三门湾潮汐汊道系统的稳定性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
潮汐汊道是位于陆海相互作用区的主要海岸带子系统之一,其在港口航道、能源基地、临港工业、滩涂开发、生态保护等方面已愈来愈重要。与砂质海岸潮汐汊道相比,国内外对基岩海岸潮汐汉道的研究不够深入,没有形成比较完整的理论体系。本论文选择具有代表性的三门湾潮汐汊道系统,运用沉积学、地貌学和同位素年代学等多学科交叉方法,研究人类活动背景下的沉积地貌过程与发育演变机制,评价潮汐汉道的稳定性规律及其演化趋势,丰富了基岩海岸潮汐汊道理论研究内容。
     根据浅地层剖面探测记录与钻孔资料对比,三门湾浅部沉积地层明显分为四层,第一层以水平状层理为主,第二层以倾斜状、交错状层理为主,第三层底界面起伏不平,局部有古水道充填沉积。根据不整合面特征和沉积相标志,推断上部三层为全新世地层,厚度在20~35m之间,古水道充填沉积厚度可达42m。推算全新世平均沉积速率一般为0.2~0.5cm/a。
     对18个沉积物柱样进行岩性、结构分析和210Pb、137Cs年代测定,结果表明,三门湾潮滩为典型的潮汐沉积层理特征,现代沉积速率介于0.6~2.4cm/a;猫头水道浅水区以潮汐沉积为主,现代沉积速率介于1.9~2.6cm/a,深潭区以残留的风暴骤淤沉积为主,现代沉积速率介于3.9~8.6cm/a。
     三门湾沉积过程具有明显的时间尺度效应和区域空间差异特征。全新世平均沉积速率与现代沉积速率相差约一个量级,全新世平均沉积速率与水深之间是负相关关系,即水深愈大,沉积速率愈小。现代沉积速率与水深之间是正相关关系,即水深愈大,沉积速率愈大。
     利用不同历史时期海图和水下地形图资料对比分析,结果表明,1930年三门湾海岸、滩槽地貌格局已成型;1930~1964年,三门湾整体上处于稳定或缓慢淤积的自然状态;1964年以来,受围涂堵港工程的影响,三门湾海岸线外推明显,潮滩淤涨加快,汊道深槽普遍淤积。潮汐汊道系统的地貌发育与演变呈现出明显的阶段性、区域性特征。
     综合分析,认为地质构造与原始地形、潮流、悬浮泥沙是三门湾发育演变的主要因素,而近代人类活动(围涂堵港)通过改变原有的海岸边界、削弱落潮优势流,促进了潮滩淤涨和深槽淤积,已成为影响三门湾潮汐汊道系统发育演变的主要营力。
     对现有潮汐汊道P-A关系的统计分析方法进行剖析,认为不适用于单个潮汐汊道系统的稳定性评价。根据三门湾发育演变的区域性、阶段性和相似性的特点,从动力地貌学的角度出发,对三门湾复合型潮汐汊道系统进行分区、分级。基于1964年均衡状态下各分级、分区汊道系统的P和A实测数据的回归分析,推导出三门湾均衡态P-A关系式:A=2.49×10-4P0.940974,相关系数R达到0.999。
     运用均衡态P-A关系式,推算1994、2003、2007年各汊道口门达到均衡状态下的口门断面面积和口门断面平均水深,与实测值进行比较,评价三门湾潮汐汊道系统的稳定性变化。结果显示,人类开发活动影响下的三门湾潮汐汊道的各个子系统的发育演变与调整均趋向均衡态P-A关系曲线,并具有明显的区域性、阶段性特征。其中,沥洋港、青山港能够较快调整、达到均衡状态;蛇蟠水道受到晏站涂前沿舌状浅滩、纳潮区围涂工程的双重影响,处于周期性变化状态;猫头水道、三门湾口门受到沥洋港、青山港、蛇蟠水道演化的多重影响,调整过程复杂多变,具有明显的滞后特征。
     根据三门湾近期围垦规划,预测了各汊道系统发展趋势。其中,猫头水道在今后的二十年内将一直处于快速淤积调整状态,达到均衡状态下的口门断面平均水深为12.6m,比2003年实测口门断面平均水深小5m,估算猫头深潭最大水深将不足35m,可能影响到三门核电站取排水口的水深条件和温排水扩散能力。
Tidal inlets are common along littoral drift shores all over the world, and literatures on tidal inlets among barrier coastlines are numerous. In contrast, study on tidal inlets in rocky coast does not draw much attention. Located in the rocky coast of East China Sea, Sanmen Bay is a big tidal inlet system with great values in terms of port and navigation, nuclear station construction, tidal flat cultivation, and environment protection. Several aspects of the Sanmen inlet system are of scientific research significance. First, as a typical tidal inlet system on the rocky coast, Sanmen Bay is an excellent case for study of stability of tidal inlet. Moreover, the latest 50 years saw fast environmental changes happening in Sanmen Bay. Such changes deserve extensive research focusing on the interaction between human activities and coastal evolution.
     Based on the sub-bottom profile records and lithofacies of drill cores, the thickness of Holocene deposit is estimated as 20-35 m in average, with maximum of 42 m being found in buried ancient channel. The calculated sedimentation rate is about 0.2~0.5 cm/a.
