紫杉醇PLGA口服纳米粒的制备及生物利用度的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
紫杉醇(Paclitaxel,TAX)是抗肿瘤药物,在临床上已得到广泛应用,特别是对乳腺癌、卵巢癌的治疗作用明显。由于其水溶性差,临床使用的紫杉醇注射液中的紫杉醇是靠聚氧乙烯蓖麻油(CremophorEL)与无水乙醇以1:1的混合液来稳定和溶解。但聚氧乙烯蓖麻油可促进组胺释放,常引起严重的过敏反应和其他不良反应。为了解决上述问题,研究不含Cremophor EL并能提高紫杉醇生物利用度的制剂成为当前的热点。把紫杉醇制备成口服纳米给药系统后,则不仅能减少毒副作用,增加其稳定性,而且方便储存和运输。本文制备了紫杉醇纳米粒(TAX-NPs),优化了其处方和制备工艺,并对其进行了体内外评价。主要内容和结果如下:
     1.建立了紫杉醇样品HPLC测定方法,并对其线性范围、精密度、回收率等进行了验证,结果表明该方法符合分析要求。
     以生物可降解聚合物——聚丙交酯乙交酯共聚物(PLGA)为载体,采用乳化-分散法制备了TAX-NPs;以纳米粒的粒径和包封率为评价指标,考察了处方及其工艺因素对制剂质量的影响;对TAX-NPs的基本性质,体外稳定性和释药特征进行了考察;用差示扫描量热法(DSC)及X射线粉末衍射(XRD)分析了紫杉醇在纳米粒中的存在状态,TAX-NPs的平均粒径为(99±7.6)nm,Zeta电位为(78.3±5.87)mV,包封率和载药量分别为(56.99±0.29)%和(7.04±0.13)%。冻干TAX-NPs在4℃放置6个月稳定性良好。DSC及XRD表明TAX以分子形态被有效地包裹在纳米粒中。TAX-NPs在两种不同的pH值PBS释放介质中进行体外释放,以模拟生物体内环境,在pH值越低的条件下,药物释放越快,这对于载药纳米粒在偏酸性的肿瘤环境下发挥抗肿瘤作用非常有利。
     2.研究Caco-2细胞对纳米粒的摄取及其影响因素,以评价此种纳米粒作为口服抗肿瘤药物载体的可行性。通过包裹疏水性荧光探针香豆素-6(Coumarin-6,Cou-6)标记纳米粒,采用荧光酶标仪检测细胞内Cou-6的荧光强度,研究粒径,、孵育时间,、纳米粒浓度,、纳米粒的表面性质对Caco-2细胞摄取纳米粒的影响。采用激光共聚焦显微镜观察Caco-2细胞对纳米粒的摄取。与聚乙烯醇(Polyvinyl alcohol,PVA)做乳化剂制备的纳米粒相比,双十二烷基二甲基溴化铵(Didodecyldimethyl ammonium bromide,DMAB)作为乳化剂制备的纳米粒显著增加了Caco-2细胞对纳米粒的摄取率,细胞对粒径为100 nm左右的纳米粒的摄取率最高。结果证明纳米粒可经胃肠道给药吸收入血。
     3.利用大鼠在体肠吸收动力学实验,研究了紫杉醇纳米粒及其原料药在肠道的吸收情况,吸收动力学方程分别为:紫杉醇纳米粒lnX_(剩余)=lnX_0-0.154×t;紫杉醇原料药:lnX_(剩余)=lnX_0-0.0023×t,相关系数r分别为0.9460和0.9102。二者的吸收具有显著性差异(P<0.05),紫杉醇纳米粒在小肠中的吸收速率常数明显大于紫杉醇原料药。
     4.建立了紫杉醇的血药浓度测定方法。色谱条件为:色谱柱:Diamonsil C_(18)柱(250mm×4.6mm,5μm);流动相:乙腈/水(47:53,v/v);柱温:30℃;检测波长:227nm;流速:1.0ml/min;进样量:20μl。高、中、低浓度回收率分别为91.23%、92.68%、89.38%。日内RSD分别为3.81%、3.49%、2.89%,日间RSD分别为5.12%、4.59%、3.48%。最低定量浓度为0.02μg/ml。所建立方法适合紫杉醇血药浓度的测定。
     以健康的SD大鼠为受试对象,紫杉醇注射液为参比制剂,采用随机对照方法,研究纳米粒在动物体内的生物利用度。实验结果表明紫杉醇纳米粒绝对生物利用度为19.5%,说明用纳米载药系统传输紫杉醇促进了紫杉醇的吸收,提高了其口服生物利用度。
Paclitaxel,as a anticancer drug,has been widely used in clinic, especially for the treatment of breast cancer and ovarian cancer significantly.Since it is poor water solubility,clinically used paclitaxel in the paclitaxel injection is stabilized and dissolved by the mixture of polyoxyethylene castor oil(Cremophor EL) and ethanol(1:1,V/V).But Cremophor EL can promote histamine release,and usually cause severe allergic reactions and other adverse reactions.To solve the above problems, the research on the preparation of paclitaxel does not contain Cremophor EL and can improve the bioavailability become the hot spot.Nanoparticles for oral delivery of paclitaxel could not only reduce side effects and increase its stability,but also profit for storage and transport.Hence, paclitaxel nanoparticles(TAX-NPs) were prepared,the prescription and preparation technology of nanoparticles was optimized.In vivo evaluation of TAX-NPs were carried out.Main contents and results are as follows.
