PN结同位素微电池制作工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着MEMS的发展,微能源逐渐成为MEMS应用中的一个关键问题。现有的各种微能源由于其体积、使用寿命、环境适应能力、集成性等方面的制约,无法满足MEMS器件对能源的需求。基于β辐射伏特效应的PN结同位素微电池具有体积小、结构简单、工作稳定性好、寿命长、能量密度高、抗干扰性强等优点,并且不需要补充燃料,因此逐渐成为微能源研究的方向。能量转换结构是同位素微电池的核心器件,其性能决定了同位素微电池的转换效率,因此提高能量转换结构的性能成为研究的重点。
     本文针对基于β辐射伏特效应的PN结同位素微电池的能量转换结构进行了优化设计,设计了表面电极版图,并对能量转换结构的加工工艺进行了研究。论文的主要内容包括:
     首先介绍了同位素微电池的结构和工作原理,包括同位素微电池的分类、电子空穴对的产生过程、复合机构以及载流子的输运过程。
     其次,对同位素微电池的能量转换结构进行了优化设计,通过在表面制作倒金字塔和V型槽结构,使电池表面积增加至原来的1.73倍。同时通过设计选择性发射极结构,有望提高同位素微电池的性能。并在此基础上使用L-EDIT软件进行了版图设计。
     最后,对同位素微电池的制作工艺特别是表面电极的制作工艺进行了深入研究。通过使用硅片模具代替现有的金属模具制作微电池的表面电极,解决了金属离子污染问题。后来又针对硅片模具容易破碎的缺点,开发了一种利用SU8胶剥离工艺制作具有三维表面形貌的同位素微电池的表面电极的新工艺,通过使用BP212正胶作为牺牲层,有效的解决了沟槽中的SU8胶不易去除的难题,成功的制作出了倒金字塔式和沟槽式同位素微电池样件。经过测试,获得了令人满意的输出特性。
As the development of MEMS (Micro Electro Mechanical System), Micro power becomes a key problem in MEMS application gradually. Conventional micro power can not meet the energy requirement of MEMS because of restrict of volume, life-time, adaptation for environment, integration, and so on. Radioisotope Micro Battery based onβ-radio-voltaic effect has the characteristics of little volume, sample structure, high stability, long life-time, high density of energy, robust, and so on, more importantly, in the course of application, it does not need frequently to supply materials or energy for them, thus become the research direction of micro power. Energy convert structure is the core of Radioisotope Micro Battery, and its performance affects the efficiency of the Radioisotope Micro Battery seriously, thus it is important to improve the efficiency of the energy convert structure.
     In this thesis, optimization of the energy convert structure of Radioisotope Micro Battery based onβ-radio-voltaic effect is performed, mask of the metal contacts is designed, and the fabrication process is investigated at the same time. The main content is as follows:
     Firstly, the structure and work principle of Radioisotope Micro Battery are introduced, including the sort of Radioisotope Micro Battery, the generation, recombination and transmission of electron-hole pairs.
     Secondly, the energy convert structure is optimized; the surface area is increased to 173% via etching inverted pyramid and channel array. And the performance is expected to be improved by selective emitter structure. At the same time, mask design is performed use L-EDIT.
     Finally, fabrication process of Radioisotope Micro Battery, especially of the metal contacts is investigated. MIC is avoided through use Si mold. And a new process for the fabrication of the metal contacts of Radioisotope Micro Battery using lift-off process with SU8 photo resist is proposed, via using BP212 photo resist as a sacrificial layer, SU8 in the channels is removed effectively. Radioisotope Micro Battery with inverted pyramid and channel array is fabricated successfully. Satisfied output characteristic is obtained.
引文
[1] http://ime.pku.edu.cn/mems/research/intro.php.
    [2] http://nst.pku.edu.cn/article.php?sid=5195.
    [3] http://www.atom-hitech.com/news_3hhyxw_info.asp?id=268.2003-9-15.
