基于纳米羟基磷灰石的新型药物载体系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代医学技术与材料科学的发展,特别是无机纳米粒子对生物分子载药的多样性和潜在的应用已成为材料科学的前沿领域。一些新型的无机无机纳米粒子如金纳米粒子、二氧化硅纳米粒子、磷酸钙纳米粒子等用作基因药物载体成为研究热点。其中,磷酸钙纳米粒子特有的生物相容性、生物可吸收性、生物降解、较低毒性性和化学稳定性使其可有效地导入细胞,同时磷酸钙粒子能粘附和传递生物活性大分子药物(如蛋白质、抗体、核酸、造影剂等)作为药物载体可以进入到人体组织受损或病变部位,使磷酸钙作为药物载体成为可能。磷酸钙载体以钙离子和反义核酸结构中的磷酸骨架基团形成化学键来实现对核酸的保护和转染,通过药物载体负载反义核酸能够将药物选择性将其浓集在癌变部位以减少药物降解及损失,降低细胞毒性药物对正常细胞组织的伤害,同时提高药物利用度。
     本文利用微乳法制备反义寡聚核苷酸-磷酸钙纳米粒子的基因载药系统,将反义寡聚核苷酸掺杂到磷酸钙晶格中导入HeLa细胞以实现有效转染,为构建抗肿瘤新型药物载体系统和提高反义核酸药物利用效率作为研究主要方向。进一步将磁性造影剂复合到羟基磷灰石中制备出具有荧光标记且具有造影功能的多功纳米粒子,为多功能药物造影剂的发展提供研究基础。本论文包括三部分,其主要研究内容如下:
     1.第一部分主要探讨利用水相合成法制备纳米级的羟基磷灰石的研究。利用水相合成法具有纳米级球形的羟基磷灰石,并通过在HeLa细胞中的细胞学作用效果研究,再通过MTT法来检测该纳米级球形羟基磷灰石的细胞毒性,实验表明在一定浓度范围内羟基磷灰石对细胞具有良好的生物安全性。
     2.第二部分反义核酸-羟基磷灰石纳米粒子载药体系的研究。以羟基磷灰石作为抗癌药物ASODNs的药物载体,即利用钙离子能与ASODNs上的磷酸基团反应作用以共掺杂的方法成功地制备复合型的ASODNs-羟基磷灰石纳米粒子,用紫外可见光谱、荧光光谱、TEM、MTT法、流式细胞仪等检测方法来证实药物载体的成功构建,其具有较高的转染率并能有效地提高抗癌药物的抗癌效率。用激光共聚焦显微镜、生物电镜等证实复合药物载体导入细胞后能真正有效促进肿瘤细胞凋亡。
     3.第三部分初步探索了复合型锰造影剂-ASODNs-羟基磷灰石的制备及表征,用透射电镜、振动样品磁强计和激光扫描共聚焦显微镜等方法来检测,结果显示较成功地制备的具有多功能的磁共振成像靶向造影剂具有抗癌药效的复合型的分散性的纳米粒子,其有较高的弛豫率荧光效应,该探索研究也为新型多功能基因药物的发展提供了新方法和新思路。
With the development of modern medical technology and materials science development, especially, the emerging area of inorganic nanoparticles entrapping biomolecules has already exhibited its diversity and potential applications in many frontiers of modern material science. Some of the novel inorganic carriers for gene drug delivery have been a hot spot in the field of medicine transportation in recent years such as gold nanoparticles, silica nanoparticles, calcium phosphate nanoparticles, manganous phosphate nanoparticles and other inorganic phosphate nanoparticles. The calcium phosphate nanoparticles could translocated into cells because it had good biocompatibility, bioabsorbability and biodegradability, lack toxicity and stable chemical properties, on the other hand, it also could be exploited to deliver a broad range of therapeutics including proteins, antibodies, oligonucleotides, imaging agents and liposomes in a variety of situations and biological systems. Calcium ions of calcium phosphate carrier can form chemical bond with phosphate backbone groups of antisense oligonucleotides (ASODNs), it’s one of the efficient methods for protecting ASODNs transfer into cell lines, drug carrier loaded antisense drugs can be selectively concentrated in cancerous site to reduce drug degradation and losses, reduce drug cytotoxicity to normal cells or tissue and improve drug availability.
