基于壳聚糖与环糊精纳米给药系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于壳聚糖(chitosan, CS)与环糊精(cyclodextrin, CD)这两种生物材料的纳米(nanoparticle, NP)给药系统的研究,包括物理混合环糊精/壳聚糖及其衍生物(β-CD/CS)与环糊精固载壳聚糖聚合物(CD-g-CS)的纳米给药系统。本课题比较系统地研究了β-CD/CS与CD-g-CS纳米给药系统,为其进一步开发提供了实验数据。
     以三聚磷酸钠(sodium tripolyphosphate, TPP)为交联剂,CS为载体材料,通过离子凝胶法制备CS NP,利用单因素法优化制备条件。以β-CD、羟丙基-β-CD、磺丁基-β-CD、二甲基-β-CD与CS为基础材料,制备β-CD/CS纳米粒,以粒径、电位等为评价指标,优化制备条件。得到球形良好,均一分散,粒径在157-576 nm范围内可控,zeta电位为+28.72-42.90 mv,稳定性良好的β-CD/CS NP。采用光学显微镜、透射电镜、激光粒度、红外、元素分析等方法对纳米粒进行表征,阐明β-CD/CS NP形成机制。实验结果表明,β-CD及其衍生物的加入有效地提高了NP的稳定性,且对NP的形成影响不大,β-CD/CS纳米给药系统有望包裹不同种类的难溶性药物成为一种有前途的药物载体。
     采用化学合成手段制备CD-g-CS聚合物,以β-CD与对甲苯磺酰氯反应得到活化的β-CD衍生物(6-OTs-β-CD),与CS反应得到一系列不同CD取代度(DSCD=9.6%,14%,20%)的新型CD-g-CS生物材料,采用核磁,红外,x衍射等对其结构进行表征。以新型CD-g-CS为载体材料,采用离子凝胶法制备新型CD-g-CS NP。通过单因素法优化制备条件,制备得到粒径可控在202-589 nm范围内,zeta电位为+23.0~43.0mv球形特征,表面光滑圆整,均一分散度好的一系列CD-g-CS NP。实验结果表明,不同DSCD的CD-g-CS NP的最佳制备工艺不同。选用难溶性药物酮洛芬(ketoprofen,KTP)为模型,采用不同DSCD的CD-g-CS聚合物为载体材料,制备包载KTP的三种CD-g-CS NP,测定了载药率和包封率。体外释放结果表明,在不同PBS (pH=4.0,6.8,7.4)释放介质中,CD-g-CS纳米给药系统的释放速率存在着pH敏感性,这可能与CS分子上固载的CD取代度有关。
Chitosan (CS) is used as a bioadhesive polymer since the CS has non-toxic, biodegradable, biocompatible, mucoadhesion and ability to transiently open the tight junctions of the intestinal barrier properties. Cyclodextrin (CD) can form inclusion complexes with a variety of drugs, which can increase solubility, improve chemical and physical stability and/or enhance oral absorption of the drug. According to the advantages of both CD and CS, incorporatting CD into CS nanoparticle (NP) and grafting CD molecules onto CS (CD-g-CS) may lead to a carrier that possesses the cumulative effects of inclusion, size specificity and transport properties of CD and mucoadhesive properties of CS. In this study, we systematically investigated the process ofβ-CD/CS and CD-g-CS NPs. And the physicochemical properties of these nanoparticles were characterized. Ketoprofen (KTP) is as a model drug, and drug release from KTP-loaded CD-g-CS NP in vitro was further investigated.
     The CS nanoparticles were obtained via ionic gelation method using TPP, which possessed spherical morphology, uniform size (157~576 nm), positive zeta potential (28.72~42.90 mv). With the similar conditions and methods, we obtained theβ-CD/CS nanoparticles, CS/HP-β-CD NPs, CS/SB-β-CD NPs and CS/DM-β-CD NPs,which also possessed spherical morphology demonstrated by TEM. The results indicated that the presence ofβ-CD derivatives had no critical impact in the NPs formation process. However, in all the series prepared, the mean diameter of the NPs varied accordingly to the concentration of CDs added during the preparation process. The results from IR studies and element alanalysis, suggest that CS is the major compound on the surface of the NPs, while CD are strongly associated with the NP matrix. Finally, in vitro stability studies indicated that the presence of CDs in the NP structure can prevent the aggregation of this nanometric carrier system in simulated intestinal fluid.
