外源磷对镉、锌复合污染土壤修复的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正文:重金属污染土壤具有累积性、滞后性、隐蔽性和不可逆性,是目前国内亟待解决的环境问题。本研究针对我国农田土壤污染现状,在综合分析国内外研究的基础上,结合国内农业生产实际。应用农艺措施(施用不同浓度外源性磷)对镉、锌复合污染的农田土壤进行修复机理研究,为重金属镉、锌复合污染的农田土壤修复提供科学依据。
     首先利用~(109)Cd、~(65)Zn双标记核素示踪技术研究不同浓度磷水平下,玉米对镉、锌单一及镉、锌复合污染的吸收动力学,探索磷、镉、锌之间的交互作用,取得以下试验结果:(1)随着时间的延长,根系对镉、锌的吸收存在两个过程,即快速吸收过程和缓慢的吸收过程,直至达到一个相对稳定的平衡状态;(2)无论是单一元素污染还是复合污染,随着外源性磷浓度的升高,植物根系及地上部对重金属镉、锌的吸收量都呈现先增加后降低的趋势,而且根系积累的重金属的量显著高于地上部(p<0.05);(3)在外源性磷浓度相同条件下,当植物受到镉、锌复合污染时,根系及地上部对重金属镉、锌的吸收量明显高于单独施加镉、锌时植物对它们的吸收,这一结果说明复合污染条件下镉、锌之间存在着加和协同作用,即重金属元素的复合污染大于单元素污染对玉米产生的毒害效应;(4)外源性磷浓度达到一定水平后,土壤中镉、锌的有效态减少,从而使植物根系对重金属的吸收和积累得到调控。
     应用电镜分析技术,研究了镉、锌复合污染条件下外源性磷对植物细胞超显微结构的影响。首先用透射电镜(Transmission electron microscope,TEM)对受重金属复合污染的植株的叶绿体、细胞核和植物根的细胞壁进行观察,发现外源性磷能在一定程度上缓解镉、锌对植物细胞器所造成的损害,并在叶绿体、细胞壁上有沉积物的存在;用扫描电镜(Scanning electron microscope,SEM)对植物的根尖进行观察,在根尖表面发现了磷酸盐的沉积物,即磷与重金属离子形成的磷酸盐在根系的沉积,降低了重金属离子通过木质部向地上部运输,减少了地上部对有毒元素的吸收和积累。
     以盆栽模拟试验研究重金属镉、锌与不同浓度磷交互作用的环境化学及生理机制,实验结果表明,外源性磷浓度为2500mg/kg时,植株的干重高于对照及其它浓度磷处理,土壤中有效态的镉、锌的含量以及植株所吸收的镉、锌的量最少,表明高浓度磷可以将大量的重金属离子固持在土壤中,减少了植物对重金属离子的吸收和积累。但在镉浓度为5mg/kg时,土壤pH呈现降低趋势,叶绿素和土壤磷酸酶含量减少;外源性磷浓度为500mg/kg时,对土壤中重金属离子的固定及减少植物对重金属的吸收效果明显,使土壤的pH和土壤磷酸酶含量均显著升高(p<0.05);外源性磷浓度为50mg/kg时,土壤中有效态的镉在低磷浓度范围内含量增加,促进了植株对镉的吸收,但对锌有一定的抑制作用;高浓度的磷可以降低镉和锌之间产生的协同作用,并且磷与锌之间的拮抗作用强于磷与镉之间的拮抗作用;通过扫描电镜观察,在土壤表层及根尖的表面有晶体颗粒沉淀物,推测为磷与镉和锌所形成的磷酸盐沉淀。
     综合以上研究可知:针对不同浓度镉、锌复合污染的农田土壤,外源性磷能够改变土壤中镉和锌的吸附-解吸、转化和固持,并且能与活性镉和锌形成磷酸盐类化合物,降低土壤中镉和锌的迁移特性及生物有效性,从而实现在施用磷肥过程中对重金属污染土壤的有效修复。
Content: Soil contaminated with heavy metals is one of the environmental problems that should be resolved urgently, because it is accumulative, lagging, dormant, and irreversible. Aiming at the actuality that the soils contaminated with the complex pollution of Cd and Zn in most cultivated land in China, this paper based on the previous researches and combined with the actual conditions in China, the mechanism of remediation was conducted using the agricultural measure of external P.First of all, we made use of the isotopes tracer techniques of ~(109)Cd, ~(65)Zn together to study the absorption kinetics of complex pollution of Cd and Zn to maize under different concentration of external P, exploring the interaction among P, Cd and Zn.The results showed as follows: (1) Along with the time went on, there two process of absorption in the soil to root system existed, one was the process of fast accumulation, the other was of low accumulation, up to a balance state relatively at last;(2) Whatever contaminated by Cd and Zn in a complex pollution or as a single element of Cd or Zn individual, as the increasing concentration of external P, it occurred in a trend that the specific activity of cadmium and zinc of roots and shoots in maize were increased while external P used as 0.25 to 0.6 mmol/L. When P at 3.0 mmol/L, the specific activity of cadmium and zinc of roots and shoots in maize were decreased. Comparing the quantity of Cd and Zn in roots and shoots respectively, the most of Cd and Zn were accumulated in roots and few of those were conveyed to shoots (p< 0.05);(3) When the concentration of external P keeping under invariability, comparing the quantity of Cd and Zn in roots and shoots by single and combination of Cd and Zn, it was discovered that the quantity of Cd and Zn in roots and shoots