郑州黄河钢管混凝土拱桥力学性能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
拱桥是一种极具美学价值的桥梁形式,也是桥梁的基本桥型之一,在我国又有深厚的历史渊源,在工程中得到了广泛应用,是我国建设较多的桥型。由于钢管混凝土在桥梁上的应用,同时解决了拱桥高强度材料应用和施工两大难题,使拱桥更加轻巧,表现力也更强,给拱桥的发展注入了新的活力。因此,钢管混凝土拱桥在我国得到迅速发展,我国建造了大量的拱桥。中、下承式拱桥建筑造型极佳,在城市桥梁中往往受到青睐而成为城市的标志性建筑,目前仍在向更大跨径、更大规模的方向发展,应用区域和范围也在不断扩大。当前,由于缺乏专用的设计规范和施工技术规范,钢管混凝土拱桥的设计、施工只能依据建筑行业的钢管混凝土规程并结合桥梁设计规范的有关条文进行,这对该种桥梁实际应用带来了一定的困难。
     近年来,由于主客观原因导致了一些拱桥发生坍塌事故,造成了严重的人员伤亡和经济损失,从这些事故分析可以得出这样的结论:中、下承式拱桥的断桥与垮塌事故大多与吊杆的健康状态有关,若能对拱桥吊杆的健康状态进行经常及时地或实时在线地监测与诊断,多数拱桥的重大事故是可以避免的。要对中、下承式拱桥的吊杆健康状态做出正确判断,需要采用精细的有限元模型对桥梁整桥进行力学性能分析,了解桥梁的受力特性。尤其是作为桥梁重要受力构件的吊杆,在传统设计中是利用桥面简支梁模型计算其内力,忽略了桥面连续及弹性支撑对吊杆内力的影响,计算结果粗糙。因此只有采用以拱肋、吊杆和桥面体系为一体的整体精细有限元计算模型,才能准确求解其内力,为系杆拱桥的设计提供依据,同时也为吊杆的健康检测与诊断提供详实的力学资料。开展拱桥力学性能分析具有重要的理论意义和实用价值,本课题正是在此背景下开展的。
     本文根据京珠国道郑州黄河特大桥主桥——下承式钢管混凝土拱桥的结构特点,采用有限元法对该桥进行有限元离散,用空间梁单元模拟系杆梁、端横梁、中横梁、纵梁和拱肋等构件,用只承受拉力的空间杆单元模拟吊杆,建立了桥梁空间力学计算的有限元模型,利用ANSYS程序对该桥进行了空间力学计算,得到了该桥梁在不同工况下的力学性能,探讨了吊杆损伤对该拱桥静态力学性能、动态特性、稳定性的影响,取得的主要成果如下:
     (1)通过对该桥在恒载和外侧汽车荷载偏载作用下的静力计算和分析,可以看出,在桥梁完好状态下:
     ①吊杆受力:吊杆张力关于跨中对称,端部2根吊杆张力相对较小(最端部吊杆张力最小),其余中部位置吊杆张力较大,且各根吊杆所受的张力分布比较均匀,吊杆张力相差不大(最中间部位吊杆张力最大);活载增大了吊杆所受的张力,增大比较均匀,外侧吊杆所受的张力增加幅度比内侧大。
     ②拱肋和系杆梁受力:拱肋和系杆梁受力关于跨中对称,拱肋各个截面全截面受压,吊杆位置处拱肋的弯矩发生变化和剪力产生突变;系杆梁全截面受拉,系杆梁由于端横梁的约束,其弯矩图与两端固定梁弯矩图相似,吊杆位置处系杆梁弯矩图发生变化和剪力产生突变;活
    郑州大学硕士学位论文载增大了拱肋和系杆梁受力,外侧和内侧拱肋轴力增大变化大致均匀,拱肋弯矩变化不均匀,大致关于跨中对称,在1/4位置处增大最大;拱肋剪力变化较均匀;外侧和内侧系杆梁轴力变化较均匀,系杆梁弯矩变化不均匀,在右1/8位置处增大最大。 ③拱桥整体变形:全桥变形以桥面的竖向位移为主,其它构件空间变形较小;活载增大了该拱桥整体变形,竖向位移增大变化大致均匀。 (2)吊杆损伤对拱桥构件受力的影响: ①吊杆受力分析:由于去除了某些损伤吊杆,引起其它吊杆张力增大,特别是与之相邻的吊杆张力增大最多,吊杆张力增大大致在损伤位置处向两边逐渐递减,外侧吊杆张力变化比内侧吊杆张力变化大。 ②拱肋受力分析:拱肋轴力变化比较小,也比较均匀;拱肋弯矩变化不均匀,在去除损伤吊杆位置处弯矩增加最大,特别是与之相邻的拱肋弯矩增大较多,其它位置弯矩有所增加;拱肋剪力在去除损伤吊杆位置处有突变,增加较多(应考虑剪力的符号),其它各关键点剪力变化较小,并且去除损伤吊杆位置处左、右变化趋势相反。 ③系杆梁受力分析:系杆梁轴力增大变化较均匀,一般变化量较小,基本上都是从一侧向另一侧逐渐变化的;系杆梁弯矩变化不均匀,在去除损伤吊杆位置处弯矩增加最大,其它位置弯矩增大较少;系杆梁剪力在去除损伤吊杆位置处有突变,去除损伤吊杆位置处两侧剪力增加较多,其它位置剪力增加较小。 ④拱桥变形分析:在去除损伤吊杆位置处,拱肋位移减小,其它各关键点位移增大,在有损伤吊杆所在侧拱肋位移变化较大,另一侧拱肋位移变化小;系杆梁位移增加,特别是损伤吊杆位置处系杆梁位移增加最大。 总的来讲,吊杆损伤对吊杆系静张力的分配有较大的影响,一旦某根吊杆退出工作,与之相临的吊杆所受的静张力也会随之大幅度增加;吊杆损伤对拱肋和系杆梁的轴力影响较小,但对弯矩有较大影响;损伤处的竖向位移也较大。 (3)该拱桥的振动主要有钢管混凝土拱肋的面外振动、桥梁整体的竖向振动和扭转振动3种振动形式。拱肋的面外刚度相对较小,桥梁第1阶振动表现为拱肋的面外横向振动;桥面系不存在低阶的振动形式,其竖
Arch bridge, with extremely high aesthetic value, acting as one of the fundamental bridge types and possessing a profound historical origin, is widely applied in engineering and is a popular bridge type in our nation's construction. As the application of CFST (Concrete Filled Steel Tube) structures to bridges has solved the problem of the application of high-strength material of arch bridge and the problem of the construction of arch bridge, two main bridge