     18 short cores were collected at different locations in Sanmen Bay. Their lithological character (such as wet and dry density, moisture content) and sedimentary structure were analyzed, and 210Pb、137Cs radioactivity were deteceted in laboratory. Using CIC dating model, the modern sedimentation rates are calculated as 0.6-2.4cm/a for tidal flat,1.9~2.6cm/a in the shallow area and 3.9~8.6cm/a in the deep area of Maotou Channel, respectively.
     The sedimentation process of inlet system is of typically temporal and spatial variation. Holocene depositional rate is negatively related to water depth, while recent depositional rate is positively related to water depth. Recent depositional rate is ten times larger than that of the Holocene.
     Derived from the analysis of sea charts and underwater topographic charts since 1930, the geomorphological process show regional and staged feature. In 1930, the recent geomorphology structure formed. From 1930 to 1964, the inlet system was on the stable or slowly accretion condition. Since 1964, the inlet system advance in the faster accumulation rate because of the reclamation of tidal flat.
     From comprehensive analysis, the geological structure and original topography, tidal current and suspended sediment are main factors influencing the formation and evolution of inlet system. Recently, human activities such as reclamation becomes the main factor and bring about a rapid accumulation by changing coastal boundary and weakening ebb current.
     The traditional P-A relationships are not fit for a single inlet system. According to the evolutional similarity, the inlet system in Sanmen Bay can be divided into several sub-inlet units, and each sub-inlet unit stands for different spacial scale. Based on sea chart data in 1964 when Sanmen Bay inlets is believed in balanced state, the P-A relationships of inlet systems in Sanmen Bay is calculated as A=2.49x10-4P0.940974, with corelation coefficient being 0.999.
     Using the above P-A relationship formula, the stability of inlet system in Sanmen bay is evaluated. The different scale of inlets in the Sanmen Bay evolved and readjusted to the above equilibrium P-A relationship under the influence of human activity. Liyang inlet and Qingshan inlet took shorter time to readjust to equilibrium state. Shepan inlet show periodic fluctuation around equilibrium state because upstream Yanzhan tidal flat stretch out and draw back periodically. Maotou inlet readjusted to the equilibrium state slowly than the upstream inlets.
     According to the future plan for reclamation in Sanmen Bay, the trendency of the inlets system are predicted. Maotou inlet will be in a rapid accumulation state in the next twenty years, and the mean water depth over entrance equilibrium section will be 12.6 m, much less than present water depth of 17.5 m. The estimated maxium water depth in Maotou Trench will be less than 35 m, which may influence the water intake and the diffuse of the warm drain water of nuclear station.
引文
丁平兴,贺松林等,1997,湛江湾沿岸工程冲淤影响的预测分析Ⅱ:冲淤的模拟计算,海洋学报,19(1):
    中国海湾志编篡委员会,1992~1998,中国海湾志(共14卷),海洋出版社。
    王为,2004。人类活动对沙坝泻湖海岸潮汐通道冲淤变化的影响——以香港大屿山岛银矿湾海岸为例。第四纪研究,24(4):476
    王文介,李绍宁,1988。清澜泻湖—沙坝—潮汐通道体系的沉积环境和沉积作用。热带海洋,7(3),27-35。
    王文介,1999。粤西海岸全新世中期以来海平面升降与海岸沙坝渴湖发育过程。热带海洋,18(3):32-37。
    王永红,庄振业,李学伦,2000.山东荣成湾沿岸输沙率及沙嘴的演化动态.海洋地质与第四纪地质,20(4):15-21
    王世俊,李春初等,2003,海南岛万宁小海沙坝—泻湖—潮汐汊道体系的自动调整及恶化,台湾海峡,22(2)。
    王永吉,李善为,1982。青岛胶州湾地区钻孔岩芯孢粉分析。海洋研究,3:30-36。
    王宝灿,陈沈良,龚文平,林卫青,徐元,2006。海南岛港湾海岸的形成与演变。北京:海洋出版社,215pp。
    王颖,朱大奎,1996,海南岛洋浦湾沉积作用研究,第四纪研究,,(2),159-167。
    王颖等,1998.海南潮汐汉道港湾海岸.北京:中国环境科学出版社,282pp.
    冯志强、李学杰、林进清等,2002,广东大亚湾海洋地质环境综合评价,中国地质大学出版社;217pp;
    边淑华,夏东兴,李朝新,2005。胶州湾潮汐通道地貌体系。海洋科学进展,23(2):144-151。
    边淑华,胡泽建,丰爱平,夏东兴,2001,近130年来胶州湾自然形态和冲淤演变探讨,黄渤海海洋,2001,19(3);
    边淑华,夏东兴,,2003,中国基岩海湾潮流地貌模式及其沉积动力特征,海洋科学进展,21(3);
    邓朝亮,黎广钊,刘敬合,梁文,2004,铁山港湾水下动力地貌特征及其成因,海洋科学进展,22(2)。
    叶春池,黄方,1994,湛江港口门潮汐地貌体系的沉积环境和沉积作用,海洋通报,1,53-60。
    白玉川,廖世智,2005,广西钦州湾海域海床稳定性特征的研究,海洋通报,2。
    任美锷,张忍顺,1984.潮汐汊道的若干问题.海洋学报,6(3),89-96.
    李乃胜、于洪军、赵松龄,2006,胶州湾自然环境与地质演化,海洋出版社,282pp.