with the complex pollution accumulated more than those with a single element pollution. The result showed that there was synergism between Cd and Zn, so it could be more harmful to the plant;(4) when the external P reached the definite concentration, it could decrease the valid quantity of Cd and Zn, thereby the absorption, accumulation and translocation of Cd and Zn in the roots were regulated commendably and reduced the absorption of toxic elements by the shoots.The techniques of scanning electron microscope (SEM) and transmission electron microscope (TEM) were applied in the trial to study the effects of external P on the cell ultrastructure of maize under Cd and Zn stress. Firstly, the chloroplasts of leaf cells and nuclei and cell wall in adventitious roots were observed by TEM analysis. The results indicated that external P could reduce the damage of the cytoarchitecture obviously, at the same time some deposits were found within the chloroplasts and cell walls. Second, the surface of roots were observed through SEM technique, which showed that the deposits of phosphate with Cd and those with Zn could exist on the surface of the root, consequently, which prevented the translocation of Cd and Zn from the roots to the shoots. The external P performed an important role to prevent the translocation of Cd and Zn from the roots to the shoots.The pot experiment was employed to study the interactions of external P with Zn and Cd, as well as the chemical and physiological mechanisms under various levels of P simulating the circumstance of the field. The results indicated that the biomass of the maize was higher than that of the others treated with P at 2500 mg/kg. Exchangeable Cd and Zn in soil and the concentration of Cd and Zn of maize tissue were least, it showed that high concentration of P could make plenty of Cd and Zn be fixed in the soils and the uptake of Cd and Zn reduced in plant. But while the concentration of Cd was 5mg/kg, it occurred in a trend that the pH was decreased in soil, soils phosphatase and the content of chlorophyll of the leaves were reduced. When P at 500mg/kg, the phosphate amendments could decreased the biologic effect of Cd and Zn and reduced Cd and Zn uptake by plant significantly (p<0.05). When P at 50mg/kg, the low concentration of P increased the available form (exchangeable) of Cd in soils and enhance Cd
    uptake by plant, whereas restricted Zn uptake by the plant. In addition, from the results we could find that P could decrease the synergism between Cd and Zn and that the antagonism between P and Zn was more stronger than antagonism between P and Cd: Scanning the surface of soil and the roots of the maize> the deposits which we speculated the phosphate with Cd and those with Zn may exist.Above all the results showed that aiming at the complex pollution with different levels of Cd and Zn concentrations, external P could change the sorption-desorption in contaminated soils and came into being the deposits with P, Cd, Zn to decrease the bioavailability and translocation, accordingly achieved the intention to remediate the contaminated soils in the course of the application of phosphate fertilizer.
引文
1.安景文,解占军,王成.不同元素配施对玉米营养吸收的影响.杂粮作物,2003,23(3):171-173.
    2.安志装,王校常,施卫明.重金属与营养元素交互作用的植物生理效应.土壤与环境,2002,11(4):392-396.