    [4] Paul B. Koeneman, Ilene J. Busch-Vishniac, and Kristin L. Wood. Feasibility of Micro Power Supplies for MEMS. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 1997, 6(4):355-362.
    [5] 刘路,解晶莹.微能源.电源技术.2002,26(6):470-474.
    [6] http://www.eettaiwan.com/ART_8800378911_876045_b624808c.HTM.
    [7] 刘晓为,邓琴,郭猛等.MEMS微电源技术.传感器技术.2003,22(7):77-80.
    [8] 邹宇,黄宁康.伏特效应放射性同位素电池的原理和进展.核技术.2006,29(6):432-437.
    [9] 张建中,王保民,李昌进.微电池的最新研究动态.电源技术.2002,26(增刊):236-238.
    [10] A. H. Epstein, S. D. Senturia. Macro power from micro machinery. Science. 1997, 276 (5316) :1221.
    [11] 谢克文,王晓红,姜英琪等.基于MESM技术的微型燃料电池的制作.微细加工技术.2004(3): 55-58.
    [12] Paul H. Humble, John N. Harb, Rodney LaFollette. Microscopic nickel-zlnc batteries for use in autonomous microsystems. Journal of The Electrochemical Society. 2001, 148 (12): A1357-A1361.
    [13] http://www.ms.ornl.gov/researchgroups/Functional/BatteryWeb/CrossSection.html.
    [14] Jeong B. Lee, Zhizhang Chen, Mark G. Allen, et al. A miniaturized high voltage solar cell array as an electrostatic MEMS power supply. JOURNAL OF MICROELECTROMECHANICAL SYSTEMS. 1995,4 (3): 102-108.
    [15] Hang Guo, and Amit Lal. Nanopower betavoltaic microbatteries. The 12th International Conference on Solid State Sensors, Actuators and Microsystems. Boston, 2003: 36-39.
    [16] Nuclear Microbatteries. Jake Blanchard. ANS-Hollywood FL. 2002.
    [17] Jake Blanchard. Radioisotope Batteries for MEMS. University of Wisconsin. 2005.
    [18] Amit Lal, James Blanchard. The daintiest dynamos. IEEE Spectrum. 2004: 36-41.
    [19] Andrew J. Zillmer, John F. Santarius, James P. Blanchard. Coupled MEMS nuclear battery and FEEP thruster system. Space Technology and Applications International Forum - STAIF. 2004:256-263.
    [20] 梁代骅,杜光大,斯厚智等.地面用放射性同位素电池模型的研制与试验.核技术.1982(2): 13-16.
    [21] 蔡善珏,何舜尧.空间放射性同位素电池发展回顾和新世纪应用前景.核科学与工程.2004,24 (2): 97-104.
    [22] Rajesh Duggirala, Hui Li, Amit hal. An autonomous self-powered acoustic transmitter using radioactive thin films. 2004 IEEE International Ultrasonics, Ferroelectrics, and Frequency Control Joint 50th Anniversary Conference, 2004: 1318-1321.
    [23] Jack F. Mondt. Advanced radioisotope power systems requirements for potential deep space missions. American Institute of Aeronautics and Astronautics, 2000: 444-448.
    [24] Henry Oman. Power for New Space Missions. News from the 34th Intersociety Energy Conversion Engineering Conference, 1999: 17-26.
    [25] Gabor Miskolczy and David P. Lieb. Radioisotope Thermionic Converters for Space Applications. 222-226.
    [26] 马宗诚.新型空间电源——热离子式核电池.航天器工程.2003,12(1):74-82.
    [27] NASA. Space Radioisotope Power Systems Multi-Mission Radioisotope Thermoelectric Generator.
    [28] S. Freedman, J. Friedman, J. Schmieder. RTG- Parametric Study Report for the RTG Study Voyager Task C (U) .
    [29] R. H. Cooper, M. M. Martin, C. R. Riggs, et al. Operational Readiness Review Plan for The Radioisotope Thermoelectric Generator Materials Production Tasks.