    李凡,林宝荣,等,防城湾沉积过程及不同沉积环境下的粒度分布特征,海洋与湖沼,13(2);
    李从先,陈刚,高曼娜,庄振业,1987.山东荣成成山角至石岛海岸地貌和沉积特征.海洋与湖沼,18(2):162-172.
    李从先,王平,1993.我国全新世沙坝-泻湖体系的地层和分布.海洋通报,12(3),80-85.
    李学伦,李从先,庄振业,王永红,2001,成山卫沙坝澙湖链的形成和近期演化,海洋学报,02。
    李春初,罗宪林,张镇元,等,1986,粤西水东湾沙坝舄湖海岸体系的形成演化。科学通报,(20):1579-1586。
    李春初等,1990,粤西水东湾潮汐通道—落潮流三角洲的动力地貌过程,海洋工程,8(2);
    李善为,王永吉,张耆年,徐孝诗,1982。胶州湾海岸与海底地貌发育特征。海洋研究,3:37-47。
    李善为,1983,从海湾沉积特征看胶州湾的形成演变,海洋学报,5(3);
    李伯根等,1992.乐清湾悬沙的浓度分布与运移,东海海洋,10(1):33-38.
    许卫忆,陈耕心,李伯根,1992,乐清湾的动力沉积过程.海洋与湖沼,23(1),20-29.
    刘维坤、唐宗福、刘强池,1984厦门港湾海底地貌及冲淤变化《台湾海峡》vol.3,No.2.P179-188.
    刘敬合,叶维强,1989,广西钦州湾地貌及沉积特征的初步研究,海洋通报,8(2);
    牟晓燕,杨永亮,李春雁,殷效彩,薛允传,贾建军,1999。山东半岛荣成湾月湖环境特征研究。青岛大学学报(自然科学版),12(4):56-59。
    陈则实、王文海、吴桑云等,2007,中国海湾引论,海洋出版社,583pp。
    陈波,侍茂崇,邱绍芳,2003,广西主要港湾余流特征及其对物质输运的影响,海洋湖沼通报,1。
    陈吉余,2007,中国河口海岸研究与实践,高等教育出版社,
    季小梅,张永战,朱大奎,2006,乐清湾近期海岸演变研究。海洋通报,25(1):44-53
    张乔民,宋朝景,赵焕庭,1985,湛江湾溺谷型潮汐水道的发育,4(1);
    张乔民,1987,华南海岸潮汐汊道P-A关系的分析,热带海洋,6(2);
    张乔民,郑德延,1992,潮汐汊道沉积动力与现代地貌过程国外研究进展,海洋通报,11(1):84—91。
    张乔民,王文介,1995,华南海岸沙坝泻湖型潮汐汉道口门地貌演变,海洋学报,17(2),69-77。
    张乔民,郑德延等,1995,湛江港潮汐汊道落潮三角洲沉积动力过程,地理学报,50(5);
    张忍顺,1984.潮汐汊道研究进展.海洋通报,3(2),89-96.
    张忍顺,1994,中国潮汐汊道研究的进展,地球科学进展,Vol.9,No.4,45-49;
    张忍顺,1996,渤海湾淤泥质海岸潮汐汉道的发育过程,地理学报,Vol.50,No.6,506-512;
    张忍顺,1995,黄渤海沿岸潮汐汊道的的P-A关系,海洋工程,13(2);
    张忍顺,李坤平,1994,黄渤海沿岸海湾—溺谷型潮汐汊道的地貌结构,黄渤海海洋,12(4);
    张红霞等,1989,洋浦港潮汐汉道的稳定性,海岸工程,No.3,p.31-38;
    张振克,2003,博鳌旅游度假区地貌景观演变与岸坡稳定性分析。海洋地质动态,19(4):1-7
    吴桑云,1989.浅析海湾资源开发利用——以荣成市海湾为例.黄渤海海洋,7(2),34-40.
    谷国传、胡方西、宋元平,三门湾的悬沙分布和输移特征,东海海洋,1991,9(3):1-11;
    汪亚平,2000.胶州湾及邻近海区沉积动力学.中国科学院海洋研究所博士研究生学位论文.
    汪亚平,高抒,2001。胶州湾沉积动力学及相关领域研究进展。海洋科学,25(2):26-28。
    汪亚平,高抒,贾建军。2000。胶州湾及邻近海域沉积物分布特征及运移趋势。地理学报,55(4):449-458。
    汪亚平,高抒,2007,胶州湾沉积速率:多种分析方法的对比,第四纪研究,05;
    苏贤泽、黄财宾等,1988,应用铅-210法研究厦门高集海堤东侧航道的淤积规律,海洋工程,vol.6,No.4.P63-70.
    宋朝景,1984,海南岛东南岸地貌特征与潮汐汊道,南海海洋科学集刊(5),科学出版社,31-40。
    应秩甫,1990,水东湾潮汐汊道稳定性探讨,海岸与河口研究,海洋出版社。
    应秩甫,1996,湛江湾的围海造地与潮汐通道系统,中山大学学报,35(6);
    罗章仁,季荣耀,欧素英,罗宪林,2004,粤西博贺湾沙坝-渴湖海岸体系的沉积环境演变,海洋地质动态,8;
    杨辉,谢钦春,李伯根,夏小明,2003,三门湾猫头深潭及附近海域底床冲淤演变及其动力机制,21(2),13—22;
    杨辉,谢钦春,李伯根,夏小明,2005,港湾深槽骤淤的条件探讨,海洋学报,27(4),95—101;
    邵全琴,王颖,1997,海南岛洋浦深槽与拦门沙沉积特征和沉积环境分析,海洋学报,19(6),134-135。
    金翔龙,1992.东海海洋地质.北京:海洋出版社,524pp.