    3.陈宏,徐秋曼,王葳,等.镉对小麦幼曲脂质过氧化和保护酶活性的影响.西北植物学报,2000,20(3):399-403.
    4.陈怀满.土壤-植物系统中的重金属污染[M].北京:科学出版社,1996.
    5.陈怀满.关于土壤环境容量研究的商榷.土壤学报,1992.29(2):219-224.
    6.陈世宝,朱永官,杨俊诚.土壤-植物系统中磷对重金属生物有效性的影响机制.环境污染治理技术与设备,2003,4(8):1-7.
    7.陈世宝.不同含磷物质对铅污染土壤修复的机理研究.2005.博士论文.
    8.陈涛,吴燕玉,张学询,等.张士灌区镉土改良和水稻镉污染防治研究[J].环境科学,1980,1(5):7-11.
    9.陈有,黄艺,曹军.玉米根际土壤中不同重金属的形态变化.土壤学报,2003,40(3):367-373.
    10.陈志良,仇荣亮.重金属污染土壤的修复技术[J].环境保护,2002,29(6):21-23.
    11.褚天铎.锌素营养对作物叶片解剖结构的影响.植物营养与肥料学报,1995,1(1):24-29.
    12.丁疆华,温琰茂,舒强.土壤中镉、锌形态转化的探讨.城市环境与城市生态,2001,14(2):47-49.
    13.顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展.应用基础与工程科学学报,2003,11(2):144-151.
    14.顾继光,林秋奇,胡韧.土壤-植物系统中重金属污染的治理途径及研究展望.土壤通报,2005,36(1):128-133.
    15.贺建群,杨居荣,许嘉琳,等.重金属及其交互作用对小麦幼苗中金属含量的影响[J].生态学杂志,1992,11(4):5-10.
    16.黄雪夏,白厚义,陈佩琼.CdZn复合污染对玉米的毒害效应.广西农业生物科学,2003,22(4):280-283.
    17.黄益宗.镉与磷、锌、铁、钙等元素的交互作用及其生态学效应.生态学杂志,2004,23(2):92-97.
    18.蒋先军,骆永明,赵其国.重金属污染土壤的植物修复研究.土壤学报,2002,39(5):664-670.
    19.孔祥生,郭秀璞,张妙霞.镉胁迫对玉米幼苗生长及生理生化的影响.华北农业大学学报,1999,18(2):111-113.
    20.李博文,郝晋珉.土壤镉、铅、锌污染的植物效应研究进展.河北农业大学学报,2002,25:74-76.
    21.李红英.作物中Cd和Zn的含量与土壤性质及土壤中Cd,Zn总含量的关系.宁夏工程科技术,2002,1(3):221-226.
    22.李丽君,郑普山,谢苏婧.镉对玉米种子萌发和生长的影响.山西大学学报(自然科学版),2001,24(1):24-27.
    23.李森林,王焕校,吴玉树.眼莲中锌对镉的拮抗作用[J].环境科学学报,1990,20(2):249-254.
    24.林舜华,陈章龙,陈清朗,等.汞镉对水稻叶片光合作用的影响[J].环境科学学,1981,1(4):324-330.
    25.刘福来.土壤-植物系统中锌的研究概况.土壤肥料,1998(5):11-14.
    26.刘海亮,崔世民,李强,等.Cd对作物种子萌发、幼苗生长及氧化酶同工酶的影响[J].环境科学,1991,12(6):29-31.
    27.刘继芳,曹翠华,蒋以超.重金属离子在土壤中的竞争吸附动力学初步研究1 竞争吸附动力学的竞争规律与竞争系数.土壤肥料,2000,(2):30-34.
    28.林匡飞,项雅玲,刘雪峰,等.钙镁磷肥合硅肥对水稻产量及镉吸收的影响.土壤肥料,1994,6:26-28.
    29.李博文,郝晋珉.土壤镉、铅、锌污染的植物效应研究进展.河北农业大学学报,2002,25(增刊):74-76.
    30.李三暑,雷锦桂,陈惠成.镉、磷、钙在姬松茸细胞内的积累和分布特征及其交互作用.食用菌学报,2001,8(4):24-27.