puzzles, arch bridge becomes much lighter and has stronger expressive force and the development of arch bridge is infused with fresh vitality. Therefore, CFST arch bridge has gained a booming opportunity in our country and meanwhile a large number of arch bridges have been constructed in our country. With wonderful architectural styles, through and half through arch bridges, are commonly favored in urban bridge design and construction so as to be the symbol of civic constructions. For the moment, they are still advancing on wider span and larger scale and
     their application region and scope are enlarged continually. Currently,.the design and construction of CFST arch bridge can only be based on the CFST specifications in the construction industry with the combination of relevant clauses in the bridge design codes which bring about certain difficulties to the practical application of this sort of bridge for the lack of special design codes and construction codes.
    In recent years, some subjective and objective reasons resulted in some accidents of arch bridge collapses and severe casualties and economic loss related. Such conclusion can be derived from these accidents' analyses that breaking up and collapse of through and half through bridges mostly relate with the health condition of suspenders; if timely and real time online monitoring and diagnoses are conducted, a majority of serious accidents can be avoided. Only by adopting refined FEM (Finite Element Method) to analyze the whole bridge's mechanical properties to get the stress and strain characteristics of the bridge, can the suspenders' health conditions of the through and half through arch bridges be exactly estimated. Especially the suspenders, as one of the vital load-bearing members of the arch bridge, whose internal forces are calculated by making the model of deck simple-supported beam and ignoring the effects that are brought on to the suspenders' internal forces by the factors such as deck's continuity
     and elastic supports, are coarsely calculated during the traditional design. Consequently, only by adopting the whole and fine finite element calculating model which is integrated by arch ribs, suspenders and the bridge deck system, can its internal forces be precisely calculated to provide references to the tied arch bridge's design and detailed mechanical materials to the health detection and diagnoses of suspenders. Conducting the analyses of arch bridges' mechanical properties takes on its important theoretical senses and practical values, and this dissertation is written and developed in this background.