    贺松林,丁平兴等,1997,湛江湾沿岸工程冲淤影响的预测分析Ⅰ:动力地貌分析,海洋学报,19(1):
    赵焕庭,张乔民,1999,华南海岸和南海诸岛地貌与环境,科学出版社,528pp.
    高抒,1988.东海沿岸潮汐汊道的P-A关系.海洋科学,(1),15-19.
    高抒,1989.从地貌学观点看潮汐汊道研究方向.海洋通报,8(3),86-90.
    高抒,谢钦春,1991.狭长形海湾与外海水体交换的一个物理模型.海洋通报,10(3),1-9.
    高抒,张红霞,1994.海南岛洋浦港潮汐汊道口门的均衡过水面积.海洋与湖沼,25(5),468-476.
    高抒,张红霞,1997.潮汐汊道A-P关系中参数C和n的控制因素.海洋科学,21(4),23-27。
    高抒,汪亚平,2002。胶州湾沉积环境与潮汐汊道演化特征。海洋科学进展。2002,20(3):52-59。
    高善明,李元芳,1992,辽宁海岸砂堤—泻湖体系沉积特征与全新世海平面变化,地理学报,47(2);
    夏小明,谢钦春,1996,浙江三门湾海岸发育与持续利用,海洋通报,15(4):49—51。
    夏小明,谢钦春,李炎,李伯根,1997,港湾淤泥质潮滩的周期变化,海洋学报,19(4):99-108.
    夏小明,谢钦春,李炎,李伯根,2000,东海沿岸潮流峡道海岸剖面发育及其动力机制,海洋与湖沼,Vol.31,No.5,543-552.
    夏小明,谢钦春,1992,三门湾内细颗粒泥沙的沉积作用,三门湾综合开发论文集(余国辉主编),海洋出版社,99—106。
    夏小明,谢钦春,1992,三门湾海域底质与沉积环境,三门湾综合开发论文集(余国辉主编),海洋出版社,92—98。
    夏东兴,刘振夏,1990,中国海湾的成因类型,海洋与湖沼,21(2)。
    胡方西、曹沛奎,1981,三门湾潮波运动特征及其与地貌发育的关系,海洋与湖沼,12(3),225-234;
    胡辉,胡方西等,1997,海南岛东海岸小海泻湖水文基本特征,热带海洋,16(4)。
    郭允谋,李庆年,1987,福建湄洲湾的演变,热带海洋,6(2);
    郭允谋;陈华胄;杨顺良,1993,湄州湾现代沉积过程,热带海洋学报,03;
    贾建军,2001,小型潮汐汊道系统的沉积动力过程与演化(博士学位论文);
    贾建军,高抒,2005。建立潮汐汊道P-A关系的沉积动力学方法。海洋与湖沼,36(3),268-276。
    贾建军,高抒,薛允传,2003。山东荣成月湖潮汐汊道的时间—流速不对称特征。海洋学报,25(3),158-168。
    贾建军,高抒,薛允传,李凤业,2004。山东荣成月湖潮汐汊道系统的沉积物平衡问题——兼论人类活动的影响。地理科学,24(1),83-88。
    贾玉连,柯贤坤,许叶华,王艳,1999.渤海湾曹妃甸沙坝-泻湖海岸沉积物搬运趋势.海洋科学,(3),56-60.
    薛允传,贾建军,高抒.月湖的潮汐特征.海洋科学,2001,25(2):31-34。
    薛允传,贾建军,高抒,2002,山东月湖的沉积物分布特征及搬运趋势。地理研究,21(6):707-714。
    魏合龙,庄振业,1997.山东荣成湾月湖地区泻湖——潮汐汊道体系的研究.湖泊科学,9(2),135-140.
    谢钦春,马黎明等,2001,浙江三门湾猫头深潭风暴快速沉积研究,海洋学报,23(5):78—86.
    蔡月娥,蔡爱智.1984,山东半岛海岸泻湖的沉积环境.海洋与湖沼,15(5),468-478.
    蔡锋、陈承惠、苏贤泽,1991,利用Pb-210测年法探讨临海工程建设对厦门同安湾沉积速率的影响《环境科学学报》vol..11,No.3
    蔡锋、陈承惠,1992,临海工程建设对厦门北部海域底质粒级组成的影响《台湾海峡》vol..11,No.1
    戴志军,韩丽等,2001,粤东后江湾沙坝—泻湖海岸系统的演变及动力分析,台湾海峡,20(2);
    戴纪翠,宋金明,李学刚,袁华茂,郑国侠,2006年期,人类活动影响下的胶州湾近百年来环境演变的沉积记录,地质学报,11;
    戴纪翠,宋金明,郑国侠,2006,胶州湾沉积环境演变的分析,海洋科学进展,03;
    龚文平,王道儒,2006,潮汐汊道均衡断面面积计算与稳定性分析中的问题——以海南陵水新村为例。热带海洋学报,25(4):30-41。
    万国江,林文祝,黄荣贵,陈振楼,1990,红枫湖沉积物137Cs垂直剖面的计年特征及侵蚀示踪,科学通报,19,1487-1490.
