汽轮机末级蒸汽干度测量的数据处理方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源问题一直以来都是人们所关心的问题,而火力发电站的运作作为提供能源的一种重要形式,如何提高火力发电站的发电效率也就成为人们所密切关注的问题。本文主要研究的是火力发电站汽轮机末级蒸汽干度测量的数据处理方法,用以实时监控火力发电站汽轮机的蒸汽干度,从而达到尽可能的提高火力发电站的经济效益的目的。
     本文利用Verilog HDL硬件描述语言、Quartus II软件和Synplify Pro软件来设计计算汽轮机末级蒸汽干度的电路,并给出相应的仿真结果。首先利用Mie散射理论的结果计算出的水蒸气的相函数,通过查表并进行反演拟合得出汽轮机末级蒸汽中液态水滴的众数半径;接着根据蒸汽凝水粒子尺度的广义Gamma分布来计算液态水的含量;然后利用压力传感器和温度传感器所测得的汽轮机内部的气压和温度计算干蒸汽的含量;最终通过前面的结果以及蒸汽干度的定义求出汽轮机末级的蒸汽干度。
Energy issues attract considerable attention at all times. The operation of thermal power stations is an important form to provide energy. How to improve the power generation efficiency of thermal power stations is a matter of vital concernment. In this paper, we focused on the method of data processing in the measurement of dryness fraction at the end of the turbine of the thermal power station, to monitor the dryness fraction in real time, thereby improve the economic benefit of thermal power plants as much as possible.
     In theory: First, we calculate the results of the vapor phase function using Mie scattering theory, and get the most probable radius of liquid water droplets at the end-turbine by the method of the look-up table and inversion fitting; Then according to the Generalized Gamma Distribution of the steam condensate water under the particle size, using the most probable radius of liquid water droplets we get before and using some related spectrum parameters to calculate the of liquid water content at the end-turbine; then using the pressure and temperature in the steam turbine and according to the ideal gas equation to calculate the dry steam content, the temperature and pressure is measured by temperature Sensor and pressure sensor in the turbine; At the end, use the liquid water content, dry steam content and the definition of dryness fraction to calculate the dryness fraction at end-turbine.
     In the specific design process: We first define a framework of the overall design, it includes six sub-modules, and they are the Serial to Parallel data conversion module, the Clock Generation module, the most probable radius module, the liquid water content module, the dryness fraction module and the Register output module. Then we design these six modules, synthesize and simulate them using Verilog HDL (Hardware Description Language), Altera's FPGA integrated development environment Quartus II and Synplicity's FPGA synthesis tool Synplify Pro. In these six parts, Register output module is directly integrated into the overall design of the final, need not separate design. The dryness fraction module is separate of two sub-parts: the dry steam content module and the dryness fraction module. Through the design and simulation of these sub-modules, and we analyze the simulation results, the design of these modules are in line with our design requirements. At the end, we integrate these modules together, and supplement by some other logic elements to structure the top-module, and synthesize and simulate the top-module. We find this overall design using a total of 4,935 logic elements, which is 81% in the entire FPGA chip we used; Using a total of 49,152 memories, which is 81% in the entire FPGA chip we used; Using a total of two phase-locked loops, exhausted all the internal phase-locked loop of the FPGA chip. For the input ports: the five angle corresponding phase function, the related spectrum parameters of Gamma distribution, the pressure getting from the pressure sensor at the steam turbine inside, the temperature getting from the temperature sensor at the steam turbine inside, it will give the corresponding value of dryness fraction in a certain clock cycle (about 30 ~ 50 clock cycles). Real-time monitoring can be achieved at the end-turbine, preparing for the Realization of this design in related FPGA chip, providing a guarantee for the entity to monitoring the dryness fraction at the end-turbine of thermal power station.
引文
[1] Penndorf R B.,New Tables of Total Mie Scattering Coefficients for Spherical Particles of Real Refractive Indexes(1.33≤n≤1.50),Journal Optical Socity of America,1957,47(11):1010-1015.
    [2] Godbois S E.,Droplet Studies in Supersonic Tow-phase Steam Flow with Normal Shocks,University of Conn.,1965.
    [3] Kryshev V V.,Interaction Between Moisture and Runner Blades and Moisture Removal in Steam Turbines,Heat Transfer Soviet Research,1970,2 (2):48-69.
    [4] Wyler J S.,Moisture measurements in a low2pressure steam turbine using laser light、scattering Probe,Tran.ASME.1978,10(100):544-548.
    [5] Walters P T.,Optical Measurements of Water Droplets in Wet Steam Flows,Inst.Mech Engrs.Conf.Pub.,1973(3):66-74.
    [6] Takeshi Sato etc. Sream Wetness Measuring Apparatus,US Patent,1985.
    [7] 朱震,叶茂,陆勇等,光散射粒度测量中 Mie 理论的高精度算法,光电子·激光,1999,10(2):135-138.
    [8] 黄竹青,杨继明,孙春生等,激光散射理论在汽轮机蒸汽湿度及水滴直径测量中的应用,动力工程,2006(2):241-244.
    [9] 谷应鸣,热工学基础,水利电力部生产司,1986.
    [10] Quartus II Handbook. Altera Corporation. May 2006.
    [11] Cyclone Device Handbook,Altera Corporation,2006.
    [12] Synplicity FPGA Synthesis User Guide,Synplicity,Inc.2005.
    [13] Synplicity FPGA Synthesis Reference Manual,Synplicity,Inc.2005.
    [14] Designing with SynplifyPro and Quartus II Software,Altera Corporation,2004.
    [15] IEEE Standard Verilog? Hardware Description Language,IEEE Computer Society,2001.
    [16] EmnettF,Biegel M,Power Reduction Through RTL Clock Gating,Synopsys Users Group,2000.
    [17] Walter J S,A Unified Algorithm for Elementary Functions,A FIPS Spring Joint Computer Conf,1997.
    [18] Sidhu R,Prasanna V K, Fast regular expression matching using FPGA,Proceedings of IEEE Symposium on Field-Programmable Custom Computing Machines,2001.
    [19] Wallace C S,A Suggestion for fast multipliers,IEEE Trans. Electron. Comput,1964.
    [20] 古良玲,杨永明,郭巧惠,基于 FPGA 的半整数及整数分频器的参数化设计,电子器件,2005.
    [21] 谈艳云,罗志强,用 Verilog HDL 语言设计分频器和 32 位记数器,微计算机应用,2002.
    [22] 夏洪星,丁幺明,一种 LUT 函数运算单元的 FPGA 实现方法,微计算机信息,2006.
    [23] J.Bhasker 著,Verilog HDL 硬件描述语言,机械工业出版社,2004.
    [24] EDA 先锋工作室,Altera FPGA/CPLD 设计,人民邮电出版社,2005.
    [25] EDA/SOPC 技术实验讲义,杭州康芯电子有限公司,2005.
    [26] 潘松,黄继业,EDA 技术使用教程,科学出版社,2002.
    [27] 王道宪,CPLD/FPGA 可编程逻辑器件应用与开发,国防工业出版社,2004.
    [28] Michael D.Ciletti,Verilog HDL 高级数字设计,电子工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700