    31.李忠海,王海燕,梁文彬.土壤镉、锌、铅复合污染对芹菜的影响.中南林学报,2002,22(1):36-39.
    32.李兆君,马国瑞,徐建民,等.植物适应重金属Cd胁迫的生理及分子生物学机理.土壤通报,2004,35(2):234-238.
    33.马毅红,易筱筠,党志.污染土壤中重金属的可萃取性与生物可利用性.华南理工大学学报,2002,30(12):93-96.
    34.秦天才,吴玉树,王焕校.镉、铅及其相应作用对小白菜生理生化特性的影响[J].生态学报,1994,14(1):46-50.
    35.任继凯,陈清朗,陈灵芝,等.土壤中镉、铅、锌及其相互作用对作物的影响[J].植物生态学与地植物学丛刊,1982,6(4):320-329.
    36.史长青.重金属队水稻土壤酶活性的影响.土壤通报,1995,26(1):34-35.
    37.宋菲,郭玉文,刘孝义,等.土壤重金属镉锌铅复合污染的研究.环境科学学报,1996,16(4):431-436.
    38.宋菲,郭玉文,刘孝义,等.镉、锌、铅复合污染对菠菜的影响[J].农业环境保护,1998,18(1):9-14.
    39.孙光闻,朱祝军,方学智.不同镉水平对向菜生长及抗氧化酶活性的影响.园艺学报,2004,31(3):378-380.
    40.孙赛初,王焕校,李启任.水生维管植物受镉污染后的生理变化及受害机制初探[J].植物生理学报,1985,11(2):113-121.
    41.檀建新,尹君,王文忠,等.镉对小麦、玉米幼苗生理和生理生化反应的影响.河北农业大学学报,1994,17:83-87.
    42.唐年鑫,沈金雄,邓小玉,等.应用同位素~(115m)Cd研究水稻镉的吸收与分布.核农学通报,1993,14(2):77-79.
    43.铁梅,粱彦秋,张朝红,等.Cd污染地草坪草中Cd分布特征及化学形态的研究.应用生态学报,2002,13(2):175-178.
    44.王春春,沈振国.镉在植物体内的积累及其对绿豆幼苗生长的影响.南京农业大学学报,2001,24(4):9-13.
    45.王家玉.植物营养元素交互作用研究[J].土壤学进展,2001,20:1-10.
    46.王晶,张旭东,李彬,等.腐殖酸对土壤中Cd形态的影响及利用研究.土壤通报,33(3):185-187.
    47.王新.吴燕玉.改性措施对复合污染土壤重金属行为影响的研究.应用生态学报,1995,6(4):440-444.
    48.王秀丽,徐建民,姚槐应.重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响.环境科 学学报,2003,23(1):22-27.
    49.王卫红.赤红壤施用铜、锌对菜心生长和吸收铜、锌的影响[J].华南农业大学学报,1997,18(2):66-71.
    50.邬飞波,张国平.不同镉水平下大麦幼苗生长和镉及养分吸收的品种间筹异.应用生态学报,2002,13(12):1595-1599.
    51.吴双桃.镉污染土壤治理的研究进展.广东化工,2005,4:40-50.
    52.吴燕玉,陈涛,孔庆新.等.张士灌区镉污染及其改良途径[J].环境科学学报,1984,4(3):275-282.
    53.吴燕玉等.制定我国土壤环境标准(汞、镉、铅、砷)的探讨.应用生态学报,1991,2(4):344-349.
    54.吴玉树,王焕校,李启任.镉、铅及其相互作用对小白菜根系生理生态效应的研究.生态学报,1998,18(3):320-325.
    55.夏汉平.土壤-植物系统中的镉研究进展[J].应用与环境生物学报,1997,3(3):289-298.
    56.夏来坤,郭天财,康国章.土壤重金属污染与修复技术研究进展,2005,5:88-91.
    57.夏立江,华珞,李向东.重金属污染生物修复机制及研究进展.核农学报,1998,12(2):59-64.
    58.夏增禄.土壤环境容量及其应用[M].北京:气象出版社,1988.
    59.夏增禄,穆从如,孟维奇,等.Cd、Pb、Zn及其相互作用对烟草、小麦的影响[J].生态学报,1984,4(3):231-235.