     1.In the study,HPLC determination was developed for paclitaxel in vitro and it was validated by characterization of linearity,precision as well as accuracy.
     Biodegradable polymer PLGA was used as a drug carrier,and the TAX-NPs were prepared by an emulsification-diffusion method.The effect of formula and technological factors on the quality of preparation was investigated by the estimate index of particle size and encapsulation efficiency of the TAX-NPs.The in vitro stability and release characteristics in vitro of TAX-NPs were investigated,the differential scanning calorimetry(DSC) and X-ray powder diffraction(XRD) were used to analyze existence state of the paclitaxel in the nanoparticles.The average diameter of TAX-NPs was(99±7.6) nm,and Zeta potential was(78.3±5.87) mV.The entrapment efficiency and the content of drug loading of TAX-NPs were(56.99±0.29)%and(7.04±0.13)%,respectively. Freeze-dried TAX-NPs at 4℃for 6 months showed good stability. Differential scanning calorimetry(DSC) and X-ray powder diffraction (XRD) analyses showed TAX was effectively wrapped in the nanoparticles as molecule morphous.TAX-NPs at two different pH values of PBS release medium for in vitro release,to simulate the in vivo environment,the lower the pH value in the condition,the faster the drug release.It is very favorable for TAX-NPs anti-tumor effects for tumor in the acidic environment
     2.The Caco-2 cell uptake of nanoparticles and its influencing factors were investigated to evaluate the feasibility of nanoparticles as a carrier of oral anticancer drugs.Nanoparticles were labeled by wrapping hydrophobic fluorescent probe coumarin-6(Cou-6) and fluorescence microplate reader was used to detect fluorescence intensity to investigate the particle size, incubation time,the concentration of nanoparticles and the surface properties of nanoparticles on Caco-2 cell uptake of nanoparticles.The laser confocal scanning microscope was used to observed Caco-2 cell uptake of nanoparticles.Compared with the nanoparticles emulsified by PVA,the nanoparticles emulsified by DMAB showed a significant increase in the Caco-2 cells uptake efficiency,and the uptake efficiency of nanoparticles with particle size of 100 nm was topmost.The results indicate that nanoparticles can be administered via the gastrointestinal tract.
     3.The absorption kinetics of free TAX and TAX-NPs were compared by the intestine of rats cannulated in situ recirculation experiment.The absorption kinetics equation of free TAX was lnX_(剩余)=lnX_0-0.154×t.And the absorption kinetics equation of TAX-NPs was lnX_(剩余)=lnX_0-0.0023×t, the correlation coefficient r were 0.9460 and 0.9102,respectively.The absorption of the two significant difference(P<0.05) and the absorption speed of TAX-NPs was faster than that of free TAX.
     4.The analytical method of concentration of paclitaxel in plasma was devoloped.The established chromatographic conditions was as follow:the column was Diamonsil C_(18)(250mm×4.6mm,5μm),a mobile phase was acetonitrile/water(47:53),the temperature of column was 30℃,detective wavelength was 227 nm,flow rate was 1 ml/min and injection volume was 20μl.The recoveries of high,medium and low concentration were 91.23 %、92.68%、89.38%,respectively.Intra-day RSD were 3.81%、3.49% 2.89%,respectively.Inter-day RSD were 5.12%、4.59%、3.48%, respectively.Quantitative minimum concentration was 0.02μg/ml.These results showed that the established method was suitable for determining the plasma concentration of paclitaxel.