    浙江省人民政府,2005,浙江省海洋功能区划(报批稿)。
    浙江省人民政府,2005,浙江省滩涂围垦总体规划。
    Aubrey D.G., Speer P.E.,1985. A study of non-linear tidal propagation in shallow inlet/estuarine systems, Part Ⅰ:Observations. Estuary, Coastal and Shelf Science,21,185-205.
    Aubrey, D.G. and Weishar, L. (editors),1988. Hydrodynamics and Sediment Dynamics of Tidal Inlet. Lecture Note on Coastal and Estuarine Studies Vol.29. Springer-Verlag, New York.
    Balouin, Y, Howa, H,2002. Sediment transport pattern at the Barra Nova inlet, south Portugal:a conceptual model. GEO-MARINE LETTERS,21(4):226-235。
    Battjes J.A.,1967. Quantitative research on littoral drift and tidal inlets. In:Lauff G.H.(editor), Estuaries:Sediment and Sedimentation. American Association of Advancement of Science, Washington D.C., pp.185-190.
    Bertin, X, Chaumillon, E, Sottolichio, A, Pedreros, R,2005. Tidal inlet response to sediment infilling of the associated bay and possible implications of human activities:the Marennes-Oleron Bay and the Maumusson Inlet, France. CONTINENTAL SHELF RESEARCH,25(9):1115-1131。
    Boon J.D., Byrne R.J.,1981. On basin hypsometry and the morphodynamics response of coastal inlets. Marine Geology,40,27-48
    Boon J.D,1988. Temporal variation of shallow-water tides in basin inlet systems. In:Aubrey D.G., Weishar L.(editors), Lecture Notes on Coastal and Estuarine Studies, Vol.29, Hydrodynamics and Sediment Dynamics of tidal Inlets, Springer-Verlag Inc., New York,125-136.
    Boothroyd J.C.,1985. Tidal inlets and tidal deltas. In:Davis R.A.Jr.(editor), Coastal Sedimentary Environments (2nd edition), Springer-Verlag, New York,445-532.
    Bruun P.,1978. Stability of tidal inlets-theory and engineering. Elsevier Scientific Publishing Company,507 pp.
    Bruun P., Gerritsen F.,1960. Stability of Coastal Inlets. North-Holland, Amsterdam,123 pp.
    Byrne R.J., DeAlteris J.T., Bullock P.A.,1974. Channel stability in tidal inlets:a case study. ASCE, Proc.14th Coastal Eng. Conf.,1585-1604.
    Carter R W G and Woodroffe C D,1994 (editors). Coastal Evolution. Cambridge University Press, 1994.
    Cayocca, F,2001. Long-term morphological modeling of a tidal inlet:the Arcachon Basin, France. COASTAL ENGINEERING.2001,42(2),115-142
    CERC,1984. Shore Peotection Manual, Vol Ⅰ to Ⅲ. US Army Corps of Engineers, Coastal Engineering Research Centre, US Printing Office.
    Chang H.H.,1997. Modeling fluvial processes in tidal inlet. Journal of Hydraulic Enginnering, ASCE, 123,1161-1165.
    Chandramohan P., Nayak B.U.,1994. A study for the improvement of the Chilka Lake tidal inlet, east coast of India. Journal of Coastal Research,10,909-918.
    Churchill, JH, Blanton, JO, Hench, JL, Luettich, RA, Werner, FE,1999. Flood tide circulation near Beaufort Inlet, North Carolina:Implications for larval recruitment. ESTUARIES,22(4): 1057-1070.
    Cleary, WJ, Fitzgerald, DM,2003. Tidal inlet response to natural sedimentation processes and dredging-induced tidal prism changes:Mason Inlet, North Carolina. JOURNAL OF COASTAL RESEARCH,19(4):1018-1025
    Da Silva, JF, Duck, RW, Catarino, JB,2004. Seagrasses and sediment response to changing physical forcing in a coastal lagoon. HYDROLOGY AND EARTH SYSTEM SCIENCES,8(2):151-159
    David, LT, Kjerfve, B,1998. Tides and currents in a two-inlet coastal lagoon:Laguna de Terminos, Mexico. CONTINENTAL SHELF RESEARCH,18(10):1057-1079
    Davis R.A.Jr.(editor),1978. Coastal Sedimentary Environments. Springer-Verlag Inc., New York, 287-360.
    Davis, RA, Barnard, P,2003. Morphodynamics of the barrier-inlet system, west-central Florida. MARINE GEOLOGY,200(1-4):77-101
    Dworak, JA, Gomez-Valdes, J,2005. Modulation of shallow water tides in an inlet-basin system with a mixed tidal regime. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 110(C1):ARTN C01007
    Dyer K.R.,1986. Coastal and estuarine sediment dynamics. John Wiley & Sons, Chichester,342 pp.