    In this dissertation, the Yellow River main bridge in Zhengzhou section of Jingzhu freeway, a through CFST arch bridge is discretized by the FEM according to its structural characteristics with the spatial beam element simulating the horizontal tied beams, end floor beams, middle floor beams, arch ribs and the like and with the spatial link element simulating the suspenders to erect the bridge's spatial mechanical computational finite element model. Finite element common software ANSYS is applied for its spatial mechanical calculation and mechanical properties in various cases are obtained. Meanwhile, influences that the damage of the suspenders has brought on to this arch bridge's mechanical properties of the static state, dynamic characteristics and stability are discussed
    
    
    
    so as to acquire the main fruit in the dissertation below:
    (1) From the static calculation and analyses of the bridge under the dead load and the deflected live load of the outboard automobile load, it is obvious that
引文
[1] 严志刚,盛洪飞.钢管混凝土拱桥的发展优势[J].东北公路,2002,25(1):31~33.
    [2] 陈宝春.钢管混凝土拱桥设计与施工[M].北京:人民交通出版社,1999.
    [3] 陈宝春.钢管混凝土拱桥发展综述[J].桥梁建设,1997,(2):8~13,22.
    [4] 郭金琼,毛承忠,陈宝春,郑振,郑振飞.钢管混凝土结构在城市桥梁中的应用[J].福州大学学报(自然科学版),1996,(4):22~26.
    [5] CECS 28:90,中国工程建设标准化协会标准.钢管混凝土结构设计与施工规程[S].
    [6] JCJ 01-89,国家建筑材料工业局标准.钢管混凝土结构设计与施工规程[S].
    [7] DL 5099-97,钢-混凝土组合结构设计规程[S].
    [8] 宋勤.重庆市綦江县虹桥特大垮塌事故的原因和教训[J].施工技术,1999,28(10):54.
    [9] 魏建东.宜宾小南门大桥的抢修加固与恢复工程[J].公路,2000,(4):34~38.
    [10] 姚志强,阮小平,邓清.拱桥吊杆变形差异引发桥面断裂及类似事故的预防措施[J].公路,2002,(7):73~75.
    [11] Seung-Eock Kim, Se-Hyu Choi, Sang-Soo Ma. Performance based design of steel arch bridges using practical inelastic nonlinear analysis[J].Journal of Constructional Steel Research, 2003, (59):91~108.
    [12] 陈宝春,郑皆连.钢管混凝土拱桥实例集(一)[M].北京:人民交通出版社,2002.
    [13] 李勇,陈宜言,聂建国,陈宝春.钢-混凝土组合桥梁设计与应用[M].北京:科学出版社,2002.
    [14] 金成棣.预应力混凝土梁拱组合桥梁——设计研究与实践[M].北京:人民交通出版社,2001.
    [15] 钟善桐.钢管混凝上拱桥设计中的几个问题[J].哈尔滨建筑大学学报,2000,33(2):13~17.
    [16] 江同心,华有恒.关于钢管混凝土拱桥若干问题的探讨[J].桥梁建设,2001,(1):24~27,31.
    [17] 付超.钢管混凝土拱桥几个应注意的问题[J].钢结构,2001,16(3):19~21.
    [18] 郑振飞,艾四芽.福清玉融大桥荷载横向分布计算[J].福州大学学报(自然科学版),1996,24(4):34~39.
    [19] 项贻强,李新生,申永刚,薛静平.空间梁拱组合式桥梁的分析理论及试验研究[J].中国公路学报,2002,15(1):67~71.
    [20] 张斌.钢管混凝土拱桥设计计算的研究与应用[D].天津:河北工业大学,2002.
    [21] 魏立新.三跨自锚中承式钢管混凝土拱桥设计中的技术处理[J].桥梁建设,1999,(1):25~27.
    [22] 李少波.厦门市湖里大道立交桥设计[J].桥梁建设,2001,(2):35~38.
    [23] 古秀丽,孙庆东.延吉市延河路中承式钢管混凝土拱桥的设计[J].城市道桥与防
    
    洪,2000,(3):39~42.
    [24] 陈宝春,邹中权.兰溪大桥钢管混凝土刚架系杆拱设计[J].湘潭矿业学院学报,1998,13(4):73~76.
    [25] 刘钊,王文清.预应力混凝土斜吊杆系杆拱桥结构设计概要[J].桥梁建设,1998,(1):31~32.
