.
    [74] Salker A V, Weisweiler W. Catalytic behaviour of metal based ZSM-5 catalysts for NOx reduction with NH3 in dry and humid conditions [J]. Applied Catalysis A: General, 2000, 203(2): 221-229.
    [75] Komatsu T, Ogawa T, Yashima T. Nitrate species on Cu-ZSM-5 catalyst as an intermediate for the reduction of nitric oxide with ammonia [J]. The Journal of Physical Chemistry, 1995, 99(35): 13053-13055.
    [76] Kapteijn F, Singoredjo L, Andreini A, et al. Activity and selectivity of pure manganese oxides in the selective catalytic reduction of nitric oxide with ammonia [J]. Applied Catalysis B: Environmental, 1994, 3(2-3) 173-189.
    [77] Koebel M, Elsener M, Madia G. Reaction Pathways in the selective catalytic reduction process with NO and NO2 at low temperatures [J]. Industrial & Engineering Chemistry Research, 2001, 40(1): 52-59.
    [78] Qi G, Yang R T. Performance and kinetics study for low-temperature SCR of NO with NH3 over MnOx-CeO2 catalyst [J]. Journal of Catalysis, 2003, 217(2): 434-441.
    [79]王辉. NO选择催化氧化的催化剂和反应机理研究[D].上海:华东理工大学, 1999.
    [80]童志权主编.大气污染控制工程[M].北京:机械工业出版社,2006: 244-246.
    [81] H.斯科特.福格勒.化学反应工程(原著第三版)[M].李术元,朱建华译.北京:化学工业出版社, 2005: 581-582.朱炳辰主编.化学反应工程[M].北京:化学工业出版社, 2001.
    [82]袁一主编.化学工程师手册[M].北京:机械工业出版社, 1999: 474-479.
    [83]郭汉贤主编.应用化工动力学[M].北京:化学工业出版社,2003: 302.
    [84] Tang X L, Hao J M, Xu W G, et al. Low Temperature Selective Catalytic Reduction of NOx with NH3 over Amorphous MnOx Catalysts Prepared by Three Methods [J]. Catal. Commum., 2007, 8(3): 329-334.
    [85]黄张根,朱珍平,刘振宇.水对V2O5/AC催化剂低温还原NO的影响[J].催化学报, 2001, 22(6): 532-536.
    [86] Zhu Z P, Liu Z Y, Niu H X, et al. Mechanism of SO2 Promotion for NO Reduction with NH3 over Activated Carbon-supported Vanadium Oxide Catalyst [J]. J. Catal., 2001, 197(1): 6-16.
    [87] Takagi M, Kawai T, Soma M, et al. Mechanism of catalytic reaction between nitric oxide and ammonia on vanadium pentoxide in the presence of oxygen [J]. The Journal of Physical Chemistry, 1976, 80(4): 430-431.
    [88]赵秀阁,王辉,肖文德. SO2对Co3O4/Al2O3选择性催化氧化NO的影响[J].催化学报, 2000, 21(3): 238-242.
    [89] Iwamoto M, Yoda Y, Egashira M, et al. Study of oxide metal catalysts by temperature programmed desorption 1: Chemisorption of oxygen on nickel oxide [J]. Journal of Physical Chemistry, 1976, 50(18): 1989-1990.
    [90] Bond G C. Heterogeneous catalysis: principles and applications [M]. Oxford UK: Clarendon Press, 1987. 150-151.
    [91] Després J, Elsener M, Koebel M, et al. Catalytic oxidation of nitrogen monoxide over Pt/SiO2 [J]. Applied Catalysis B: Environmental, 2004, 50(2): 73-82.
    [92] Xue E, Seshan K, Mercera P, et al. Pt-ZrO2 catalysts for the oxidation of NO and SO2: Effect of sulfate [J]. Environmental Catalysis, 1994, 20(2): 250-267.
    [93] Xue E, Seshan K, Van Ommen J G. Catalytic control of diesel engine particulate emission: studies on model reactions over a EuroPt-1(Pt/SiO2) catalyst [J]. Applied Catalysis B: Environmental, 1993, 2(2-3): 183-97.
    [94]高安正躬,安念芳昭,森田义郎. SO2和H2O对NO氧化反应的影响[J].燃料协会志, 1975, 54: 930-937.
    [95] Olbregets J. Termolecular reaction of nitrogen monoxide and oxygen: a still unsolved problem [J]. International Journal of Chemical Kinetics, 1985, 17(8): 835-848.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700