    60.项长兴,董雅文,钱君龙,等.南京栖霞山铅锌矿区土壤环境质量评价[J].土壤,1993,25(6):319-323.
    61.许嘉琳,鲍子平,杨居荣,等.作物体中铅、镉、铜的化学形态研究[J].应用生态学,1991,2(3):244-248.
    62.许炼烽,郝兴仁.重金属Cd和Pb对土壤生物活性影响的初步研究.热带亚热带土壤科学,1995,4(4):216-220.
    63.徐勤松,施国新,杜开和.重金属镉、锌在菹草叶细胞中的超微定何观察.云南植物研究,2002,24(2):241-244.
    64.徐红宁,杨居荣,许嘉琳.作物对Cd的吸收与根系阳离子交换容量.农业环境保护,1995,14(4):150-153.
    65.阎雨平,蔡士悦,史艇.广东赤红壤、红壤含镉的农作物污染效应及其临界含量研究[J].环境科学研究.1992,5(2):49-52.
    66.杨居荣,贺建群,蒋婉茹.Cd污染对植物生理生化的影响.农业环境保护,1995,14(5):193-197.
    67.杨志敏,郑绍建,胡霭堂.镉磷在小麦细胞内的积累和分布特性及其交互作用.南京大学学报,1998,21(2):54-58.
    68.杨志敏,郑绍建,胡霭堂.植物体内磷与重金属元素锌、镉交互作用的研究进展.植物营养与肥料学报,1999,5(40:366-376.
    69.杨志敏,郑绍建,赵秀兰.磷对细胞镉、锌的积累及在亚细胞内分布的影响.环境科学学报,1999,19(6):693-695.
    70.游植麟.受镉污染土壤增施磷锌对水稻吸收影响.农业环境保护,1993,12(3):143-144.
    71.余国莹,吴玉树,王焕校.不同化学形态镉、锌及其复合污染对小麦生理的影响[J].生态学报,1992,12(1):93-96.
    72.赵中秋,朱永官,蔡运龙.镉在土壤-植物系统中的迁移转化及其影响因素.生态环 境,2005,14(2):282-286.
    73.张清东,伍钧.重金属污染土壤治理.绵阳经济技术高等专科学校,1997,14(3):13-18.
    74.张书海,沈跃文.污灌区重金属污染对土壤的危害.环境监测管理与技术,2000,12(2):22-24.
    75.张增强,张一平,朱兆华,等.镉在土壤中释放的动力学特征研究.西北农林科技大学学报,2001,29(1):63-67.
    76.郑文娟,邓波儿.铬和镉对作物品质的影响[J].土壤,1993,25(6):324-326.
    77.杨志新,刘树庆.Cd、Zn、Pb单因素及复合污染对土壤酶活性的影响.土壤与环境,2000,90):15-18.
    78.周启星,高拯民.土壤-水稻系统Cd-Zn的复合污染及其衡量指标的研究[J].土壤学报,1995,32(4):430-436.
    79.周启星,宋玉芳.污染土壤修复原理与方法.科技出版社,2004.
    80.周启星,吴燕玉,熊先哲.重金属Cd、Zn对水稻的复合污染和生态效应[J].应用生态学报,1999,5(4):438-441.
    81.周锡爵.张士灌区镉污染及其解决和利用途径.农业环境保护,1987,6(2):17-19.
    82.周卫,汪洪,林葆.镉胁迫下钙对镉在玉米细胞中的分布及对叶绿体结构与酶活性的影响[J].植物营养与肥料学报,1999,5(4):335-340.
    83.朱永官,锌肥对不同基因型大麦吸收积累镉的影响[J].应用生态学报,2003,14(11):1985-1988.
    84.宗良纲,丁园.土壤重金属(CuCdZn)复合污染的研究现状.农业环境保护,2001,20(2):126-128.
    85. Adriano D C. Trace elements in terrestrial environments[M].New York: Springer-Verlay. 1986,122-149.
    86. Agbenin J O. Phosphate-induced zinc retention in a tropical semi-arid soil. Euro J Soil Sci, 1998, 49:603-700.
    87. Andrews P, Town R M., Hedley M J. Longanathan P. Measurement of plant available cadmium in New Zealand soils. Aust. J.Soil.Res, 1996, 34:441-452.