     Bioavailability in animal vivo was studied by a randomized and controlled study.Healthy SD rats were used as the tested subjects and paclitaxel injection was used as the reference formulation.Experimental results showed that the absolute bioavailability of TAX-NPs was 19.5%. These result showed that the nanoparticles drug delivery system promoted the absorption of paclitaxel to improve their oral bioavailability.
引文
[1]元英进.抗癌新药紫杉醇和多烯紫杉醇[M].北京:化学工业出版社,2002:2-5.
    [2]Kohler DR,Goldspiel BR.Paclitaxel(taxol)[J].Pharmacotherapy.1994,14(1):3-34.
    [3]Ehrlich A,Booher S,Becerra Y et al.Micellar paclitaxel improves severe psoriasis in a prospective phase Ⅱ pilot study[J].J Am Acad Dermatol.2004,50(4):533-540.
    [4]杜文婷,胡永洲.紫杉醇水溶性衍生物的研究进展[J].中国现代应用药学杂志,2005,22(1):29-31.
    [5]Dordunoo SK,Jackson JK,Arsenault A,et al.Taxol encap sulati on in poly(ε-caprolactone)microspheres[J].Cancer Chemother Pharmacol.1995,36(4):279-282.
    [6]滕小玉,管忠震,姚志文,等.晚期实体癌患者对不含聚氧乙烯蓖麻油注射用紫杉醇白蛋白纳米粒悬浮液的临床耐受性研究[J].癌症,2004,23(11):1431-1436.
    [7]Straubinger RM,Sharma A,MurrayM,et al.Novel Taxol formulations:Taxol-containing liposomes[J].J Natl Cancer InstMonogr.1993,15:69.
    [8]Cabanes A,Briggs KE,Gokhale PC,et al.Comparative in vivo studies with paclitaxel and liposome-encapsulated paclitaxel[J].Int J Oncol.1998,12(5):1035.
    [9]Sharma A,Mayhew E,Straubinger RM.Antitumor effect of taxol- containing li posomes in a taxol-resistant murine tumor model[J].Cancer Res.1993,53(24):5877.
    [10]Sharma A,Sharma US,Straubinger RM.Paclitaxel- liposomes for intracavitary therapy of intraperitoneal P388 leukemia[J].Cancer Lett.1996,107(2):265.
    [11]Sharma A,Mayhew E,Boicsak L,et al.Activity of paclitaxel liposome formulati ons against human ovarian tumor xenografts[J].Int J Cancer.1997,71(1):103.
    [12]Dordunoo SK,Jackson JK,Arsenault A.,et al.Taxol encapsulation in poly(ε-caprolactone)microsphere[J].Cancer Chemother Pharmacol.1995,36(4):279-282.
    [13]Kim SC,Kim DW,Shim YH,et al.In vivo evaluation of polymeric micellar paclitaxel formulation:Toxicity and efficacy[J].J Control Release.2001,72(1-3):191-202.
    [14]Nankai University.Preparation of water-solubility paclitaxel compound:China,1440748A[P].2003-09-03.
    [15]DORDUNOO S K,OKTABA A M C,HUNTER W,et al.Release of taxol from poly(ε-caprolactone) pastes:effect of water-soluble additives[J].J Control Release.1997, 44(3):87-94.
    [16]LIU Y Q.Preparation of injecti on of anticancer agent paclitaxel-emulsificati on solid nanoparticles:China,1502332A[P].2004-06-07.
    [17]Corswant CV,Thoren P,Engstrom S.Triglyceride-based microemulsion for intravenous administration of sparingly soluble substanees[J].J Pharm Sci.1998,87(2):200-208.
    [18]Kan P,Chen ZB,Lee CJ,etal.Development of nonionic surfactant/phospholipid o/w emulsion as a paclitaxel delivery system[J].J Control Release.1999,58(3):271-287.
    [19]阎家麒,王惠杰,童岩等.紫杉醇微乳的研究[J].中国药学杂志,2000,35(3):173-176.
    [20]何蕾,王桂玲,张强.紫杉醇纳米乳剂的体内外考察[J].药学学报,2003,38(3):227-230.
    [21]Yang S,Gursoy RN,Lambert G,et al.Enhanced oral absorption of paclitaxel in a novel self-microemulsifying drug delivery system with or without concomitant use of P-glycoprotein inhibitors[J].Pharm Res.2004,21(2):261-270.