     Chitosan bearing pendant cyclodextrin (CD-g-CS) was prepared with CS and 6-OTs-β-CD, which was prepared withβ-CD and TsCl. CD-g-CS NPs were obtained via ionic gelation method using TPP, which possessed spherical morphology, uniform size (202 ~589 nm), positive zeta potential (+23.0~43.0 mv). This study demonstrates that systematic design and modulation of the surface charge, particle size of CD-g-CS NPs can be readily achieved with the right control of critical processing parameters. Drug release in vitro from KTP-loaded CD-g-CS NP was further investigated. The release study indicated this CD-g-CS NPs had controlled-release effect and the degree of drug release from KTP-loaded CD-g-CS NPs was depended on the DS of CD-g-CS and pH of release medium.
引文
[1]Amir H, Faraji, Peter W. Nanoparticles in cellular drug delivery[J]. Bio org. Med.Chem.2009:1-13.
    [2]Pakatip R, Janice MC, Alexander TF. Nanosystem drug targeting:Facing up to complex realities[J]. J Controlled Release.2011,141:265-276.
    [3]吉顺莉,张春燕,戈延茹.纳米载药系统的研究进展[J].中国药业.2010,19(14):82-83.
    [4]Courrier HM, Butz N, Vandamme TF. Pulmonary drug delivery systems:Recent developments and prospects[J]. Crit Rev Ther Drug Carrier Syst,19 (4):425-498.
    [5]C.E.Mora-Huertas, H. Fessi, A. Elaissar. Polymer-based nanocapsules for drug delivery[J]. Int J Pharm.2010,385:113-142.
    [6]Lakshmi S. Nair, Cato T. Laurencin. Biodegradable polymers as biomaterials[J]. Prog. Polym. Sci.2007,32:762-798.
    [7]Jun JW, Zhao WZ, Ren ZX. Recent advances of chitosan nanoparticles as drug carriers[J]. Int J Nanomed.2011,6:765-774.
    [8]Beahold A, Cremer K, Kreuter J. Preparation and characterization of chitosan micrespheres as durg carrier for prednisolone sodium phosphate as model for anti-inflamematory drug[J]. J Control release.1996,39:17-25.
    [9]Xu YM, Du YM. Effect of molecular structure of chitosan on protein delivery properties of chitosan nanopartides[J]. Int J Pharm.2003,250 (1):215-226.
    [10]冯涛,庄海宁.壳聚糖固载化环糊精研究进展[J].粮食与油脂.2009,7:4-12.
    [11]徐连敏.壳聚糖纳米粒的研究进展[J].国外医学药学分册.2002,29:329-333.
    [12]Tian XX, Groves MJ. Formulation and biological activity of antineoplastic proteoglycans derived from mycobacterium vaccae in chitosan nanoparticles[J].1999, 51 (2):151-157.
    [13]Nagamoto T, Hattori Y, Takayama K. Novel chitosan particles and chitosan-coated emulsion inducing immune response via intranasal vaccine delivery [J]. Pharm. Res.2004,21 (4):671-674.
    [14]Grenha A,Seijo B, Serra C, Remu an-Lopez C. Chitosan nanoparticle-loaded mannitol microspheres:structure and surface characterization. Biomacromolecules. 2007,8 (7):2072-2079.
    [15]Mcleod AD, Friend DR, Tozer TN.Glucocorticoiddextran conjugates a spotential prodrugs for colon-specific delivery:hydrolysis in rat gastrointestintestinal tract contents[J]. Pharm Sci.1994,83:1284-1288.
    [16]Marianne H, Terje S.Immersion coating of pellet cores consisting of chitosan and calcium intended for colon drug delivery[J]. Eur J Pharm Biopharm.2010,158-163.