    88. Azcon R, Barea J M, Hayman D S. Utilization of rock phosphate in alkaline soils by plants inoculated with mycorrhizal fungi and phosphate solubilizing bacteria. Soil Biol Biochem, 1976, 8:135-138.
    89. Azplazu M N., Romero F. Metal distribution and interaction in plant cultures on artificial soil. Water, Air and Soil Pollution, 1986, 28(1-2): 1-26.
    90. Baker A J M, Proctor J. The influence of cadmium, copper, lead and zinc on the distribution and evolution of met allophytes in the British Isles. Plant System Evolution, 1990, 173:91-108.
    91. Bartlett E M, Lewis D H. Surface phosphates activity of mycorrhizal roots of beech. Soil Biol Biochem, 1973, 5:249-257.
    92. Basra N T, Mcgowan S L. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environ Pollution, 2004, 127:73-82.
    93. Bernal M P, Mcgrath S P. Effects of pH and heavy metal concentrations in solution culture on the proton release, growth and elemental composition of Alyssum murals and Raphanus sativus L. Plant and Soil, 1994,166 (1):83-92.
    94. Braithwaite A V, Rogers D A. Partially acidulated phosphate rocks made from phosphoric acid using direct acidulation-granulation techniques. Fert.Res. 1987, (12):85-98.
    95. Brown S L, Chancy R L, Angle J S, et al. Zinc and cadmium uptake by hyperaccumulator Thlaspi caerulescens grown in nutrient solution. Soil Sci SOC Am J, 1995, 59:125-133.
    96. Brzoska M M, Moniuko, Jakoniuk J. Interactions between cadmium and zinc in the organism[J]. Food hemi.Toxlco, 2001, 39:967-980.
    97. Casini S, Depledge M H. Influence of copper, zinc, and iron on cadmium accumulation in the talitrid amphipod, Platorchestia platensis[J]. BullEnmmn.Contain.Toxicol, 1997, 59:500-506.
    98. Chakravarty B, Srivastava S. Effect of cadmium and zinc interaction on metal uptake and regeneration of tolerant plants in linseed. Agriculture, Ecosystems, and Environment, 1997, 61:45-50.
    99. Chang M H, Lin H C, Hwang P P. Effects of cadmium on the kinetics of calcium uptake in developing tilapia larvae, Oreochmrllismoasarnbicus[J]. Ff Physiol. Biocherais, 1997, 16(6):459-470.
    100. Chen Z, Lee G, Liu J. Chemical remediation techniques for the soils contaminated with cadmium and lead in Taiwan. In: Iskandar, A. (Ed.), Environmental Restoration of Metal Contaminated Soils. Lewis Publ, 2001, pp: 93-105.
    101. Clijster H, Assche F V. Inhibition of photosynthesis by heavy metals. Photosynth, 1985, Res.7:31-40.
    102. Chien H F, Wang J W, Lin C C, et al. Cadmium toxicity of rice leaves is mediated through lipid peroxidation[J]. Plant Growth Regul, 2001, 33(3):205-213.
    103. Cogliatti D H, Alcocer N, Mana G E S. Effect of P connect ration on ~(65)Zn in Gaudta fragiuir[J]. J. Plant Nutrition, 1991, 14:443-452.
    104. Cotter-Hoeells J, Caporn S. Remediation of contaminated land by formation of heavy metal phosphates. Applied Geochemistry, 1996, 36(3):404-407.
    105. Das P, Samantaray S, Rout G R. Studies on cadmium toxicity in plants: a review. Environ. Pollut, 1997, 98:29-36.
    106. Ebbs S D, Lasat M M, Brady D J, et al. Phytoextraction of cadmium and zinc from a contaminated soil. Journal of Environmental Quality, 1997, 26(5):1424-1430.
    107. Escrig I, Morel I. Effect of calcium on the soil adsorption of cadmium and zinc in some Spanish sandy soils[J]. Water, Air and Soil Poilu, 1998, 105(3-4):507-520.
    108. Guilizzoni P. The role of heavy metals and toxic materials in the physiological ecology of submersed macrophytes. Aquatic Biology, 1991, 41:87-109.