    [22]Lee E,Lee J,Lee IH,et al.Conjugated chitosan as a novel platform for oral delivery of paclitaxel[J].J Med Chem.2008,51(20):6442-6449.
    [23]代昭,孙多先,郭瑶.十六烷基壳聚糖纳米微球负载紫杉醇的研究[J].中草药,2003,34(2):120-122.
    [24]张景勍,张志荣.紫杉醇磁性非离子表面活性剂泡囊的研制及其质量评价[J].中国医院药学杂志,2001,21(8):454-455.
    [25]PAN Q J.Preparation of a kind of paclitaxel magnetic nano-preparations:China,1399958A [P],2003-03-15.
    [26]李桂云,陈必良,马向东.紫杉醇对浆液性卵巢癌细胞HO-8910细胞凋亡的诱导作用[J].肿瘤研究与临床,2002,16(1):11-13.
    [27]李青.紫杉醇治疗晚期乳腺癌的现状及展望[J].国外医学·肿瘤学分册,1995,22(5):290-293.
    [28]张青叶,丛月珠.新的一类肿瘤药--紫杉醇和taxotere[J].中草药,1995,26(12):658.
    [29]孙燕,张湘茹,洪婉君,等.安素泰治疗晚期乳腺癌和肺癌[J].中国新药杂志,1998,7(3):168-170.
    [30]马锐,伞宝君.紫杉醇联合顺铂治疗晚期非小细胞肺癌的临床研究[J].临床肿瘤学杂志,2005,10(2):128-129.
    [31]黄卫,蔡悦成,何宝贞.紫杉醇加顺铂联合化疗治疗晚期鼻咽癌的临床研究[J].中国基 层医药,2005,12(3):308-309.
    [32]王莉娟,李龙江,韩波等.紫杉醇治疗口腔鳞癌临床疗效的初步研究[J].华西医学杂毒,2001,16(5):398-399.
    [33]钱军,秦叔逵,陈映霞,等.紫杉醇为主方案治疗中晚期上消化道癌的临床研究[J].肿瘤防治研究,2003,30(2):149-151.
    [34]魏素菊,吕雅蕾,刘巍,等.紫杉醇联合卡铂治疗晚期食管癌和贲门癌的临床研究[J].临床荟萃,2005,20(14):817-818.
    [35]余元龙,季明芳,何洁冰等.紫杉醇、5-氟脲嘧啶抑制肝癌细胞BEL-7402生长和诱导凋亡的比较[J].第一军医大学学报,2005,25(7):864-867.
    [36]武文红,王光哲.体外观察紫杉醇对人胆管癌细胞QBC939凋亡的诱导作用[J].西安交通大学学报(医学版),2005,26(3):263-265.
    [37]朱江,姚旭东,唐孝达,等.紫杉醇对人膀胱移行上皮细胞癌的体外作用[J].中国癌症杂志,2005,15(4):359-361.
    [38]许小涛,吴晓芳,张一桥.紫杉醇抗人骨肉瘤作用的实验研究[J].肿瘤防治研究,2005,32(6):333-336.
    [39]雷建,郑文博,岑钧华.紫杉醇、草酸铂、5-氟脲嘧啶和醛氢叶酸对大肠癌术后联合化疗的观察[J].广州医学院学报,2004,32:(3):66-68.
    [40]洪节约,陈建清,吴晓安.国产紫杉醇加顺铂治疗复发性非霍奇金淋巴瘤的临床观察[J].四川肿瘤防治,2003,16(2):85-86.
    [41]刘魁凤,叶升,李红.紫杉醇治疗小儿恶性实体瘤11例[J].中国癌症杂志,2001,11(1):94.
    [42]李玉焱,苟静玲.紫杉醇治疗其他疾病的潜力[J].药物与临床,2002,17(1):13-14.
    [43]Lambert G,Fattal E,Couvreur P.Nanoparticulate systems for the delivery of antisense oligonucleotides[J].Adv Drug Deliv Rev.2001,47(1):99-112.
    [44]Muller RH,Jacob C,Kayser O.Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future[J].Adv.Drug Delivery.Rev.2001,47(1):3-19.
    [45]Kreuter J.Nanoparticulate systems for brain delivery of drugs[J].Adv Drug Deliv Rev.2001,47(1):65-81.