     In this study, we used the double reverse emulsion approach to prepare the ASODNs loaded into calcium phosphate nanoparticles as gene delivery system for achieving high efficiency transfection in HeLa cell lines. it provided a main research direction for structure new antitumor drug carriers and improved the efficiency of drug utilization. For further study, it considered magnetic contrast agent composite with hydroxyapatite to prepare fluorescent marker and magnetic imaging function of multifunctional nanoparticles, this provides a research direction for the developmentof multifunctional drug nanoparticles. This paper includes three part contents as follows:
     1. The first part content mainly discusses preparation of nanometer hydroxyapatite with aqueous phase method. The results show that it has succeed for preparing nanoscale spherical hydroxyapatite nanoparticles. In vitro cytotoxicity studies of hydroxyapatite nanoparticles using the MTT assay with HeLa cells to cytotoxicity, the results show hydroxyapatite have a good biological safety in a certain concentration range of concentration.
     2. The second part content mainly discusses calcium phosphate nanoparticles as carriers for efficient cellular delivery of antisense oligodeoxynuclecotides. In this study, we used the double reverse emulsion approach to prepare the ASODNs loaded into calcium phosphate nanoparticles as gene delivery system. Calcium phosphate coprecipitation is one of the most common methods for successful preparation of ASODNs-CP nanoparticles, because divalent metal cation Ca2+ can bind phosphate backbone groups of antisense oligodeoxynucleotide. We successfully preparation ASODNs-CP nanoparticles and this drug carrier system have a high loading efficiency and improve transfection and anti-cancer efficiency by the characterizations of uv-vis spectra, fluorescence spectrum, TEM, MTT method and flow cytometry. ASODNs-CP nanoparticles can be truly effective promote HeLa cells apoptosis by using laser confocal microscopy, biological microscope.
     3. The third part preliminary exploration of researching the manganese contrast agent- ASODNs-hydroxyapatite composites preparation and characterization, it was charactered by TEM, LSCM and vibrating sample magnetometer, the results showed that we successfully prepared dispersible multifunction contrast magnetic agent imaging nanoparticles which have a certain relaxation rate and fluorescence effect. This study for the development of new-type multifunctional magnetic agent imaging provides a new method and idea.
引文
[1] Katz LM. Nanotechnology and applications in cosmetics: general overview, Cosmetic Nanotechnoloey, 2007, 11(961), 193-200.
    [2] Hutmacher DW, Scaffolds in tissue engineering bone and cartilage. Biomaterials, 2002, 21(24): 2529-2543.
    [3] Takezawa T. A strategy for the development of tissue engineering scaffolds that regulate cell behavior. Biomaterials, 2003, 24(13):2267-75.
    [4] Peng J, He X, Wang K, Tan W, Li H, Xing X, Wang Y. An antisense oligonucleotide carrier based on amino silica nanoparticles for antisense inhibition of cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine, 2006, 2(2):113-20.
    [5] Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci, 2006, 61(3):1027-40.
    [6] Weyermann J, Lochmann D, Zimmer A. Comparison of antisense oligonucleotide drug delivery systems. J Control Release, 2004, 100(3): 411-23.
    [7]叶向阳,甄平,李晓民,张增山,赵东华.磷酸钙骨水泥药物缓释体系的研究应用.中国组织工程研究与临床康复,2009,13(47): 9317-20.
    [8] Constantz BR, Ison IC, Flumer MT. Skeletal repair by in situ formation of the mineral phase of bone.Science,1995,267(5205):1796-1799.
    [9] Hamid YQ, Rasheed A, Muhammad Z. High-efficiency transfection of nucleic acids by the modified calcium phosphate precipitation method in chondrocytes[J]. Analytical Biochemistry, 2008, 382 : 138-140.
    [10] Cai YR, Liu YK, Yan WQ, Hu QH, Tao JH, Zhang M, et al. Role of hydroxyapatite nanoparticle size in bone cell proliferation. J Mater Chem, 2007; 17(36):3780-7.