    109. Haghiri F. Cadmium uptake by plant[J]. J Environ Qual, 1973, 2(1):93-96.
    110. Hart J L Ditomaso J M, Linscott D L, et al. Characterization of the transport and cellular compartmentation of paraquat in roots of intact maize seedlings. Pestic Biochem Physiol, 1992, 43:212-222.
    111. Hart J J, Welch R M, Norvell W A, et al. Characterization of cadmium binding, uptake, and cultivars. Plant Physiol, 1998, 116:1413-1420.
    112. Hart J J, Welchrm, Norvcllw A, et al Transport interaction between Cd and Zn in roots of bread wheat and durum wheat seedlings[J]. Physiologia Plantarum, 2002, 116 (1):73-78.
    113. Herch D J, Jones L H P, Burcn R G. The effect of Ph on the uptake of cadmium by four plant species in flowing solution culture[J]. Plant Soil, 1988, 105:121-126.
    114. Jeng A S, Singh B R. Partitioning and distribution of cadmium and zinc in selected cultivated soils in Norway. Soil Science, 1993, 156:240-250.
    115. John M K. Cadmium uptake by eight food crops as influenced by various soil levels of cadmium[J]. Environ Pollut, 1973, (4):7-15.
    116. Jung M C, Thornton I. Heavy metal concentration of soils and plants in the vicinity of lead-zinc mine, Korea. Appl Gcochem, 1996, 11:53-59.
    117. Kabat A P, Pendias H. Trace Elements in Soil and Plants[M].CRC Press Inc, 1992, 85-96.
    118. Karblane H. The effect of organic, lime, and phosphorus fertilizer on Pb, Cs, and Hg concent in plants[J]. Proceedings of the Estonian Academy of Sciences Ecology, 1996, 6(I):552-566.
    119. Kirshnamurti G S R, Huang P M, Kozak L M. Sorption and desorption kinetics of cadmium in soils: Influence of phosphate. Soil Sci.1999, 164:888-898.
    120. Kochian LV. Zinc absorption from hydroponic solutions by plant roots. In AD Robson, Zinc in Soil and Plants. Kluwer Academic Publishers, Dordrecht. The Netherlands, 1993, pp: 45-57.
    121. Korner L E, Moiler I M, Jensen P. Free space uptake and influx of Ni~(2+) in excised barley roots. Physiol Plant, 1986, 68:583-588.
    122. Kramer D.Cytological aspects of salt tolerance in higher plants.In: NewYork: A Wiley Interscience Publication, 1984, 1-15.
    123. Krishnamurti G S R, Cieslinski G, Haung P M, et al. Kinetics of cadmium release from soils as influenced by organic acids: implication of cadmium availability. Journal of Environmental Quality, 1997, 26(1):271-277.
    124. Lagriffoul A, Mocquot B, Mench M, et al. Cadmium toxicity effects on growth, mineral and chlorophyll contents, and activities of stress related enzymes in young maize (Zea mays L.)[J]. Plant Soil, 1998, 200(2):241-250.
    125. Lamoreaux R J, Chaney W R. The effect of Cd on net photosynthesis, transpiration and dark respiration of excised silver maple leaves. Physiol Plant, 1978, 43:231-236.
    126. Levi-Minzi R. The influence of phosphate minerals in human tissues;Nriagu, J. O., Moore, P,B., Eds: Springer-Verlag: New York, 1984:367-385.
    127. Levi-Minzi R, Petruzzell G. The influence of phosphate fertilizers on Cd solubility in soil. Water Air and Soil Pollut, 1996, 23:423-429.
    128. Longanathan P, Hedley M J. Downward movement of Cd and phosphorus from phosphate fertilizers in a pasture soil in New Zealand, Environmental pollution, 1997, 95(3):319-324.
    129. Lorenz S E, Hamon R E, Holm P E, et al. Cadmium and zinc in plants and soil solutions from contaminated soils. Plant and Soil, 1997, 189(1):21-31.
    130. Miller R J, Bittle J E, Koeppe D E. The effect of Cd on electron and energy transfer reaction in corn mitochondria, Physiol. Plant, 1973, 28:166-171.