    [26] 王玮瑶,李生智,陈科昌.异型系杆拱桥[J].中国公路学报,1996,9(1):45~50.
    [27] 李乔,李丽.异型拱桥结构内力分析[J].公路交通科技,2001,18(1):31~35.
    [28] 刘钊,吕志涛.竖吊杆与斜吊杆系杆拱结构的桥式研究[J].土木工程学报,2000,33(5):64~67.
    [29] 陈兵,朱正刚,罗特军.中、下承式拱桥吊杆体系研究[J].四川建筑,2002,22(4):29~30,32.
    [30] 金国强.竖吊杆与斜吊杆P.C.系杆拱桥主要构造及内力特性比较[J].华东公路,1999,(4):11~14.
    [31] 郭维,章权.中承式吊杆拱桥的设计与施工特点[J].广东公路交通,1996,(3):12~16.
    [32] 孟杰.系杆拱桥结构体系研究[D].长沙:湖南大学,2002.
    [33] 谢肖礼,彭文立,秦荣.圣维南原理在钢管混凝土拱桥分析中的应用[J].中国公路学报,2001,14(2):33~35.
    [34] 田学民,李乔,张清华.高速铁路大跨提篮拱桥的静力刚度及模型试验研究[J].桥梁建设,2002,(4):12~15.
    [35] 田学民,李乔,张清华.尼尔森体系提篮拱桥的内力分布[J].西南交通大学学报,2002,37(5):505~509.
    [36] 李宏辉.九曲河提篮拱桥受力特性分析[D].成都:西南交通大学,2002.
    [37] 何文斌,马克俭.预应力双作用提篮式钢管混凝土拱与钢-混凝土空腹夹层板组合结构的研究与应用[J].贵州工业大学学报(自然科学版),2002,31(6):36~40,47.
    [38] 颜东煌,赖敏芝,张克波,李学文.茅草街大桥基于ANSYS的空间计算模型[J].长沙交通学院学报,2003,19(2):6~10.
    [39] 王一军,乔建东.茅草街大桥主桥静、动力计算[J].企业技术开发,2003,(5):7~8,18.
    [40] 刘世忠,欧阳永金,沈波.钢管系杆拱桥的整体稳定性及自振特性分析[J].甘肃科学学报,1996,6(1):28~35.
    [41] 陈水盛,陈宝春.钢管混凝土拱桥动力特性分析[J].公路,2001(2):10~14.
    [42] 程海根,强士中.钢管混凝土提篮拱动力特性分析[J].公路交通科技,2002,19(3):63~65.
    [43] 李延强,安蕊梅,张红妹.钢管混凝土拱桥动力特性分析[J].石家庄铁道学院学报,2001,14(2):39~42.
    [44] 李延强,武兰河,安蕊梅.材料性质对钢管混凝土拱桥动力性质的影响[J].交通运输工程学报,2001,1(4):51~54.
    [45] 李延强,张红妹,武兰河.含钢率对钢管混凝土拱桥动力特性的影响[J].重庆交通学院学报,2002,21(3):11~14.
    
    
    [46] 韩艳,陈政清.茅草街大桥动力特性有限元模拟与分析[J].公路,2003,(3):66~70.
    [47] 汪至刚,楼文娟,孙炳楠,何建.中承式拱桥动力分析的三维有限单元模型[J].建筑结构,2001,31(6):69~70,68.
    [48] 马智明,周四思,孙树林,高成云.简支下承式系杆钢管混凝土拱桥分析计算及试验简介[J].公路,2000,(1):24~26.
    [49] 陈宝春,陈建省,郑起铭,郑振飞.某钢管混凝土拱桥静载测试分析[J].福州大学学报(自然科学版),1996,24(4):78~81.
    [50] 黄呈伟,袁伟斌,黎栻,薛理尊.系杆拱人行天桥静、动力特性计算与测试分析[J].昆明理工大学学报,2001,26(5):34~37.
    [51] 林友勤,郑振,陈日齐.永安市北塔大桥汽车静载试验[J].实验力学,2001,16(4):450~456.
    [52] 宗周红,Bijaya Jashi,林友勤,任伟新.西宁北川河钢管混凝土拱桥的理论与实验模态分析[J].铁道学报,2003,25(4):89~98.