    [11] Kokubo T, Kim HM, Kawashita M. Novel bioactive materials with different mechanical properties. Biomaterials, 2003, 24(13):2161-75.
    [12] Kulinowski KM, Colvin VL. The environmental impact of engineered nanomaterials. Nanotechnology and the environment, 2004, 4(890), 21-26.
    [13]吉顺莉,张春燕,戈延茹.纳米载药系统的研究进展[J].中国药业,2010,19 (14)82-3.
    [14]曹献英,刘静霆,尹美珍,李世普.抗肿瘤药物载体的研究进展[J].生物骨科材料与临床研究2006, 5 : 35-7.
    [15]章怡彬,梁文权,高建青.纳米粒子作为抗肿瘤药物载体的研究进展[ J ].医药导报,2006,25 ( 06 ) : 551-3.
    [16] Salafasky B, He YX, Li J. Study on the efficacy of a new long-acting formulation of N,N-diethyl-mtoluamide(DEET) for the prevention of thic attachment.AmerIcan J Tropical Medicine and Hygiene, 2000, 62(2):169-72.
    [17] Singh M. Srivastava I Advances in vaccine adjuvants for infectious diseases. Curr HIV Res, 2003,1(3) : 309-11.
    [18] Caracciolo G, Pozzi D, Cammiti R. Structual characterization of a new lipid/DNA complex showing a selective thansfection efficiency in ovarian cancer cells.Eur Phys J E SofT Matter, 2003,10 (4) : 331-6.
    [19] Gal D, Ohashi M, MacDonald PC. Low density lipoprotein as a potential vehicle for chemotherapeutic agents and radionucleotides in the management of gynecologic neoplasms [J]. Am J Obstet Gyneco, 1981, 139(8) : 877-85.
    [20]Petri B, Bootz A, Khalansky A. Chemotherapy of brain tumor using doxorubicin bound to surfactantcoated poly (butyl cyanoacrylate) nanoparticles : Revisiting the role of surfactants. J controlled Release, 2007, 22 (1) : 51-4.
    [21]Christiane D, Philippe M, Nathalie U. Oral delivery of insulin associated to polymeric nanoparticlesin diabetic rats. J controlled Release, 2007, 117 : 163-7.
    [22]Cavalli R, Caputo O, Gasco MR. Preparation and characterization of solid lipid nanospheres containing paclitaxel[J].Eur J Pharm Sci, Eur J Pharm Sci, 2000,10(4) : 305-9.
    [23]Nagaich S, Khopade AJ, Jain NK. Lipid grafts of egg-box complex: a new supramolecnlar biorector for 5-fluorouracil delirery[J]. Pharm Acta Helv, 1999,73(5) : 227-36.
    [24] Yoo HS,Park TG.In vitro and in vivo antitum or activities of nanoparticles based on doxorubicin-PLGA conjugates.Polym Prer.2000;41(1) : 992-3.
    [25]杨时成,朱家壁,梁秉文,等.喜树碱固体脂质纳米粒的研究[J].药学学报, 1999,34(2):146-50.
    [26] Lin WJ, Juang LW,Lin CC. Stability and release performance of a series of pegylated copolymeric micelles. Pharm Res, 2003, 20(4) : 668-73.
    [27] Hch KM, Min HS, Lee SC. A new hydrotropic block copolymer micelle sygtem for aqueous solubilization of paclitacel. J controlled Release.2008, 126 : 122-5.
    [28] Wang ZY, Song J, Zhang DS. Nanosized As2O3/Fe2O3 complexes combined with magnetic fluid hyperthermia selectively target liver cancer cells. World J Gastroenterol. 2009, 15(24) : 2995-3002.
    [29]安江洪,敖绪军,钱莘.壳聚糖纳米颗粒作为基因载体的初步研究[ J ].医学研究生学报,2008, 21 (8 ) : 790-5.
    [30] Zhang C, Qu GW, Sun YJ. Pharmacokinetics, biodistribution, efficacy and gafety of N-octyl-O-sulfate chitosan micelles loaded with paclitacel. Biomaterials, 2008, 29 : 1233-7.