    [46]Lamber G,Fattal E.Polyisobutylcyanoacrylate nanocapsules containing an aqueous core as a novel colloidal carrier for the deliver of oligonucleotides[J].Pharm Res.2000,17(6):707-714.
    [47]De Jacghere F,Allemann E,Doelker E,et al.pH-dependent dissolving nano-and microparticles for improved peroral delivery of a highly lipophlic compound in dogs[J].The AAPS Journal.2001,3(1):92-99.
    [48]Hirofunu Takeuchi,Hiromitsu Yamamoto.Mucoadhesive nanoparticulate systems for peptide drug delivery[J].Adv Drug Deliv Rev.2001,47(1):39-45.
    [49]Leong KW,Mao HQ,Truong-Le VL,et al.DNA-polycation nanospheres as non-viral gene delivery vehicles[J].J Controlled Release.1998,53(1-3):183-193.
    [50]Mao HQ,Roy K,Truong-Le VL,et al.Chitosan-DNA nanoparticles as gene carriers:systhesis,characterization and transfection effficiency[J].J Controlled Release.2001,70(3):399-421.
    [51]蒋学华,廖工铁,姚倩.毫微粒作为药物载体的应用[J].中国药学杂志,1994,29(11):643-646.
    [52]陈道达,艾时斌,马建华等.磁液载附阿霉素靶向定位治疗消化系肿瘤[J].中华实验外科杂志,1996,13(1):1-2
    [53]Gupta PK,Hung CT,Morris RM,et al.Ultrastructural disposition of adriamycin associated magnetic albumin microspheres in rats[J].J Pharm Sci.1989,4:290-294.
    [54]Vandelli M A,Fresta M,Puglisi G,et al.An interpretative analysis of the effect of the surfactants used for the preparation of polyalkylcyanoacrylate nanoparticles on the release process[J].Microencapsulation.1994,11(5):531.
    [55]王成永,王姝婧.槲皮素纳米球的制剂学研究[J].中国药学杂志,2005,40(14):1087-1089.
    [56]张学农,张强,温浩,等.乳化聚合法制备阿苯达唑聚氰基丙烯酸酯纳米球的方法比较及稳定性考察[J].中国药学杂志,2003,38(5):357-359.
    [57]张学农,唐丽华,张强.阿苯哒唑纳米球载药特性及物理稳定性考察[J].中国药学杂志,2004,39(9):673-675.
    [58]刘伟,张红岭,周天洋,等.反义寡核苷酸聚氰基丙烯酸丁酯纳米粒的制备及载药研究[J].中国药学杂志,2005,40(17):1312-1315.
    [59]Couveur P,Kante B,Roland M,et al.Polycyanoacrylate nanocapsules as potential lysosomotropic carriers:preparation,morphology and sorptive properties[J].J Pharm Pharmacol.1979,31(5):331-332.
    [60]陆彬.药物新剂型与新技术.第二版北京:人民卫生出版社,2005.
    [61]王恺,马光辉.白蛋白纳米球药物载体的制备及表征[J].过程工程学报,2004,4(2):155-159.
    [62]张阳德,郭妍,刘蔚东,等.用白蛋白纳米粒做基因载体的体外研究[J].中华实验外科杂志,2004,21(12):1456-1458.
    [63]Sham JO,Zhang Y,Finalay WH,et al.Formulation and characterization of spray-dried powders containing nanoparticles for aerosol delivery to the lung[J].Int J Pharm.2004,269(2):457-467.
    [64]Weber C,Coester C,Kreuter J,et al.Desolvation process and surface characterization of protein nanoparticles[J].Int J Pharm.2000,194(1):91-102.
    [65]Leo E,Vandelli M A,Cameroni R.et al.Doxorubicin-loaded gelatin nanoparticles stabilized by glutaraldehyde:Involvement of the drug in the cross-linking process[J].Int J Pharm.1997,155(1):75-82.
    [66]Hans M L,Lowman A M.Biodegradable nanoparticles for drug delivery and targeting[J].Curr Opin Solid State Mater Sci.2002,6(4):319-327.
    [67]蔡梦军,朱以华,杨晓玲.乳化法明胶亚微米粒子的制备[J].过程工程学报,2005,5(6):617-620.
    [68]蔡梦军,朱以华,杨晓玲.载药明胶纳米粒子的制备及体外释药特性研究[J].华东理工大学学报(自然科学版),2005,31(5):612-615.