    [17]Gregor T, Edwin R.Biology interactions between polysacchatdes and divalent cations:The egg-box model [J].1973,32 (1):195-197.
    [18]Jane KA, Fresneau MP, Marazuela A. Chitosan nanopaticular as delivery systems for doxorubicin[J]. J Control Release.2001,73:255-267.
    [19]Erbacher P, Zou S, Bettingger T. Chitosan based vector/DNA complexed for gene delivery[J]. Pharm Res.1998,15 (9):1332-1339.
    [20]Mitra S, Gaur U, Ghosh PC. et al. Tumour targeted delivery of encapsulated:dextran-doxorobicin conjugate using chitosan nanoparticules as carrier[J]. J Control Release.2001, 74:317-323.
    [21]Mao HQ, Roy K, Troung-Le VL. Chitosan-DNA nanoparticles as gene carriers[J]. J Control Release.2001,70 (3):399-421.
    [22]Vila A, Sanehez A, Janes K, et al. Low moleeular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice[J]. Eur J Pharm Biopharm.2004,57 (1):123-131.
    [23]刘鄂湖,蔡光明,夏新华,熊晗辉,朱海升.羟丙基-β-环糊精增溶难溶性药物研究进展[J].药学专论.2007,16(8):25-27.
    [24]Francesca M, Marcos GF, Paola M, Maria JA. A new drug nanocarrier consistingof chitosan and hydoxypropyl cyclodextrin[J]. Eur J Pharm Biopharm.2006, 63:79-86.
    [25]Cirpanli Y, Bilensoy E, Lale Dogan A. Comparative evaluation of polymeric and amphi- philic cyclodextrin nanoparticles for effective camptothecin delivery[J]. Eur J Pharm Biopharm.2009,73 (1):82-89.
    [26]王建华,宋爱晶.一种新型辅料磺丁基醚-β-环糊精的药学应用进展[J].材料导报.2007,21(3):40-43.
    [27]Azza A, Gina S, Rabab K, Ghada EA. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery [J]. Int J Pharm.2011, 413:229-236.
    [28]Adriana T, Angela L, Maria JA. A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides. Eur J Pharm Biopharm.2010,75:26-32.
    [29]Hidetoshi A, Kiyokazu Y, Kouzou M. Comparative studies of the enhancing effects of cyclodextrins on the solubility and oral bioavailability of tacrolimus in rats[J]. J Pharm Sci.2001,90(6):690-701.
    [30]张毅民,李潇,孙聪善,陈春凤.羟丙基-β-环糊精/格列吡嗪包结物的制备及其光谱研究[J].光谱学与光谱分析.2008,3(28):711-714.
    [31]廖才智.p-环糊精的应用研究进展[J].化工科技.2010,18(5):69-72.
    [32]Luo YC, Yuan XW. Study on inclusion complex of oil from Rhzom a Agelicac Sinensis (Danggui) with β-cyclodextrin[J]. Chin Med Mat.1999,22 (7):357-358.
    [33]Arun R, Ashok KC, Sravanthi V. Cyclodextrins as Drug Carrier Molecule:A Review[J]. Sci. Pharm.2008,76:567-598.
    [34]王恺源,高永良.环糊精及其衍生物在纳米粒中的应用[J].中国医药生物技术.2009,4(6):458-460.
    [35]Harish I, Anand K, Manish V. Oral insulin-a review of current status. Diabetes, Obesity and Metabolism[J].2010,12:179-185.
    [36]Van TT, Venier J. Why and how to prepare biodegradable, monodispersed, polymeric microparticles in the field of pharmacy[J]. Int. J. Pharm.2011,1-11.
    [37]Kalpana N, Shailendra K.Chitosan Nanoparticles:A Promising System in Novel Drug Delivery[J]. Chem. Pharm. Bull.2010,58:1423-1430.
    [38]林爱华,平其能.壳聚糖载药纳米粒研究进展[J].中国药业.2006,15:25-27.
    [39]Arun R, Ashok K. Cyclodextrins as Drug Carrier Molecule:A Review[J]. Sci Pharm.2008,76:567-598.