    [31] Holmes FA, Kudelka AP, Kavanagh JJ, Huber MH, Ajani JA, Valero V. Current status of clinical trials with paclitaxel and docetaxel. Taxane anticancer agents, 1994, 3 (583) : 31-57.
    [32] Gautier A, Lopin C, Garipova G. Analogues of nucleotides and oligonucleotides featuring difluorophonate, difluorophonothioate and difluorophosphinate functional groups. J Fluor Chem, 2004, 5 : 1-12.
    [33] Jemol A, Murray T, A Samuels Cancer stautisfies 2003, J Cancer Clin, 2003, 53(1):5-26.
    [34] Giordano A, Rustum YM, Wcnner CE. Cell cycle molecular targets for diagnosis and therapy : tumor suppressor genes and cell cycle progression in cancel. J Cell Biochem, 1998, 70 (1) : 1-7.
    [35] Prigodich AE, Seferos DS, Massich MD, Giljohann DA, Lane BC, Mirkin CA. Nano-flares for mRNA regulation and detection. ACS Nano, 2009, 3(8) : 2147-52.
    [36] Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 2006, 61(3) : 1027-40.
    [37] Faria M, Spiller DG, Dubertret C, Nelson JS, Mike RH, Scherman D, et al. Phosphoramidate oligonucleotides as potent antisense molecules in cells and in vivo. Nat Biotechnol, 2001, 19(1) : 40 -4.
    [38] Jeong JH, Kim SW, Park TG. Novel intracellular delivery system of antisense oligonucleo- tide by self-assemble hybrid micelles composed of DNA/PEG conjugate and cationic fusogenic peptide. Bioconjugate Chem 2003,14(2) : 473-9.
    [39] Yang XC, Walboomers XF , Dolder VJ, et a1. Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carders.Tissue Engineering Part A, 2008, l4(1) : 71-81.
    [40] Kakizawa Y, Furukawa S, Ishii A, et al. Organic.inorganic hybrid-nanocarrier of siRNA constructing through the self-assembly of calcium phosphate and PEG-based block aniomer. J Control Release, 2006, l l(3) : 368-70.
    [41] Strain AJ, Wyllie AH. Theuptakeand stabilityof simian virus-40 DNA after calcium phosphate ransfection of CV-1 cells. J Biochem, l984, 2l8(2) : 475-82.
    [42] Kester M, Heakal Y, Fox T, Sharma A, Robertson GP, Morgan TT, Altinoglu E, et al. Calcium phosphate nanocomposite particles for In vitro imaging and encapsulated chemotherapeutic drug delivery to cancer cells Nano Lett, 2008, 8 (12) : 4116–21.
    [43] Wehanced TJ, Ergun C, Doremus RH. Enhanced functions of osteoblasts on nanophase ceramics. Biomaterials, 2000, 21(17) : 1803-10.
    [44] Viktoriya VS, Radtke I, Heumannb R, Epple M. Effective transfection of cells with multishell calcium phosphate-DNA nanoparticles. Biomaterials, 2006, 27 : 3147-53.
    [45] Gu Z, Rolfe BE, Xu ZP, Thomas AC, Campbell JH, Lu GQ. Enhanced effects of low molecular weight heparin intercalated with layered double hydroxide nanoparticles on rat vascular smooth muscle cells. Biomaterials 2010, 31(20) : 5455-62.
    [46] Singh R, Saxena A, Mozumdar M. Calcium phosphate—DNA nanocomposites: morphological studies and their bile duct infusion for liver-directed gene therapy. Int J Appl Ceram Technol 2008, 5 (1) : 1-10.
    [47] Olton D, Li JH, Wilson ME, Rogers T, John Close, Huang L, et al. Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: Influence of the synthesis parameters on transfection efficiency. Biomaterials 2007, 28 (6) : 1267-79.
    [48] Bhakta G, Mitra S, Maitra A. DNA encapsulated magnesium and manganous phosphate nanoparticles: potential non-viral vectors for gene delivery. Biomaterials, 2005, 26(14) : 2157-63.
    [49]杨南如,无机非金属材料测试方法,武汉理工大学出版社:武汉,1996.
    [50]刘约权,现代仪器分析,高等教育出版社:北京,2001.
