吊拉组合体系桥的力学性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吊拉组合体系桥是由悬索桥和斜拉桥发展而来的一种新型缆索支承桥梁,它结合了斜拉桥和悬索桥体系的主要优点,并克服了单一悬索桥或斜拉桥在力学性能、施工以及抗风稳定性等方面存在的不足,具有结构新颖美观、受力合理、跨越能力强、抗风性能好、施工安全和造价低等优点,在深水基础以及强风区尤能突出其优越性,为21世纪跨海连岛工程建设提供了一种比较理想的桥型方案。本文针对吊拉组合体系桥的设计方案,对吊拉组合体系桥的力学性能包括静力特性、动力特性以及抗风性能等方面进行了系统的分析和研究,研究成果对该类桥梁的设计具有很好的指导意义和参考应用价值。
     本文分别采用基于CR列式法的结构三维几何非线性有限元分析程序GNFEA、基于子空间迭代法的结构动力特性分析程序SDCA、结构三维非线性空气静力分析程序BSNAA以及桥梁结构颤振分析程序BSLFA,一方面分析和比较了主跨1400m的悬索桥、斜拉桥和吊拉组合体系桥的力学性能包括静力特性、动力特性、静风稳定性以及空气动力稳定性等,并探讨了吊拉组合体系桥在超大跨度桥梁中应用的可能性;另一方面,系统地分析了主要设计参数包括主缆矢跨比、吊跨比、边跨长度、斜拉索索面布置形式以及边跨辅助墩设置等对吊拉组合体系桥力学性能的影响,指出了关键的设计参数,并探讨了其合理的取值范围。
     通过分析和比较表明:(1)吊拉组合体系桥刚度大,活载作用下的结构变形和内力小,风作用下结构的稳定性好,是一种理想的大跨度和超大跨度缆索支承桥梁的结构型式;(2)当主缆矢跨比在0.1左右,吊跨比在0.4~0.5之间,并采用短边跨、外倾式的斜拉索索面布置形式以及在边跨设置辅助墩时,吊拉组合体系桥的各项力学性能最好。
The cable-stayed-suspension hybrid bridge is a new bridge type ofcable-supported bridges, which is developed from suspension bridge andcable-stayed bridge. It takes the main advantages of the suspension bridgeand cable-stayed bridge, and also makes up the deficiencies existing in thesuspension bridge or cable-stayed bridge such as the mechanicalperformance, construction and wind stability. The cable-stayed-suspensionhybrid bridge provides a comparatively ideal bridge type for thestrait-crossing projects in the 21st century, due to its elegant shape,reasonable load carrying, strong crossing, good wind resistance, safeconstruction, low cost and so on, especially suitable for the locations facedwith bad natural conditions such as the deep-watered foundation and theviolent typhoon. This paper gives a systematic study and discussion on thestatic performance, dynamical characteristics and wind resistance of thecable-stayed-suspension hybrid bridge. The results can provide helpfulguide and valuable reference for the design of the cable-stayed-suspensionhybrid bridge.
     The computer programs including GNFEA based on CR formulationfor structural three-dimensional geometrical nonlinear finite elementanalysis, SDCA based on the sub space iteration method for structuraldynamic characteristic analysis, BSNAA for bridge structure nonlinear aerostatic analysis, and BSLFA for bridge structure linear flutter analysis,on one hand, are used to investigate the mechanical performance of thesuspension bridge, cable-stayed bridge and cable-stayed-suspensionhybrid bridge with a main span of 1400m including the static performance,dynamic behavior, and the aerostatic and aerodynamic stability, and thepossibility of applying the cable-stayed-suspension hybrid bridge inlong-span bridge is also discussed; on the other hand, are used toinvestigate the effect of design parameters such as the sag to span andsuspension to span ratios, the side span, the cable plane layout and thearrangements of the auxiliary piers in the side spans etc. on the mechanicalperformance of cable-stayed-suspension hybrid bridge. The key designparameters are pointed out and their reasonable values are also discussed.