    Elias, E, Stive, M, Bonekamp, H, Cleveringa, J,2003. Tidal inlet dynamics in response to human intervention. COASTAL ENGINEERING JOURNAL,45(4):629-658
    Elias, EPL, Cleveringa, J, Buijsman, MC, Roelvink, JA, Stive, MJF,2006. Field and model data analysis of sand transport patterns in Texel Tidal inlet (the Netherlands). COASTAL ENGINEERING,53(5-6):505-529
    Elias, EPL, van der Spek, AJF,2006. Long-term morphodynamic evolution of Texel Inlet and its ebb-tidal delta (The Netherlands). MARINE GEOLOGY,225(1-4):5-21
    Elwany, MHS, Flick, RE, Aijaz, S,1998. Opening and closure of a marginal southern California lagoon inlet. ESTUARIES,21(2):246-254
    Escoffier E.F.,1940. The stability of tidal inlets. Shore and Beach,8,114-115.
    FitzGerald D.M.,1988. Shoreline erosional-depositional processes associated with tidal inlets. In: Aubrey D.G., Weisher L.(editors), Hydrodynamics and Sediment Dynamics of Tidal Inlets, 185-225, Springer-Verlag Inc., New York.
    FitzGerald, DM, Buynevich, IV, Davis, RA, Fenster, MS,2002. New England tidal inlets with special reference to riverine-associated inlet systems. GEOMORPHOLOGY,48(1-3):179-208
    Fitzgerald, DM, Zarillo, GA, Johnston, S,2003. Recent developments in the geomorphic investigation of engineered tidal inlets. COASTAL ENGINEERING JOURNAL,45(4):565-600
    Fortunato, AB, Oliveira, A,2005. Influence of intertidal flats on tidal asymmetry. JOURNAL OF COASTAL RESEARCH,21(5):1062-1067
    Friedrichs C.T., Lynch D.R., Aubrey D.G.,1992. Velocity asymmetries in frictionally-dominated tidal embayments:longitudinal and lateral variability. In:Prandle D.(editor), Coastal and Estuarine Studies, vol.40, Dynamics and Exchanges in Estuaries and the Coastal Zone, American Geophysical Union, Washington D.C., pp.277-312
    Gao S.,,et al, Fine-grained sediment transport and sorting by tidal exchange in Xiangshan Bay,Zhejiang,China,Estuarine,Coastal and Shelf Science,1990,31,397-409;
    Gao S., Collins M.,1994. Tidal inlet stability in reponse to hydrodynamic and sediment dynamic conditions. Coastal Engineering,23,61-80.
    Gao S., Zhuang Z.-Y., Wei H.-L., Sun Y.-L, Chen S.-J.,1998. Physical Processes Affecting the Health of Coastal Embayments:an Example from the Yuehu Inlet, Shandong Peninsula, China. In:Hong G.H., Zhang J., Park B.K. (editors), Health of the Yellow Sea,314-329.
    Gardner, LR, Kjerfve, B, Petrecca, DM,2006. Tidal fluxes of dissolved oxygen at the North Inlet-Winyah Bay National Estuarine Research Reserve. ESTUARINE COASTAL AND SHELF SCIENCE,67(3):450-460
    Gargett, AE, Stucchi, D, Whitney, F,2003. Physical processes associated with high primary production in Saanich Inlet, British Columbia. ESTUARINE COASTAL AND SHELF SCIENCE, 56(5-6):1141-1156
    Gaudiano, DJ, Kana, TW,2001. Shoal bypassing in mixed energy inlets:Geomorphic variables and empirical predictions for nine South Carolina inlets. JOURNAL OF COASTAL RESEARCH, 17(2):280-291
    Gerritsen, F, Dunsbergen, DW, Israel, CG,2003. A rational stability approach for tidal inlets, including analysis of the effect of wave action. JOURNAL OF COASTAL RESEARCH,19(4): 1066-1081
    Hayes M.O.,1979. Barrier island morphology as a function of tidal and wave regime. In:Leatherman S.P.(editor), Barrier Islands, from the Gulf of St. Lawrence to the Gulf of Mexico, Academic Press Inc,1-27.
    Hayes, M. O. (1980). General morphology and sediment patterns in tidal inlets. Sedimentary Geology 26,139-156.
    Hicks, DM, Hume, TM, Swales, A, Green, MO,1999. Magnitudes, spatial extent, time scales and causes of shoreline change adjacent to an ebb tidal delta, Katikati inlet, New Zealand. JOURNAL OF COASTAL RESEARCH,15(1):220-240
    Hoitink, AJF, Hoekstra, P, van Maren, DS,2003. Flow asymmetry associated with astronomical tides: Implications for the residual transport of sediment. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS,108(C10):AN 3315
    Hubbard D.K., Oertel G.F., Nummedal D.,1979. The rule of waves and tidal current in the development of tidal-inlet sedimentary structures and sand body geometry:examples from North Carolina and Georgia, Journal of Sedimentary Petrology,49,1073-1092.
    Hughes, SA,2002. Equilibrium cross sectional area at tidal inlets. JOURNAL OF COASTAL RESEARCH,18(1):160-174。
    Inman D.L., Dollan R.,1989. The outer bank of North Carolina:budget of sediment and inlet dynamics along a migrating barrier island. Journal of Coastal Research,5,193-237.
    Isla, FI,1997. Seasonal behaviour of Mar Chiquita tidal inlet in relation to adjacent beaches, Argentina. JOURNAL OF COASTAL RESEARCH,13(4):1221-1232
    Jaffe B.E., List J.H., Sallenger A.H.Jr.,1997. Massive sediment bypassing on the lower shoreface offshore of a wide tidal inlet-Cat Island Pass, Louisiana. Marine Geology,136,131-149.