    [51]方克明,邹兴,苏继灵.纳米材料的透射电镜表征[J],现代科学仪器, 2003, 2 : 15-17.
    [52] A Klamt. Calculation of UV/Vis spectra in solution. J Phys Chem, 1996, 100 : 3349-53.
    [53]范松灿.傅立叶变换红外光谱仪的原理与特点.高分子材料研究,2007,11,40-1.
    [54] Antonino M, Luigi MS, Alessio M. Supramolecular colloidal systems of gold nanoparticles amphiphilic cyclodextrin, a FESEM and XPS investigation of nanostructures assembled onto solid surface. J Phys Chem C, 2009, 113 : 12772–7.
    [55] Lee W, Yoon J, Lee H, Thomas EL. Direct 3-D imaging of the evolution of block co-polymer microstructures using laser scanning confocal microscopy. Macromolecules, 2007, 40 : 6021-4.
    [56]刘爱平,细胞生物学荧光技术原理和应用,中国科学技术大学出版社:合肥,2007.
    [57]李艳杰,赵希,李环.激光散射式粒度测试仪原理及数据处理算法研究[M].沈阳工业学院学报, 2001, 20(4) : 39-43.
    [58]李昭成,杨桂花.流动电位法Zeta电位仪的测量原理及使用性能.纸和造纸. 2002, 4 : 29-30.
    [59]王雅杰,综述,康熙雄.流式细胞技术及其临床应用.临床检验技术, 2007, 21(26) : 45-47.
    [60]王晶.蓝光超分辨磁光存储介质和性能的研究.上海师范大学学报,2009.
    [61]马选民,魏连营.世纪的酶标仪.仪器仪表学报, 2001, 21 : 114-6.
    [62] Hansen B, Nielsen SE, Berg K. Re-examination and further development of a precise and rapid dye method for measuring cell growth/cell kill. J Immunol Methods, 1989, 119 : 203-21.
    [1] Cai YR, Liu YK, Yan WQ, Hu QH, Tao JH, Zhang M, Shi ZL, Tang RK. Role of hydroxyapatite nanoparticle size in bone cell proliferation [J]. Journal of materials science, 2007, 17:3780–87.
    [2]王海,王友法,阎玉华,李世普.纳米HAP粒子在水介质中的分散稳定性研究[J].武汉理工大学学报, 2006, 28 (5):66-8.
    [3] Hamid YQ, Rasheed A, Muhammad Z. High-efficiency transfection of nucleic acids by the modified calcium phosphate precipitation method in chondrocytes[J]. Analytical Biochemistry, 2008, 382:138-40.
    [4]孙夏囡,何文,闫顺璞,周伟家.载药纳米羟基磷灰石的研究[J].山东轻工业学院学报, 2009, 23 (1):45-8.
    [5]张玉梅,徐可为,王勤涛,付涛.水热合成法制备羟基磷灰石生物涂层的体内及体外实验研究[J].中国口腔种植学杂志, 2000, 5 (4): 154-6.
    [6]黄志良,刘羽,王大伟,魏军,何亚林.溶胶-凝胶法合成的羟基磷灰石的热稳定性研究[J].武汉化工学院学报, 2002, 2: 35-9.
    [7]王德平,王璐,黄文旵. pH值对化学沉淀法制备纳米羟基磷灰石的影响[J].同济大学学报(自然科学版), 2005, 33 (1): 93-8.
    [8] Li H, Zhu MY, Li LH, Zhou CR. Processing of nanocrystalline hydroxyapatite particles via reverse microemulsions. Journal of materials science, 2008, 43: 384–9.
    [9] Motskin M, Wright D.M, Muller K, Kyle N, Gard T.G, Porter A.E, Skepper J.N. Hydroxyapatite nano and microparticles: Correlation of particle properties with cytotoxicity and biostability. Biomaterials, 2009, 30: 3307–17.
    [10]姚武,何莉.水化硅酸钙纳米结构研究进展[J].硅酸盐学报, 2010, 38 (4): 754-61.
    [12]赵晓刚,吕林女.钙硅比对溶液法制备的水化硅酸钙形貌影响[J].建材世界, 2010, 31(2): 7-8.