     The results show that: (1) the cable-stayed-suspension hybrid bridgehas greater structural stiffness, less deformation and internal force underthe live load, and better structural stability under the wind action, andtherefore is an ideal structural system for long-span and super long-spanbridges. (2) The mechanical performance of cable-stayed-suspensionhybrid bridge is the best, when the sag to span ratio is about 0.1 and thesuspension to span ratio reaches the range of 0.4~0.5, and short side-span,outward inclined stay cable plane and the auxiliary piers in the side spansare used.
引文
[1] 吉姆辛.缆索支承桥梁(第二版)[M].北京:人民交通出版社,2002.
    [2] Gimsing, N. J. Design of a long-span cable-supported bridge across the Great Belt in Denmark [A].Innovative Large Span Structures [A], IASSCSCE International Congress[C], Toronto, 1992.
    [3] Lin, T. Y., Chow, P. Giraltar straits crossing-a challenge to bridge and structural engineers [J].Structural Engineering International, IABSE, 1 (2), 1991.
    [4] Ostenfeld, K. H. Innovative structural system for the Gibraltar Strait crossing project [A].Innovative Large Span Structures [A],IASSCSCE International Congress [C], Toronto,1992.
    [5] 蒙云,刘东,孙淑红.大跨度P-F-C吊拉组合桥设计研究[J].重庆交通学院学报,18(4):8-12.
    [6] 肖汝诚.斜拉-悬吊协作体系桥的设计探索[J].土木工程学报,2000,33(5):46-51.
    [7] 胡隽.大跨度吊拉组合索桥的理论研究[D].北方交通大学博士学位论文,2000.
    [8] 包龙生,杨炳成,于玲.吊拉组合索桥的模型建立与初始索力确定[J].沈阳建筑大学学报(自然科学版),20(4):265-268.
    [9] 孙淑红.大跨径吊拉组合桥结构体系及计算方法研究[D].重庆交通学院硕士学位论文,1999.
    [10] 曾攀,钟铁毅,闫贵平.大跨径斜拉-悬索协作体系桥动力分析[J].计算力学学报,19(4):472-476.
    [11] 肖汝诚,项海帆.斜拉-悬吊协作体系桥力学特性及其经济性能研究[J].中国公路学报,1999,12(3):43-48.
    [12] 肖汝诚,项海帆.拉吊协作桥的施工控制与吊索疲劳控制研究[J].同济大学学报,27(2):234-238.
    [13] 蒙云.乌江P-F-C吊拉组合索桥设计与施工工艺研究报告[R].重庆交通学院,1998.
    [14] 金增洪编译.悬索和斜拉复合桥梁的位移特征[J].中外公路,23(1):47-50.
    [15] 张新军,孙炳楠,陈艾荣,项海帆.斜拉-悬吊协作体系桥的颤振稳定性研究[J].土木工程学报,37(7):106-110.
    [16] Fumoto,K., Murakoshi, J., Hata, K., Miyazaki, M. A study on the aerodynamic characteristics of a new type of super long span bridge [A]. Proceedings of IABSE Congress [C], Shanghai,2004.
    [17] 常付平.自锚式吊拉组合体系桥的力学性能研究和分析[D].大连理工大学硕士学位论文,2005.
    [18] Chen, Z. Q., Agar, T. J. A. Geometric nonlinear analysis of flexible spatial benm structures [A].Computer & Structures [C], 1993,49(6).
    [19] 潘家英,程庆国.大跨度悬索桥有限位移分析[J].土木工程学报,1994,27(1).
    [20] 潘永仁.悬索桥的几何非线性静力分析与施工控制[D].同济大学博士学位论文,1996.
    [21] 胡世德,范立础.斜拉桥动力计算有限模式的讨论[J].同济大学学报,1992,20(6).
    [22] 项海帆,朱乐东.考虑约束扭转刚度影响的斜拉桥动力分析模型[J].第十一届全国桥梁学术会议论文集,1992.
    [23] 张新军.缆索承重桥梁颤振稳定性研究[D].浙江大学博士后研究工作报告,2003.
    [24] 赖良俊.吊拉组合大桥的结构行为分析[D].重庆交通学院硕士学位论文,2002.