    [69]丁素丽,朱以华,杨晓玲.纳米明胶粒子的制备及其表面改性[J].华东理工大学学报,2004,30(5):523-526.
    [70]应晓英,胡富强,袁弘.胰岛素壳聚糖纳米粒的制备[J].中国药学杂志,2003,38(12):936-939.
    [71]Lu B,Xiong SB,Yang H,et al.Mitoxantrone-loaded BSA nanospheres and chitosan nanospheres for local injection against breast cancer and its lymph node metastases I:Formulation and in vitro characterization[J].Int J Pharm.2006,307(2):168-174.
    [72]Chacon M,Berges L,Molpeceres J,et al.Optimized preparation of poly(D,L-lactide-co-glycolide) microspheres and nanoparticles for oral administration[J].Int J Pharm.1996,141(1-2):81-91.
    [73]Lu Z,Bei J,Wang S.A method for the preparation of polymeric nanocapsules without stabilizer[J].J Control Release.1999,61(1-2):107-112.
    [74]陈国广,徐元龙,李学明.5-氟尿嘧啶纳米粒的制备及其体外释药的研究[J].华西药学杂志,2006,21(5):436-439.
    [75]Sanchez A,Tobio M,Gonzalez L,et al.Biodegradable micro-and nanoparticles as long-term delivery vehicles for interferonalpha[J].Eur J Pharm Sci.2003,18(3-4):221-229.
    [76]Murakami H,Kobayashi M,Takeuchi H,et al.Further application of a modified spontaneous emulsification solvent diffusion method to various types of PLGA and PLA polymers for preparation of nanoparticles[J].Power Technology.2000,107(1-2):137-146.
    [77]Murakami,Kobayash.Preparation of poly(DL-lactide-co-glycolide) nanoparticles by modified spontaneous emulsification solvent diffusion method[J].Int.J.Pharm.1999,187(2):143-152.
    [78]Allemann E,Leroux JC,Gurrnay R,et al.In vitro extended release properties of drug-loaded poly(DL-lactic acid) nanoparticles produced by a salting-out procedure[J].Pharm Res.1993,10(12):1732-1737.
    [79]Konan YN,Cerny R,Favet J,et al.Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl) porphyrin-loaded nanoparticles for photodynamic therapy[J].Eur J Pharm Biopharm.2003,55(1):115-124.
    [80]Muller RH,Jacob C,Kayser O.Nanoparticles as particulate drug formulation in therapy rationale foe development and what we can expect for the future[J].Adv Drug Deliv Rev.2001,47(1):3-19.
    [81]NathalieU,Philippe B,Christina P,et al.Preparation and characterization of propranolol hydrochloride nanoparticles:a comparative study[J].J Controlled Release.2004,97(2):291-300.
    [82]Sane A,Taylor S,Sun YP,et al.RESS for the preparation of fluorinated porphyrin nanoparticles[J].Chem Commun(Camb).2003,7(21):2720-2721.
    [83]Young TJ,Mawson S,Johnston KP,et al.Rapid expansion from supercritical to aqueous solution to produce submicron suspensions of water-insoluble drugs[J].Biotechnol Prog.2000,16(3):402-407.
    [84]Elvassore N,Bertucco A,Caliceti P.Prodution of insulin-loaded poly(ethylene glycol)/poly(L-lactide)(PEG/PLA)nanoparticles by gas antisolvent techniques[J].J Pharm Sci.2001,90(10):1628-1636.
    [85]Avgoustakis K,Beletsi A,Panagi Z,et al.Effect of copolymer composition on the physicochemical characteristics,in vitro stability,and biodistribution of PLGA-Mpeg nanoparticles[J].Int J Pharm.2003,259(1-2):115-127.
    [86]Calvo P,Remunan-Lopez C,Vila-jato JL,et al.Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines[J].Pharm Res.1997,14(10):1431-1436.
    [87]袁弘,胡富强,应晓英,等.胰岛素纳米粒的制备[J].中国药学杂志,2002,37(5):349-352.
    [88]王磊,柯红,崔洁.阿霉素纳米粒对MRP介导的膀胱肿瘤多药耐药细胞株EJ/MRP多药耐药性的逆转作用[J].中国药业,2008,17(9):14-16.
    [89]刘奕明,陈汇,曾繁典1纳米技术在药学研究中的应用进展[J].中国临床药理学杂志,2001,17(5):371-374.