    [40]Tojimaa T, Katsuraa H, Nishiki M, Nishi N, Tokurab S, Sakairi N.Chitosan beads with pendant a-cyclodextrin:preparation and inclusion property to nitrophenolates [J]. Carbohydr Polym.1999,40:17-22.
    [41]Zhang XG, Wu QZ. Chitosan bearing pendant cyclodextrin as a carrier for controlled protein release[J]. Carbohydr Polym.2009,77:394-401.
    [42]Xin JY, Guo ZZ, Chen XY, Jiang WF, Li JS, Li ML. Study of branched cationic-cyclodextrin polymer/indomethacin complex and its release profile from alginate hydrogel[J]. Int. J. Pharm.2010,386:221-228.
    [43]Francesca M, Marcos GF, Paola M, Maria JA. A new drug nanocarrier consisting of chitosan and hydoxypropyl cyclodextrin[J]. Eur J Pharm Biopharm.2006,63: 79-86.
    [44]Adriana T, Angela L, Massimo F, Nicola C, Eliana I, Marcos GF, Maria JA. A comparative study of chitosan and chitosan/cyciodextrin nanoparticles as potential carriers for the oral delivery of small peptides[J]. Eur J Pharm Biopharm.2010,75: 26-32.
    [45]Shelma R, Chandra, Sharma P.Acyl modified chitosan derivatives for oral delivery of insulin and curcumin[J]. J Mater Sci:Mater Med.2010,21:2133-2140.
    [46]Trapani A, Garcia FM, Alonso MJ. Novel drug nanocarriers combining hydrophilic cyclodextrins and chitosan[J]. Nanotechnology.2008,19:1-10.
    [47]李正艳.壳聚糖纳米载体用于细胞因子缓释制剂的研究[D].天津大学.2007.
    [48]王彦,赖克方,张巧,马千里,王长征.离子凝胶法制备壳聚糖纳米微粒的影响因素分析[J].山东医药.2011,51(27):13-17.
    [49]吴振宇,陈钟,黄华等.离子凝胶法制备壳聚糖纳米微粒[J].南通大学学报(医学版).2005,25(1):20-22.
    [50]Anitha RD, Shantha LK. Bioadhesive chitosan nanoparticles:Preparation and characterization[J]. Carbohydr Polym.2010,81:243-251.
    [51]Desai MP, Labhasetwar V, Amidon GL, Levy RJ. Gastrointestinal uptake of biodegradable microparticles:Effect of particle size[J]. Pharm Res.1996,13 (1) 1838-1845.
    [52]Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue[J]. Adv. Drug Deliv.Rev.2003,55:329-347.
    [53]Luo YC, Zhang B, Cheng WH, Wang Q. Preparation, characterization and evaluation of selenite-loaded chitosan/TPP nanoparticles with or without zein coating[J]. Carbohydr Polym.2010,82:942-951.
    [54]Hu B, Pan CL, Hou ZY, Ye H, Hu B, Zeng XX. Optimization of fabrication parameters to produce chitosan-tripolyphosphate nanoparticles for delivery of teacatechins[J]. J Agr Food Chem.2008,56:7451-7458.
    [55]Hong Z. Biomicrogels for Biological and Medicinal Applications[D]. University of Toronto.2007.54:720-724.
    [56]Quan G, Tao W, Colette C, Paul MC. Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery[J]. Colloid Surface B.2005,44:65-73.
    [57]Shu XZ, Zhu KJ. The influence of multivalent phosphate structure on the properties of ionically cross-linked chitosan films for controlled drug release[J]. Eur J Pharm Biopharm.2002,54:235-243.
    [58]Francesca M, Marcos GF, Paola M, Maria JA.A new drug nanocarrier consisting of chitosan and hydoxypropyl cyclodextrin[J]. Eur J Pharm Biopharm.2006:79-86.
    [59]Azza AM, Gina SE, Rabab KG. Chitosan/sulfobutylether-β-cyclodextrin nanoparticles as a potential approach for ocular drug delivery[J]. Int. J. Pharm.2011, 413:229-236.