    [53] Ren Wei-Xin, Harik I E. Experimental and Numerical Modal Analysis of a Steel Arch Bridge[C], Proc. of 2th International Conference on Advances in Structural Engineering and Mechanics. Pusan, Korea. 2002.13~21.
    [54] 彭思,余君.单拱面预应力混凝土系杆拱桥空间稳定试验研究[J].企业技术开发,2001,(11):12~15.
    [55] 彭晓华,徐升桥.大跨度钢管混凝土拱桥的计算机辅助设计[J].铁道标准设计,1994,(7):14~16.
    [56] 梅尧坤,李丽君.单拱面预应力混凝土系杆拱桥设计简介[J].桥梁建设,1994,(2):25~27.
    [57] Vlahinos A S, Ermopoulos J C, Wang Yang-Cheng. Buckling analysis of steel arch bridges[J].Journal of Constructional Steel Research, 1993,26(1):59~71.
    [58] Yabuki Tetsuya, Kuranishi Shigeru. Evaluation of stability for deck-type steel arch bridges[J].Structural Engineering/Earthquake Engineering, 1993,10(3): 117~127.
    [59] Nakai H, Kitada T, Kunihiro M, Kitazawa M, Hasino F. Proposition of methods for checking the ultimate strength of arch ribs in steel Nielson-Lohse bridges[J]. Stahlbau, 1995,64(5):129.
    [60] Cheng J, Jiang J-J, Xiao R-C, Xiang H-F. Ultimate load carrying capacity of long-span steel arch bridges[C]. Proceedings of International Conference on Computational Structures Technology. Prague, Czech Republic:Civil Comp Limited, 2002.225~226.
    [61] Nazmy A S. Stability and load-carrying capacity of three- dimensional long-span steel arch bridges[J].Computers & Structures, 1997,65(6):857~868.
    [62] 虞建成,邵容光,王小林.系杆拱桥吊杆初始张拉力及施工控制[J].东南大学学报,1998,28(3):112~116.
    
    
    [63] 叶建龙,孙建渊,席广恒.梁拱组合桥柔性吊杆张拉力的确定及分析[J].东北公路,2000,23(1):44~47.
    [64] 彭宣茂.系杆拱桥吊杆初始张拉力的计算方法[J].水利水电科技进展,2000,20(6):32~33,38,69.
    [65] 张维国,贾乃波,刘祥高,周绍峰.再谈系杆拱桥吊杆初始张拉力的计算方法[J].水利水电科技进展,2002,22(3):26~28,70.
    [66] 孙建渊,李国平,石洞,朱敏.梁拱组合桥吊杆多次张拉的分析研究[J].华东公路,1999,(5):30~33.
    [67] 陈大庆.系杆拱桥刚性吊杆一次张拉设计[J].华东公路,1999,(5):45~47.
    [68] 虞建成,叶政权.泰州大桥系杆拱预应力刚性吊杆一次张拉模型试验研究[J].公路交通科技,2000,17(6):41~44.
    [69] 楚海建,何结兵,顾爱军,梁金栋.系杆拱桥吊杆一次张拉方案的优化设计[J].华东公路,2002,(1):46~48.
    [70] 林顺洪.中(下)承式拱桥吊(索)杆系静张力有限元分析[D].重庆:重庆大学,2002.
    [71] 汤国栋.拱桥吊杆的安全忧虑与对策.第一届全国公路科技创新高层论坛论文集[C].北京:外文出版社,2002.
    [72] 钟轶峰,邓朝荣,殷学纲.提篮拱桥吊索静张力测试与计算[J].重庆建筑大学学报,2003,25(2):54~57,72.
    [73] 殷学纲,姚建军.中承式拱桥的吊索损伤对吊索系张力的影响[J].中国公路学报,2004,17(1):45~48.
    [74] 汤国栋,杨弘,朱正刚,陈兵,梁利辉.桥梁吊杆及拉索的健康诊断[J].公路,2002,(9):36~41.
    [75] 顾安邦,徐君兰.中、下承式拱桥短吊杆结构行为分析[J].重庆交通学院学报,2002,21(5):1~3.
    [76] 盛叶,陈宝春.钢管混凝土哑铃型梁试验[J].哈尔滨工业大学学报,2003,35(增刊):248~251.
    [77] 王景波,韩丽艳,关键.钢管混凝土拱桥拱肋刚度取值[J].黑龙江工程学院学报,2003,17(1):18~20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700