    [90]张志荣,龚艳,黄园,等.抗人乳腺癌单克隆抗体偶联米托蒽醌蛋白纳米球的初步研究[J].药学学报,2001,36(2):151-154.
    [91]桂卉,邹龙,范学工.链霉素聚氰基丙烯酸正丁酯纳米粒小鼠体内抗结核菌活性的研究[J].解放军药学学报,2007,23(01):21-24.
    [92]张华.以脂质体和纳米粒为载体的抗生素靶向给药[J].国外医学药学分册,2000,27(6):357-359.
    [93]杨天智,王向涛,阎雪莹,等.胰岛素柔性纳米脂质体的口腔给药研究[J].药学学报,2002,37(11):885-891.
    [94]黎洪珊,赵京玲,魏树礼.环孢菌素A聚乳酸纳米粒胶体的制备和大鼠的口服吸收[J].中国药学杂志,1999,34(8):532-536.
    [95]刘奕明,陈汇,曾繁典.纳米技术在药学研究中的应用进展[J].中国临床药理学杂志,2001,17(5):371-374.
    [96]瞿文,陈庆华,朱宝泉.脂质纳米球的研究进展[J].中国药学杂志,2001,36(11):724-728.
    [97]赵巍.药物纳米控释系统在眼科的应用研究[J].眼科研究,2002,20(2):186-189.
    [98]孟宪瑛,王广义,吕国悦.超顺磁性纳米粒子在肿瘤诊断与治疗中的应用[J].吉林大学学报(医学版),2007,33(01).180-182.
    [99]安江洪,敖绪军,钱莘,等.壳聚糖纳米颗粒作为基因载体的初步研究[J].医学研究生学报,2008,21(8):790-795.
    [100]Godard G,Boutorine S,Saison BE,et al.Antisense effects of cholrsterolo -ligrodeoxynucleotide conjugates associated with poly(alkylcyanocacrylate) nanoparticles[J].Eur J of Pharm Biopharm.1995,232(2):404-410.
    [101]王文喜,梁文权,宋必卫.反义寡核苷酸纳米粒给药系统研究进展[J].中国药学杂志,2005,40(16):1201-1204.
    [102]蒋曙光,屠锡德,刘国杰等.聚合物微粒和纳米粒用于疫苗的粘膜给药[J].中国药科大学学报.2000,31(4):313-318.
    [103]Fjallskog ML,Frii L,Rergh J.Is Cremophor EL,solvent for paclitaxel,cytotoxic? Lancet[J].1993,342(8875):873.
    [104]Zhang Q,Huang XE,Gao LL.A clinical study on the premedication of paclitaxel liposome in the treatment of solid tumors[J].Biomed Pharmacother.2009,63(8):603-607.
    [105]Feng SS,Mu L,Chen BH,et al.Polymeric nanospheres fabricated with natural emulsifiers for clinical administration of an anticancer drug paclitaxel(Taxol)[J].Mater.Sci.Eng.C.2002,20(1-2):85-92.
    [106]Alexander TF,Anya MH,Nasir H,et al.Nanoparticles as carriers for oral peptide absorption:studies on particle uptake and fate[J].J Control Release.1995,36(1):39-46.
    [107]Desai MP,Labhasetwar V,Amidon GL,Levy RJ.Gastrointestinal uptake of biodegradable micropartieles:effect of partiele size[J].Phamr Res.1996,13(12):1838-1845.
    [1]Zambaux MF,Bonneaux F,Gref R,et al.Influence of experimental parameters on the characteristics of poly(lactic acid) nanoparticles prepared by a double emulsion method[J].Control Release.1998,50(1):31-40.
    [2]Gaspar MM,Blanco D,Cruz MEM,et al.Formulation of L-asparaginase-loaded poly(lactide-co-glycolide) nanoparticles:influence of polymer properties on enzyme loading,activity and in vitro release[J].Control Release.1998,52(1):53-62.
    [3]Blanco MD,Alonso MJ.Development and characterization of protein-loaded poly(lactide-co-glycolide) nanospheres[J].Eur.J.Pharm.Biopharm.1997,43(3):287-294.
    [4]Govender T,Stolnik S,Garnett MC,et al.PLGA nanoparticles prepared by nanoprecipitation:drug loading and release studies of a water soluble drug.[J].Control Release.1998,57(2):171-185.