    [13]蔡华琼,李全利,周健,汤健,陈辉.琼脂-羟基磷灰石复合物的仿生合成及细胞相容性[J].中国组织工程研究与临床康复, 2010, 14 (3):410-4.
    [14]叶金凤,陈庆华,韩长菊,张峰,景森.纳米羟基磷灰石材料的制备与性能测试[J].中国陶瓷工业, 2007,14 (1) : 9-11.
    [1] Rodríguez JA, Span SW, Ferreira CG, Kruyt FA, Giaccone G. CRM1-mediated nuclear export determines the cytoplasmic localization of the antiapoptotic protein Survivin. Exp Cell Res 2002; 275 (1):44-53.
    [2] Shin S, Sung BJ, Cho YS, Kim HJ, Ha NC, Hwang JI, Chung CW, Jung YK, Oh BH. An anti-apoptotic protein human survivin is a direct inhibitor of caspase-3 and -7. Biochemistry 2001; 40(4):1117-23.
    [3] Prigodich AE, Seferos DS, Massich MD, Giljohann DA, Lane BC, Mirkin CA. Nano-flares for mRNA regulation and detection.ACS Nano 2009; 3(8):2147-52.
    [4] Li SD, Huang L. Targeted delivery of antisense oligodeoxynucleotide and small interference RNA into lung cancer cells. Mol Pharm 2006; 3(5):579-88.
    [5] Peng J, He X, Wang K, Tan W, Li H, Xing X, Wang Y. An antisense oligonucleotide carrier based on amino silica nanoparticles for antisense inhibition of cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine 2006; 2(2):113-20.
    [6] Weyermann J, Lochmann D, Zimmer A. Comparison of antisense oligonucleotide drug delivery systems. J Control Release 2004; 100(3): 411-23.
    [7] Xu ZP, Zeng QH, Lu GQ, Yu AB. Inorganic nanoparticles as carriers for efficient cellular delivery. Chem Eng Sci 2006; 61(3):1027-40.
    [8] Bhakta G, Mitra S, Maitra A. DNA encapsulated magnesium and manganous phosphate nanoparticles: potential non-viral vectors for gene delivery. Biomaterials 2005; 26 (14): 2157-63.
    [10] Liu JY, Huang W, Pang Y, Zhu XY, Zhou YF, Yan DY. The in vitro biocompatibility of self-assembled hyperbranched copolyphosphate nanocarriers. Biomaterials 2010; 31(21):5643-51.
    [11] Park JS, Na K, Woo DG, Yang HN, Kim JM, Kim JH, et al. Non-viral gene delivery of DNA polyplexed with nanoparticles transfected into human mesenchymal stem cells. Biomaterials 2010; 31(1):124-32.
    [11] Bhakta G, Mitra S, Maitra A. DNA encapsulated magnesium and manganous phosphate nanoparticles: potential non-viral vectors for gene delivery. Biomaterials 2005; 26(14): 2157-63.
    [12] Gu Z, Rolfe BE, Xu ZP, Thomas AC, Campbell JH, Lu GQ. Enhanced effects of low molecular weight heparin intercalated with layered double hydroxide nanoparticles on rat vascularsmooth muscle cells. Biomaterials 2010; 31(20):5455-62.
    [13] Sokolova V, Radtke I, Heumann R, Epple M. Effective transfection of cells with multi-shell calcium phosphate-DNA nanoparticles. Biomaterials 2006; 27 (16):3147-53.
    [14] Sokolova V, Kovtun A, Heumann R, Epple M. Tracking the pathway of calcium phosphate/DNA nanoparticles during cell transfection by incorporation of red-fluorescing tetramethylrhodamine isothiocyanate–bovine serum albumin into these nanoparticles. J Biol Inorg Chem 2007; 12(2):174-9.
    [15] Singh R, Saxena A, Mozumdar M. Calcium phosphate—DNA nanocomposites: morphological studies and their bile duct infusion for liver-directed gene therapy. Int J Appl Ceram Technol 2008; 5 (1) 1-10.
    [16] Fujiwara M, Shiokawa K, Morigaki K, Tatsu Y, Nakahara Y. Calcium phosphate composite materials including inorganic powders, BSA or duplex DNA prepared by W/O/W interfacial reaction method. Mat Sci Eng C-Bio S 2008; 28(2):280-8.