    Jarrett, J.T.,1976. Tidal prism-inlet area relationship. GITI (General Investigation of Tidal Inlets) Report 3, Department of the Army Corps of Engineers.
    Jia JJ, Gao S and Xue YC,2003. Sediment Dynamic Behaviour of Small Tidal Inlets:an Example from Yuehu Inlet, Shandong Peninsula, China. Estuaries, Coast and Shelf Sciences,57(5-6), 783-801.
    Kana, T.W., Hayter, E.J., Work, P.A.,1999. Mesoscale sediment transport at southeastern US tidal inlets:Conceptual model applicable to mixed energy settings. JOURNAL OF COASTAL RESEARCH,15(2):303-313
    Keulegan, G.H.,1967, Tidal Flow in Entrances,Water-Level Fluctuations of Basins in Communication with the Sea, Tech, Bulletin, No.14, Committee on Tidal Hydraulics, Corps of Engineers.
    K.Hirose, M.Aoyama, et al.,1987, Annual deoptsition of Sr-90, Cs-137 and Pu-239,240 from the 1961-1980 nuclear explosions:A simple model, Journal of the Meteorological Society of Japan, Vol.65, No.1.
    Kieslish J.M.,1981. Tidal inlet response to jetty construction. US Army, CERC, GITI Rep.19.
    Kragtwijk, NG, Zitman, TJ, Stive, MJF, Wang, ZB,2004. Morphological response of tidal basins to human interventions. COASTAL ENGINEERING,51(3):207-221
    Kraus, NC, Militello, A,1999. Hydraulic study of multiple inlet system:East Matagorda Bay, Texas. JOURNAL OF HYDRAULIC ENGINEERING-ASCE,125(3):224-232
    Lafon, V, Froidefond, JM, Lahet, F, Castaing, P,2002. SPOT shallow water bathymetry of a moderately turbid tidal inlet based on field measurements. REMOTE SENSING OF ENVIRONMENT,81(1):136-148
    Morris, B.D., Davidson, M.A., Huntley, D.A.,2001. Measurements of the response of a coastal inlet using video monitoring techniques. MARINE GEOLOGY,175(1-4):251-272
    Morris, BD, Davidson, MA, Huntley, DA,2004. Estimates of the seasonal morphological evolution of the Barra Nova Inlet using video techniques. CONTINENTAL SHELF RESEARCH,24(2): 263-278
    Morton R.A., Gibeaut J.C., Paine J.G.,1995. Meso-scale transfer of sand during and after storms: implications for prediction of shoreline movement. Marien Geology,126:161-179.
    Mosher, DC, Moran, K,2001. Post-glacial evolution of Saanich Inlet, British Columbia:results of physical property and seismic reflection stratigraphic analysis. MARINE GEOLOGY,174(1-4): 59-77
    O'Brien M.P.,1931, Estuarine tidal prism related to entrance areas. Civil Engineering,1:738-739.
    O'Brien M.P.,1969, Equilibrium flow areas of inlets on sandy coasts. Journal of Waterway and Harbor Division,95(WW1),43-52
    Oertel G.F.,1988. Processes of sediment exchanges between tidal inlets, ebb deltas and barrier islands. In:Aubrey D.G., Weisher L.(editors), Hydrodynamics and Sediment Dynamics of Tidal Inlets, 297-318, Springer-Verlag New York Inc.
    Oliveira, A, Fortunato, AB, Rego, JRL,2006. Effect of morphological changes on the hydrodynamics and flushing properties of the Obidos lagoon (Portugal). CONTINENTAL SHELF RESEARCH, 26(8):917-942
    Ozsoy E., Unluata U.,1982. Ebb-tidal flow characteristics near inlets. Estuarine, Coastal and Shelf Science,14,251-263.
    Ozsoy E.,1986. Ebb-tidal jets:a model of suspended sediment and mass transport at tidal inlets. Estuarine, Coastal and Shelf Science,22,45-62.
    Ranasinghe R., Pattiaratchi C., Masselink G.,1999. A morphodynamic model to simulate the seasonal closure of tidal inlets. Coastal Engineering,37:1-36
    Ranasinghe, R, Pattiaratchi, C,1998. Flushing characteristics of a seasonally-open tidal inlet:A numerical study. JOURNAL OF COASTAL RESEARCH,14(4):1405-1421
    Ranasinghe, R, Pattiaratchi, C,1999. The seasonal closure of tidal inlets:Wilson Inlet-a case study. COASTAL ENGINEERING,37(1):37-56。
    Ranasinghe R., Pattiaratchi C., 2000. Tidal inlet velocity asymmetry in diurnal regimes. Continental Shelf Research,20,2347-2366.
    Roelvink, JA,2006. Coastal morphodynamic evolution techniques. COASTAL ENGINEERING, 53(2-3):277-287
    Salles, P, Voulgaris, G, Aubrey, DG,2005. Contribution of nonlinear mechanisms in the persistence of multiple tidal inlet systems. ESTUARINE COASTAL AND SHELF SCIENCE,65(3):475-491
    Schuttelaaras, H. M., de Swart, H. E.,2000. Multiple morphodynamic equilibria in tidal embayments. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS,105(C10):ARTN24105
    Schuttelaars, H. M., de Swart, H. E.,1999. Initial formation of channels and shoals in a short tidal embayment. JOURNAL OF FLUID MECHANICS,386:15-42。
    Seeling W.N., Sorensen R.M.,1978. Numerical model investigation of selected tidal inlet-bay system characteristics. ASCE, Proc.16th Coastal Eng. Conf.