    [60]Adriana T, Angela L, Massimo F, Nicola C, Eliana I, Marcos GF, Maria JA. A comparative study of chitosan and chitosan/cyclodextrin nanoparticles as potential carriers for the oral delivery of small peptides[J]. Eur J Pharm Biopharm.2010,75: 26-32.
    [61]Alf L, Hiromitsu Y, Hirofumi T, Yoshiaki K. A pH-sensitive microsphere system for the colon delivery of tacrolimus containing nanoparticles[J]. J Controlled Release, 2005,104:337-346.
    [62]Gan, Q, Wang T, Cochrane CM, Carron P.Modulation of surface charge, particle size and morphological properties of chitosan-TPP nanoparticles intended for gene delivery[J]. Colloid Surface B.2005,44:65-70.
    [63]Lopez-Leon T, Carvalho EL, Seijo B, Ortega-Vinuesa JL, Bastos-Gonzalez D. Physicochemical characterization of chitosan nanoparticles:Electrokinetic and stability behavior[J]. J Colloid Interf Sci.2005,283:344-351.
    [64]Yu S, Hu J, Pan X, Yao P, Jiang M. Stable and pH-sensitive nanogels prepared by self-assembly of chitosan and ovalbumin[J]. Langmuir.2006,22:2754-2759.
    [65]Tsai ML, Chen RH, Bai SW, Chen WY.The storage stability of chitosan/ tripolyphosphate nanoparticles in a phosphate buffer[J]. Carbohydr Polym.2011,84: 756-761.
    [66]Tang, ES, Huang M, Lim LY. Ultrasonication of chitosan and chitosan nanoparticles[J]. Int. J. Pharm.2003,265:103-114.
    [67]程德书,李明春,辛梅华.壳聚糖及其衍生物固载环糊精的制备及应用研究进展[J].化工进展.2008,27(6):819-830.
    [68]Zhang XG, Wu ZM, Gao XJ, Shu SJ, Zhang HJ, Wang Z, Li CX. Chitosan bearing pendant cyclodextrin as a carrier for controlled protein release[J]. Int. J. Pharm.2009,77:394-401.
    [69]Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric methods for the determination of sugar and related substances. Analytical Chemistry,1956,28, 350-356.
    [70]何炳林,赵晓斌.β-环糊精固载高分子的合成研究[J].中国科学.1992,12: 1240-1247.
    [71]Zhang XG, Wu ZM, Gao XJ. Chitosan bearing pendant cyclodextrin as a carrier for controlled protein release[J]. Carbohydr Polym,2009,77,394-401.
    [72]Gonil P, Sajomsang W, Ruktanonchai UR, et al. Novel quaternized chitosan containing β-cyclodextrin moiety:Synthesis,characterization and antimicrobial activity [J]. Carbohydr Polym.2011,83:905-913.
    [73]Zhu AP, Chen T, Yuan LH, Wu H, Lu P. Synthesis and characterization of N-succinyl-chitosan and its self-assembly of nanospheres[J]. Carbohydr Polym,2006, 66:274-279.
    [74]Samuels RJ. Solid state characterization of the structure of chitosan films[J]. J Polym Sci Pol Phys.1981,19:1081-1105.
    [75]Gonil P, Sajomsang W. Novel quaternized chitosan containing β-cyclodextrin moiety:Synthesis, characterization and antimicrobial activity[J]. Carbohydr Polym. 2011,83:905-913.
    [76]李学明,张慧颖,陈国广,丁丽燕,韦萍.羟丙基-β-环糊精对酮洛芬的包合作用[J].中国药科大学学报.2006,37(1):37-40.
    [77]Prabaharan M, Gong SQ. Novel thiolated carboxymethyl chitosan-g-β-cyclodextrin as mucoadhesive hydrophobic drug delivery carriers[J]. Carbohydr Polym.2008,71:117-125.
    [78]韩瑞亭.酮洛芬环糊精包合物制备及质量评价[J].黑龙江医药.2011,24(2):228-229.