    [17] Morgan TT, Muddana HS, Altino?lu E?, Rouse SM, Tabakovi? A, Tabouillot T, et al. Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett 2008; 8(12):4108-15.
    [18] Jiang WG, Pan HH, Cai YR, TaoJH, Liu P, Xu XR, et al. Atomic Force Microscopy Reveals Hydroxyapatite-Citrate Interfacial Structure at the Atomic Level. Langmuir 2008; 24(21): 12446-51.
    [19] Motskin M, Wright DM, Muller K,Kyle N, Gard TG, Porter AE, Skepper JN. Hydroxyapatite nano and microparticles: Correlation of particle properties with cytotoxicity and biostability. Biomaterials 2009; 30 (19):3307-17.
    [20] Kilin DS, Prezhdo OV, Xia YN. Shape-controlled synthesis of silver nanoparticles: Ab initio study of preferential surface coordination with citric acid. Chem Phys Lett 2008; 458 (2):113-6.
    [21] Olton D, Li JH, Wilson ME, Rogers T, John Close, Huang L, et al. Nanostructured calcium phosphates (NanoCaPs) for non-viral gene delivery: Influence of the synthesis parameters on transfection efficiency. Biomaterials 2007; 28 (6):1267-79.
    [22] Wu XL, Kim JH, Koo H, Bae SM, Shin H, Kim MS, et al. Tumor-targeting peptide conjugated pH-responsive micelles as a potential drug carrier for cancer therapy. Bioconjugate Chem 2010; 21(2):208-13.
    [23] Chowdhury EH, Maruyama A, Kano A, Nagaoka M, Kotaka M, Hirose S, et al. pH-sensing nano-crystals of carbonate apatite: Effects on intracellular delivery and release of DNA for efficient expression into mammalian cells. Gene 2006; 376(1):87-94.
    [24] Chung YC, Hsieh WY, Young TH. Polycation/DNA complexes coated with oligonucleotides for gene delivery. Biomaterials 2010; 31(14):4194-203.
    [25] Sokolova V, Knuschke T, Kovtun A, Buer J, Epple M, Westendorf AM. The use of calcium phosphate nanoparticles encapsulating Toll-like receptor ligands and the antigen hemagglutinin to induce dendritic cell maturation and T cell activation. Biomaterials 2010; 31(21):5627-33.
    [26] Nori A, Jensen KD, Tijerina M, Kopec?kova? P, Kopec?ek J. Tat-conjugated synthetic macromolecules facilitate cytoplasmic drug delivery to human ovarian carcinoma cells. Bioconjugate Chem 2003; 14(1):44-50.
    [27] Fay F, Quinn DJ, Gilmore BF, McCarron PA, Scott CJ. Gene delivery using dimethyldido- decylammonium bromide-coated PLGA nanoparticles. Biomaterials 2010; 31(14):4214-22.
    [28] Morgan TT, Muddana HS, Altinogˇlu EI, Rouse SM, Tabakovi? A, Tabouillot T, et al. Encapsulation of organic molecules in calcium phosphate nanocomposite particles for intracellular imaging and drug delivery. Nano Lett 2008; 8(12):4108-15.
    [29] Singh S, Bhardwaj P, Singh V, Aggarwal S, Mandal UK. Synthesis of nanocrystalline calcium phosphate in microemulsion-effect of nature of surfactants. J Colloid Interf Sci 2008; 319(1):322-9.
    [30] Mandel S, Tas AC. Brushite (CaHPO4·2H2O) to octacalcium phosphate (Ca8(HPO4)2- (PO4)4·5H2O) transformation in DMEM solutions at 36.5°C. Materials Science and Engineering C 2010; 30(2):245-5.
    [31] Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA. Gene Regulation with Poly- valent siRNA-Nanoparticle Conjugates. J Am Chem Soc 2009; 131(6):2072-3.
    [32] Isobe T, Nakamura S, Nemoto R, Senna M. Solid-state double nuclear magnetic resonance study of the local structure of calcium phosphate nanoparticles synthesized by a wet-mechanochemical reaction. J Phys Chem B 2002; 106(20):5169-76.