    [25] 李国豪.桥梁结构稳定与振动[M].北京:中国铁道出版社,1992.
    [26] 范立础.桥梁抗震[M].上海:同济大学出版社,1997.
    [27] 李国豪.结构工程抗震动力学[M].北京:中国铁道出版社,1980.
    [28] 陈淮.大跨度斜拉桥动力特性分析[J].计算力学学报,1997,14(1):57-63.
    [29] 陈仁福.大跨度悬索桥理论[M].成都:西南交通大学出版社,1994.
    [30] Toshio Migata, Hitoshi Yamada. Aerodynamics of Wind Effects on Long-Span Cable Supported Bridges [A]. Innovative Large Span Structures [C]. IASS CSCE International Congress. Toronto,1992.
    [31] Seiichiro Fukushima. Dynamic Characteristics of Cable Structures Under Vertical Excitation [A]. Innovative Large Span Structures [C]. IASS CSCE International Congress. Toronto, 1992.
    [32] Carl C.ulstrup. Cable-Stayed Bridges [A]. The American Society of Civil Engineers, 1988.
    [33] 方明山,项海帆,肖汝成.大跨径缆索承重桥梁非线性空气动力稳定理论[J].土木工程学报,2000,33(2):73-79.
    [34] 希缪,埃米尔,斯坎伦,罗伯特·H著,刘尚培等译.风对结构的作用:风工程导论[M].上海:同济大学出版社,1992.
    [35] 陈英俊,于希哲编著.风荷载计算[M].北京:中国铁道出版社,1998.
    [36] Simiu, E., Scanlan, R. H. Wind Effects on Structures, 3rd ED [M]. John Wiley&Sons, New York, 1996.
    [37] 刘光栋,罗汉泉.杆系结构稳定[M].北京:人民交通出版社,1988.
    [38] 何君毅,林祥.工程结构非线性问题的数值解法[M].国防工业出版社,1994.
    [39] Boonyapingyo, V. Yamada,H., Miyata,T. Wind-induced nonlinear lateral torsional bucketing of cable-stayed bridges [J]. J. Struct. Engrg [J].ASCE,1994,120(2):486-506.
    [40] Chen, J., Jiang, J. J., Xiao, R. C., Xiang,H. F. Nonlinear aerostatic stability analysis of Jiangyin suspension bridge [J]. Engineering Struvtures, 2002,24:773-781.
    [41] 方明山.超大跨度缆索承重桥梁非线性空气静力稳定理论研究[D].同济大学博士学位论文,1997.
    [42] 廖海黎.江阴长江公路大桥扭转发散临界风速计算[J].公路,1995.
    [43] 江阴长江公路大桥抗风性能研究之三[M].同济大学土木工程防灾国家重点实验室,1995.
    [44] 马进,周庆桐.日本明石海峡大桥的抗风设计介绍[J].重庆交通学院学报,1994,13(2):83-89.
    [45] 孟松兔,张新军,刘相玉.大跨径斜拉桥空气动力稳定性的参数研究[J].公路,2003,(7): 123-125.
    [46] 廖海黎,奚绍中编译.改善大跨度桥梁抗风稳定性的建议[J].国外桥梁,1999,(3):60-63.
    [47] 张新军.大跨径桥梁三维非线性颤振分析[D].上海:同济大学桥梁系,2000.
    [48] Namini. A. H. Finite elements-based flutter analysis of cable-suspended brudge[J]. J. Struct. Engrg.[J].ASCE, 1992,118(6): 1509-1526.
    [49] Jain,A.,Jones,N. P., Scanlan. R. H. Coupled aeroelastic and aerodynamic response analysis of long-span bridge [J]. J. Wind.Engrg. [J]. Indust.Aerodyn., 1996,60:69-80.
    [50] Jain,A.,Jones,N. P., Scanlan. R. H. Coupled flutter and buffeting analysis of long-span bridge [J]. J.Wind.Engrg. [J]. ASCE, 1996,122(7):716-725.
    [51] 葛耀君.桥梁结构风振可靠性理论及其应用研究[D].同济大学博士论文,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700