    [5]Pan J,Feng SS.Targeted delivery of paclitaxel using folate-decorated poly(lactide)- vitamin E TPGS nanoparticles[J].Biomaterials.2008,29(17):2663-2672.
    [6]Sonaje K,Italia JL,Sharma G,et al.Development of biodegradable nanoparticles for oral delivery of ellagic acid and evaluation of their antioxidant efficacy against cyclosporine A-induced nephrotoxicity in rats[J].Pharm.Re.2007,24(5):899-908.
    [7]陈洁,邱利焱,胡敏新等.多烯紫杉醇固体分散体的制备和体内外研究.中国药学杂志[J].2007,42(22):1717-1722.
    [8]Dong YC,Feng SS.Poly(D,L-lactide-co-glycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs[J].Biomaterials.2005,26(30):6068-6076.
    [9]Kwon HY,Lee JY,Choi SW,et al.Preparation of PLGA nanoparticles containing estrogen by emulsification-diffusion method[J].Colloids Surf.,A:Physicochemical and Engineering Aspects.2001,182(1-3):123-130.
    [10]Huh KM,Lee SC,Cho YW,et al.Hydrotropic polymer micelle system for delivery of paclitaxel[J].J.Control Release.2005,101(1-3):59-68.
    [11]Tannock IF,Rotin D.Acid pH in tumors and its potential for therapeutic exploitation[J].Cancer Research.1989,49(16):4373-4384.
    [12]Santra S,Dutta D,Walter GA,Moudgil BM.Fluoreseent nanopartiele probes for caneer imaging[J]. Technol Cancer Res Treat. 2005,4(6):593-602.
    [13] Panyam J, Sahoo SK, Prabha S, et al. Fluorescence and electron microscopy probes for cellular and tissue uptake of poly(D,L-laetide-co-glycolide) nanopartieles[J]. Int. J. Pharm. 2003,262(1-2): 1-11.
    [14] Xie J, Wang CH. Self-assembled biodegradable nanoparticles developed by direct dialysis for the delivery of paclitaxel[J]. Pharm. Res. 2005, 22(12): 2079-2090.
    [15] Dong Y, Feng SS .Poly(D,L -laetide-co-glyeolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs[J]. Biomaterials. 2005, 26(30):6068-6076.
    [16] Panyam J, Labhasetwar V. Dynamics of endocytosis and exoeytosis of poly(D , L-laetide-eo-glycolide) nanoparticles in vascular smooth muscle cells[J]. Pharm. Res. 2003, 20(2):212-220.
    [17] Dong YC, Feng SS. Poly (D,L-lactide-co-glycolide) /montmorillonite nanoparticles for oral delivery of anticancer drugs[J]. Biomaterials. 2005,26(30): 6068-6076.
    [18] Artursson P, Palm K, Luthman K. Caco-2 monolayers in experimental and theoretical predictions of drug transport[J]. Adv. Drug Delivery. Rev. 2001,46(1-3):27-43.
    [19] Kin YW, Feng SS. Effects of particle size and surface coating on the cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs[J]. Biomaterials. 2005, 26(27): 13-22.
    [20] Rupert LAM, Hoekstra D, Engberts BFN. Fusogenic behavior of didodecyldimethylammonium bromide bilayer vesicles[J]. J. Am. Chem. Soc. 1985, 107(9):2628 - 2631 .
    [21] You J, Kamihira M, Iijima S. Surfactant-mediated gene transfer for animal cells[J]. Cytotechnology. 1997, 25(1-3): 45 - 52.
    [22] Desai MP, Labhasetwar V, Walter E, et al. Amidon GL. The mechanism of uptake of biodegradable microparticles in Caco-2 cells is size dependent[J]. Pharm. Res. 1997, 14(11): 1568-1573.
    [23] McClean S, Prosser E, Meehan E, Omalley D, Clarke N, Ramtoola Z, Brayden D. Binding and uptake of biodegradable poly DL-lactide micro- and nanoparticles in intestinal epithelia[J]. Eur. J. Pharm. Sci. 1998, 6(2):153-63.
    
    [24] Kreuter J. Peroral administration of nanoparticles[J]. Adv. Drug Delivery. Rev. 1991, 7(1): 71-86.
    [25]沈海蓉.阿托伐他汀自微乳药物传递系统的研制和评价.硕士学位论文.
    [26]沈凯,王景田.药物肠吸收实验研究方法进展.中国新药杂志,2003,12(12):988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700