    [79]Prabaharana M, Jayakumar R. Chitosan-graft-β-cyclodextrin scaffolds with controlled drug release capability for tissue engineering applications[J]. Int J Biol Macromol.2009,44:320-325.
    [80]Maestrelli F, Zerroukb N, Cirri M, Mennini N, Mura P.Microspheres for colonic delivery of ketoprofen hydroxypropy-p-cyclodextrin complex[J]. Eur J Pharm Biopharm.2008,34:1-11.
    [81]Guerrero S, Teijon C, Enriqueta M, Jose MT, Blanco MD. Characterization and in vivo evaluation of ketotifen-loaded chitosan microspheres[J]. Carbohydr Polym.2010, 79:1006-1013.
    [1]Sunil A. Agnihotri, Nadagouda N. Mallikarjuna, Tejraj M. Aminabhavi. Recent advances on chitosan based micro- and nanoparticles in drug delivery[J]. J Controll Release.2004,100:5-28.
    [2]林爱华,平其能.CS载药纳米粒研究进展.药学专论.2005,15(21):25-27.
    [3]Lopez-Leon T, Carvalho ELS, Seijo B. Physicochemical characterization of chitosan nanoparticles:electrokinetic and stability behavior[J]. J Colloid interf Sci. 2005,238(2):344-351.
    [4]Xiao-YuLi, Li-JiJin, Ya-NanLu, Yu-HongZhen, Shu-YingLi, Lin-HuiWang, Yong-PingXu. Chitosan-Alginate Microcapsules for Oral Delivery of Egg Yolk Immunoglobulin(IgY):Effects of Chitosan Concentration[J]. Appl Biochem Biotechnol.2009,159:778-787.
    [5]Anchalee Jintapattanakit, Varaporn B. Junyaprasert, Shirui Mao, Johannes Sitterberg, Udo Bakowsky, Thomas Kissel. Peroral delivery of insulin using chitosan derivatives:A comparative study of polyelectrolyte nanocomplexes and nanoparticles[J]. Int J Pharm.2007,342:240-249.
    [6]Xin Zhao, Lichen Yin, Jieying Ding, Cui Tang, Shaohua Gu, Chunhua Yin, Yumin Mao. Thiolated trimethyl chitosan nanocomplexes as gene carriers with high in vitro and in vivo transfection efficiency[J]. J Controll Release.2010:1-9.
    [7]Pakatip Ruenraroengsak, Janice M. Cook, Alexander T. Florence. Nanosystem drug targeting:Facing up to complex realities[J]. J Controll Release.2010,141: 265-276.
    [8]C. E. Mora-Huertasa, H. Fessi, A. Elaissari. Polymer-based nanocapsules for drug delivery[J]. Int J Pharm.2010,385:113-142.
    [9]杨文静,王婷,何农跃. CS/TPP纳米微胶囊的制备及其载药性能[J].高等学校化学学报.2009,3:625-628.
    [10]P. Calvo, C. Remun, Anlo Pez, J. L. Vilajato, M. J. Alonso. Novel Hydrophilic Chitosan-Polyethylene Oxide Nanoparticles as Protein Carriers[J]. J Appl Polym Sci. 1997,63:125-132.
    [11]Wang X., Chi N., Tang X. Preparation of estradiol chitosan nanoparticles for improving nasal absorption and brain targeting[J]. Eur. J. Pharm. Biopharm.2008, 10:1-24.
    [12]Sarmento B., Ribeiro A. J., Veiga F., Ferreira D. C., Neufeld R. J., Insulin-loaded nanoparticles are prepared by alginate ionotropic pre-gelation followed by chitosan polyelectrolyte complexation[J]. J. Nanosci. Nanotechnol.2007,7: 2833-2841.
    [13]Aktas Y., Andrieux K., Alonso M. J., Calvo P., Giirsoy R. N., Couvreur P., Capan Y. Preparation and in vitro evaluation of chitosan nanoparticles containing a caspase inhibitor[J]. Int. J. Pharm.2005,298:378-383.
    [14]Sarmento B., Ferreira D., Ribeiro A., Veiga F. Characterization of insulin-loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies[J]. Carbohydr. Polymers.2006,66:1-7.