    [33] Alt?no?lu E?, Adair JH. Calcium phosphate nanocomposite particles: a safer and more effective alternative to conventional chemotherapy? Future Oncol 2009; 5(3):279-81.
    [1] Weissleder R. Molecular imaging: exploring the next frontier. Radiology, 1999; 212: 609-14.
    [2] Arbab AS, Bashaw LA, Miller BR, Jordan EK, Bulte JW, Frank JA. Intracytoplasmic tagging of cells with ferumoxides and transfection agent for cellular magnetic resonance imaging after cell transplantation: methods and techniques. Transplantation 2003; 76: 1123-30.
    [3]Konig K, So PT, Mantulin WW, Tromberg BJ, Gratton E. Two-photon excited lifetime imaging of autofluorescence in cell during UVA and NIR photostress. J Microsc, 1996, 183:197~204.
    [4] Yang M, Jiang P, Yamamoto N. Realtime whole-body imaging of an orthotopic metastatic prostate cancer model expressing red fluorescent protein. Prostate, 2005, 62(4):374-9.
    [5] Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature, 2008, 452(7187):580-89.
    [6] Research progress of equipment and technology in early diagnosis of breast cancer part two: technology development of mammography in ultrasound, MRI and nuclear medicine area. Journal press of china medcal devices. 2010, 8(25),51-3.
    [7] Hu FQ, Wei L, Zhou Z. Preparation of biocompatible magnetite nanocrystals for in vivo magnetic resonance detection of cancer. Adv Mater, 2006,18(19) : 2553-6.
    [8] Bhakta G,Mitra S,Maitra A.DNA encapsulated magnesium and manganous phosphate nanoparficles:potential non- viral vectors for gene delivery.Biomaterials,2005,26(14):2157-63.
    [9]Monty L, Jie L, Michael K, Tian X, Stefan GR, Andre EN, Fuyuhiko T, Jeffrey IZ. Multifunctional inorganic nanoparticles for imaging, targeting, and drug delivery. ACS Nano, 2008, 2(5), 889-96.
    [10] Gao X, Cui Y, Levenson RM, Chung LW, Nie S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol, 2004, 22, 969–76.
    [11] Na HB, Lee JH, An K, Park YI, Park M, Lee IS, et al. Development of a T1 contrast agent for magnetic resonance imaging using MnO nanoparticles. Angew Chem Int Ed, 2007, 46, 5397-401.
    [12] Fei JB, Cui Y, Yan XH, Qi W, Yang Y, Wang KW, He Q, Li JB. Controlled preparation of MnO2 hierarchical hollow nanostructures and their application in water treatment. Adv Mater,2008, 20, 452-56.
    [13] Schladt TD, Graf T, Tremel W. Synthesis and Characterization of monodisperse manganese oxide nanoparticles-evaluation of the nucleation and growth mechanism. Chem Mater, 2009, 21, 3183-90.
    [15] Ghosh PK, Majithiya RJ, Umrethia ML, Murthy SR. Design and development of microemulsion drug delivery system of acyclovir for improvement of oral bioavailability. AAPS Pharmsci tech.2006, 7(3): 1-6.
    [16] Zheng JD, Yang HH, Wen ZY. Study on the stability for TX-100 reverse microemulsion system, Applied Chemical Industry, 2010, 5(39), 675-8.
    [17] Pan HM, Yang LB, Li MM, Li GZ, He YJ. Analysis of the thermodynamic stability for the W/O microemulsion based on the phase diagram method, Journal of chemical engineering of chinese universities, 2006, 5,679-84.
    [18]Carignan, Cochrane LP, Menard D. Design of a compensated signal rod for low magnetic moment sample measurements with a vibrating sample magnetometer. Review of Scientific Instruments, 2008, 79(3): 107-10.
    [19] Thorpe AN, Senftle FE, Holt M, Grant J. Magnetization, micro-x-ray fluorescence, and transmission electron microscopy studies of low concentrations of nanoscale Fe3O4 particles in epoxy resin. J Mater Res,2000, 15(11),2488-93.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700