    131. Mitch M, Lasat, Alan J M, et al. Physiological Characterization of Root Zn~(2+) Absorption and Translocation to Shoots in Zn Hyperaccumulator and No accumulator Species- of Thlaspi. Plant Physiol, 1996, 112:1715-1722.
    132. Moragban, et al. Accumulatiuon of cadmium and selected elements in seed grown on a calcarcous soil[J]. Plant and soil, 1993,150:61-68.
    133. Mullins G L, Sommers L E. Cadmium and zinc influx characteristics by intact corn (Zea mays L.) seedlings. Plant Soil, 1986, 96:153-164.
    134. Mvgowen S L, Basta N T, Brown G O. Use of diammonium phosphate to reduce heavy metal solubility and transport in smelter-contaminated soil. J E nvion Qual. 2001, 30(4):493-500.
    135. Nag P. Heavy metal effects in plant tissue involving chlorophyll, chlorophyllase, hill reaction activity and gel electrophoretic patterns of soluble proteins[J]. Indian J Exp Biol, 1981, 19:702-706.
    136. Peralta-Videa J R, Gardea-Torresdey J L, Gomez E, et al. Effect of mixed cadmium, copper, nickel and zinc at different pHs upon alfalfa growth and heavy metal uptake. Environ. Pollut, 2002, 119:291-301.
    137. Rajah S S S, Watkinson J H, Sinclair A G. Phosphate rocks for direct application to soils. Adv Agron, 1996, 57:77-159.
    138. Reeves R D, Brooks R R Hyperaccumulation of lead and zinc by two metallophytes from mining areas of central Europe. Environ Pollut, 1983, A31: 277-285.
    139. Sanchez-Martin M J, Sanchez-Camazano M. Adsorption and mobility of cadmium in natural uncultivated soils, J. Environ. Qual, 1993, 22:737-742.
    140. Schwartz S M. Effect of zinc, phosphorus and root zone temperature on nutrient uptake by barley, SOIL Sci. Soc, Am, 1987, 51:371-375.
    141. Sela M, Elisha T. Localozation and toxic effects of cadmium, copper and wranmu in Azolla. Plant Physiology, 1988, 99:30-36.
    142. Sheoran I S, Aggarwal N, Singh R. Effect of Cd and Ni on in vivo carbon dioxide exchange rate of pigeon pea (cajanus cajan L). Plant and soil, 1990, 129:243-249.
    143. Mcgowen S L, Basata N T, Brown G O. Use of Diammonium Phosphate to Reduce Heavy Metal Solubility and Transport in Smelter-Contaminated Soil. ENVIRON. QUAL, 2001, VOL30:493-500.
    144. Singh J P, Stewart J W P. Phosphorus induced zinc deficiency in wheat on residual phosphorus plots[J]. Agron,J,1999, 78:668-675.
    145. Stobart A K, Griffiths W T, Ameen-Bu, et al. The effect of Cd~(2+) on the biosynthesis of chlorophyll in leaves of barley[J]. Physiol Plant, 1985, 63:293-298.
    146. Vail E B I. Biochemical effects of mercury, cadmium, and lead[J]. Annu Rev Biochem, 1972, 41:91-128.
    147. Van Gestel, C A M., Mol S. The influence of soil characteristi, cs on cadmium toxicity for Folsomia candida (Collembola: lsotomidae).Pedobiologia, 2003, 47:387-395.
    148. Wang J, Evangelou B P, Nielsen M T.et al. Computer-simulated evaluation of possible mechanisms for sequesting metal ion acting in plant vacuoles Ⅱ Zinc[J]. Plant Physiol, 1992, 99:621-626.
    149. Yang Z M. Advances on the study of interactions of phosphorus with zinc and cadmium in plants, Plant Nutrition and Fert Sci, 1998, 21(2):54-58.
    150. Youngdah L L J. Change in the Zn distribution in corn root tissue with phosphorus variable[J]. Crop Sci, 1977, 17:66-69.
    151. Zwonizer J C, Pierzynski G P, Hetliarachchi G M. Effects of phosphorus additions on lead. Cadmium and zinc bioavailability in a metal-contaminated soil. Water, Air, and Soil Pollution, 2003, 143:193-209.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700