    [30] 陈宏铭。同位素微电池之研究.[硕士学位论文].台湾:国立清华大学,2003.
    [31] Steffen Deus. Tritium-powered beta voltaic cells base on amorphous silicon. IEEE 2000:1246-1249.
    [32] James Blanchard, Douglass Henderson, Amit Lal. A Nuclear Microbattery for MEMS Devices. University of Wisconsin - Madison, Final Scientific/Technical Report.
    [33] http://www.chinesevacuum.com/ShowArticle.aspx?id=3913
    [34] Lal A., R.M. Bilbao, Y. Leon, et al. A nuclear microbattery for MEMS devices. Proceeding of 9th International Conference on Nuclear Engineering, Nice, 2001.
    [35] Martin A. Green, ANDREW W. BLAKERS, JIANHUA ZHAO et al. Characterization of 23-Percent Efficient Silicon Solar Cells. IEEE TRANSACTIONS ON ELECTRON DEVICES. 1990, 37(2):331-336.
    [36] 屈盛,陈庭金,刘祖明等.太阳电池选择性发射极结构的研究.云南师范大学学报.2005,25(3):21-25.
    [37] E. W. Billington, W. Ehrenberg. The electron voltaic effects in silicon and selenium elements. PROC. PHYS. SOC. 1961, 78:845-853.
    [38] J. J. Loferski, P. Rappaport. Electron voltaic study of electron Bombardment Damage and its Threshold in Ge and Si. Letters to the editor:1861-1863.
    [39] Robert F.Pierret.半导体器件基础.黄如,王漪,王金延等译.北京:电子工业出版社,2004.
    [40] 吴红超.基于B辐射伏特效应的同位素微电池理论模型研究.[硕士学位论文].大连:大连理工大学,2005.
    [41] 王长贵,崔容强,周篁.新能源发电技术.北京:中国电力出版社:2003.
    [42] Michael Quirk,Julian Serda著.半导体制造技术.海潮和,徐秋霞译.北京:电子工业出版社, 2004.
    [43] 施小忠,汪乐,夏冠群.太阳电池栅线的设计.电子学报.1999,27(11):126-127.
    [44] 卢希庭.原子核物理.北京:原子能出版社,2001.
    [45] 电子工业半导体专业工人技术教材编写组.半导体器件工艺.上海:上海科学技术文献出版社, 1984.
    [46] 厦门大学物理系半导体物理教研室.半导体器件工艺原理.北京:人民教育出版社,1979.
    [47] 黄庆安.硅微机械加工技术.北京:科学出版社,1996.
    [48] 施敏.半导体器件物理与工艺.赵鹤鸣,钱敏,黄秋萍译.苏州:苏州大学出版社,2002.
    [49] Gelorme, Jeffrey D., Cox, et al. Photoresist composition and printed circuit boards and packages made therewith. United States. 4882245, November 21, 1989.
    [50] MICRO CHEM. SU8 2035-2100 datasheet.
    [51] Paul M. Dentinger, W. Miles Clift, Steven H. Goods. Removal of SU-8 photoresist for thick film applications. Microelectronic Engineering. 2002, 61: 993-1000.
    [52] Guodong Hong, Andrew S Holmes, Mark E Heaton. SU8 resist plasma etching and its optimization. DTIP 2003, Mandelieu - La Napoule, France, 2003: 268-271.
    [53] Louis J. Guerin. Su8 homepage.
    [54] MICRO CHEM. OMNICOAT.
    [55] Shahanara Banu, Sam Birtwell, Gerasim Galinatov, et al. Micro fabricated Barcodes for Particle Identification.
    [56] 姜政,丁桂甫,张永华,等.叠层光刻胶牺牲层工艺研究.微细加工技术.2005(3):62-66.
    [57] 林立,韦书领,杨春莉等.正/负双层光刻胶厚膜剥离技术.激光与红外.2006,36(4):282-284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700