    Shigemura T.,1980. Tidal prism-throat area relationships of the bays of Japan. Shore and Beach,48,3, 30-35.
    Shuttleworth, B, Woidt, A, Paparella, T, Herbig, S, Walker, D,2005. The dynamic behaviour of a river-dominated tidal inlet, River Murray, Australia. ESTUARINE COASTAL AND SHELF SCIENCE,64(4):645-657
    Simms, AR, Anderson, JB, Blum, M,2006. Barrier-island aggradation via inlet migration:Mustang Island, Texas. SEDIMENTARY GEOLOGY,187(1-2):105-125
    Smith, NP,2001. Seasonal-scale transport patterns in a multi-inlet coastal lagoon. ESTUARINE COASTAL AND SHELF SCIENCE,52(1):15-28
    Soons, J. M., Shulmeister, J., & Holt, S. (1997). The Holocene evolution of a well nourished gravelly barrier and lagoon complex, Kaitorete_Spit_, Canterburg, New Zealand. Marine Geology 138, 69-90.
    Speer P.E., Aubrey D.G.,1985. A study of non-linear tidal propagation in shallow inlet/estuarine systems Part II:Theory. Estuarine, Coastal and Shelf Science,21,207-224.
    Spiegel F., Klug H.,1998. Tidal basin morphology in the Schleswig-Holstein Wadden Sea Area related to changing tidal conditions. In:Kelletat D. H.(editor), German Geographical Coastal Research-The Last Decade,63-93, Institute for Scientific Co-operation, Tubingen.
    Tambroni, N, Pittaluga, MB, Seminara, G,2005. Laboratory observations of the morphodynamic evolution of tidal channels and tidal inlets. JOURNAL OF GEOPHYSICAL RESEARCH-EARTH SURFACE,110(F4):F04009
    van de Kreeke J.,1985. Stability of tidal inlets-Pass Cavallo, Texas. Estuarine, Coastal and Shelf Sciences,21:33-43
    van de Kreeke J.,1988. Hydrodynamics of tidal inlets. In:Aubrey, D.G., Weishar, L. (Eds.), Hydrodynamics and Sediment Dynamics of Tidal Inlets.1-23, Springer, Berlin,
    van de Kreeke J.,1990. Can multiple tidal inlet be stable? Estuarine, Coastal and Shelf Science,30: 261-273
    van de Kreeke, J,2004. Equilibrium and cross-sectional stability of tidal inlets:application to the Frisian Inlet before and after basin reduction. COASTAL ENGINEERING,51(5-6):337-350
    Van Goor, MA, Zitman, TJ, Wang, ZB, Stive, MJF,2003. Impact of sea-level rise on the morphological equilibrium state of tidal inlets. MARINE GEOLOGY,202(3-4):211-227
    Van Heteren, S., van de Plassche, O.,1997. Influence of relative sea-level change and tidal-inlet development on barrier-spit stratigraphy, Sandy Neck, Massachusetts. JOURNAL OF SEDIMENTARY RESEARCH,67(2), Part B,350-363
    van Leeuwen, SM, de Swart, HE,2002. Intermediate modelling of tidal inlet systems:spatial asymmetries in flow and mean sediment transport. CONTINENTAL SHELF RESEARCH, 22(11-13):1795-1810
    Vila-Concejo, A, Ferreira, O, Matias, A, Dias, JMA,2003. The first two years of an inlet:sedimentary dynamics. CONTINENTAL SHELF RESEARCH.23(14-15):1425-1445
    Vila-Concejo, A, Ferreira, O, Morris, BD, Matias, A, Dias, JMA,2004. Lessons from inlet relocation: examples from Southern Portugal. COASTAL ENGINEERING,51(10):967-990
    Vogel M.J., Kana T.W.,1984. Sedimentation patterns in a tidal inlet system, Moriches Inlet, New York. Proceedings of 19th Coastal Engineering Conference, ASCE, pp.3017-3033
    Walker, DJ,2003. Assessing environmental flow requirements for a river-dominated tidal inlet. JOURNAL OF COASTAL RESEARCH,19(1):171-179
    Wenner, E, Knott, D, Blanton, J, Barans, C, Amft, J,1998. Roles of tidal and wind-generated currents in transporting white shrimp (Penaeus setiferus) postlarvae through a South Carolina (USA) inlet. JOURNAL OF PLANKTON RESEARCH.20(12):2333-2356
    Williams, JJ, Bell, PS, Humphery, JD, Hardcastle, PJ, Thorne, PD,2003. New approach to measurement of sediment processes in a tidal inlet. CONTINENTAL SHELF RESEARCH, 23(14-15):1239-1254
    Work, PA, Guan, J, Hayter, EJ, Elci, S,2001. Mesoscale model for morphologic change at tidal inlets. JOURNAL OF WATERWAY PORT COASTAL AND OCEAN ENGINEERING-ASCE,127(5): 282-289
    Zhang,Q.M.,1987,Analysis of P-A correlationship of tidal inlets along the coast of south China, Proceedings of Coastal and Port Engineering in Developing Countries,Ocean Press (Beijing),412-422.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700