    [15]Chavanpatil M. D., Khdair A., Panyam J. Polymer-surfactant nanoparticles for sustained release of water-soluble drugs[J]. Pharm. Res.2007,24:803-810.
    [16]Roy K., Mao H. Q., Huang S. K., Leong K. W. Oral gene delivery with chitosan-DNA nanoparticles generates immunologic protection in a murine model of peanut allergy[J]. Nat. Medicine.1999,5:387-391.
    [17]Mao H. Q., Roy K., Troung-Le V. L., Janes K. A., Lin K. Y., WangY., August J. T., Leong K.W.Chitosan-DNA nanoparticles as gene carriers:synthesis, characterization and transfection efficiency[J], J. Controlled Release.2001,70: 399-421.
    [18]Bhattarai N., Ramay H. R., Chou S. H., Zhang M. Chitosan and lactic acid-grafted chitosan nanoparticles as carriers for prolonged drug delivery [J]. Int. J. Nanomedicine,2006,1:181-187.
    [19]Pan Y., Li Y. J., Zhao H. Y., Zheng J. M., Xu H., Wei G., Hao J. S., Cui F. D. Bioadhesive polysaccharide in protein delivery system:chitosan nanoparticles improve the intestinal absorption of insulin in vivo[J]. Int. J. Pharm.,2002,249: 139-147.
    [20]Mumper R. J., Wang J., Claspell J. M., Rolland A. P., Bioact. Mater.1995,22: 178-179.
    [21]Park I. K., Park Y. H., Shin B. A., Choi E. S., Kim Y. R., Akaike T., Cho C. S., Park Y. K., Park Y. R. Galactosylated chitosan-graft-dextran as hepatocyte-targeting DNA carrier [J]. J. Controlled Release.2000,69:97-108.
    [22]Mao H. Q., Roy K., Troung-Le V. L., Janes K. A., Lin K. Y., WangY., August J. T., Leong K.W. Chitosan-DNA nanoparticles as gene carriers:synthesis, characterization and transfection efficiency[J]. J. Controlled Release.2001,70: 399-421.
    [23]Illum L., Jabbal-Gill I., Hinchcliffe M., Fisher A. N., Davis S. S. Chitosan as a novel nasal delivery system for vaccines[J]. Adv. Drug Deliv. Rev.2001,51:81-96.
    [24]De Campos A. M., Sanchez A., Alonso M. J., Int. J. Pharm. Chitosan nanoparticles:a new vehicle for the improvement of the delivery of drugs to the ocular surface[J]. Appl cyclosporin A,2001,224:116-159.
    [25]Wu L. Q., Lee K., Wang X., English D. S., Losert W., Payne G. F. Chitosan-mediated and spatially selective electrodeposition of nanoscale particles [J]. Langmuir.2005,21:3641-3646.
    [26]Sun P, Zhai XY, Luo YF, Ma CN, Xu J, Liu WG. Improving Transfection of Human Pulmonary Epithelial Cells by Doping LMW-PEI-g-Chitosan with beta-Estradiol[J]. J Appl Polym Sci.2011,21(2):874-882
    [27]Mei D., Mao S., Sun W., Wang Y., Kissel T. Eff ect of chitosan structure properties and molecular weight on the intranasal absorption of tetramethylpyrazine phosphate in rats[J]. Eur. J. Pharm. Biopharm.2008,70:874-881.
    [28]AnithaR. Dudhani, ShanthaL. Kosaraju. Bioadhesive chitosan nanoparticles: Preparation and characterization[J]. Carbohydr Polym.2010,81:243-251.
    [29]Prego C., Fabre M., Torres D., Alonso M. Efficacy and mechanism of action of chitosan nanocapsules for oral peptide delivery[J]. J. Pharm. Res.2006,23:549-556.
    [30]Zengshuan Ma, TitMeng Lim, Lee-Yong Lim. Pharmacological activity of peroral chitosan-insulin nanoparticles in diabetic rats[J]. Int. J. Pharm.2005,293: 271-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700